JPS62103456A - Electromagnetic fuel injection valve - Google Patents

Electromagnetic fuel injection valve

Info

Publication number
JPS62103456A
JPS62103456A JP24327985A JP24327985A JPS62103456A JP S62103456 A JPS62103456 A JP S62103456A JP 24327985 A JP24327985 A JP 24327985A JP 24327985 A JP24327985 A JP 24327985A JP S62103456 A JPS62103456 A JP S62103456A
Authority
JP
Japan
Prior art keywords
fuel injection
injection valve
heat
solenoid
heat radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24327985A
Other languages
Japanese (ja)
Inventor
Motohiro Baba
馬場 元啓
Hideki Ito
秀樹 伊藤
Hitoshi Takeuchi
仁司 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP24327985A priority Critical patent/JPS62103456A/en
Priority to US06/922,170 priority patent/US4742964A/en
Publication of JPS62103456A publication Critical patent/JPS62103456A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/462Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down
    • F02M69/465Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down of fuel rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/08Injectors with heating, cooling, or thermally-insulating means with air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To prevent a fuel injection valve from being heated, by attaching a heat-radiating member formed of a highly heat-conductive cylindrical member on the outer periphery of the body of the fuel injection. CONSTITUTION:This fuel injection valve is used by energizing a solenoid coil 4, and at that time the coil 4 therefore generates heat due to its resistance. In order to radiate the heat, an aluminum heat radiating cover 100 formed of a highly heat-conductive cylindrical member is fitted on the outer periphery of a part where the solenoid coil 4 is disposed, being in close contact with the same. With this arrangement, it is possible to effectively prevent the fuel injection valve from being heated, and therefore, no faults such as, for example, vapor-lock, occur. Accordingly, it is possible to inhibit the high temperature characteristic of an internal combustion engine from lowering, and thereby the engine may be operated under a severe condition.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 自動車などに使用される内燃機関への燃1’l供給手段
の一つに燃料噴射弁が用いられる場合がある。 本願発明は弁の開閉調整が電磁ソレノイドによって駆動
される電磁式燃料噴射弁の改良に関する。 (従来の技術) 燃料噴射弁は内燃8In閏に隣接して取(=jUられる
ことから、内燃機関からの熱の伝達にJ:り加熱される
。燃料噴射弁が昇温し一定のレベルをこえると、燃料が
燃料噴射弁内で蒸発し、いわゆるペーパーロツタ現象が
牛じ、燃料の供給が害される。 この結果、内燃機関の^温特性が低Fす仝。これを避け
るために、燃料噴射弁を断熱して熱の伝達を小さり′I
Jる試みが各秤提案されでいる。これらは実開昭56−
138151.!17−178164.58−7044
i5.58−29161号公報イ号公報間示されている
。 さら+r″+I、lこ、特にアル」−ルを用いる内燃機
関の為に燃11噴口・1かに冷却水を循環さl′C加熱
を防11りるII+!梨tブイfされてJ3す、これは
実開昭57−35460号公報にl!fl ;1\され
ている。 (発明が解決しJ、うどMる問題点) 前t
(Industrial Application Field) A fuel injection valve is sometimes used as one of the means for supplying fuel to an internal combustion engine used in an automobile or the like. The present invention relates to an improvement in an electromagnetic fuel injection valve in which opening and closing adjustment of the valve is driven by an electromagnetic solenoid. (Prior art) Since the fuel injection valve is placed adjacent to the internal combustion engine, it is heated by the transfer of heat from the internal combustion engine.The temperature of the fuel injection valve rises and reaches a certain level. If the temperature exceeds the temperature, the fuel evaporates inside the fuel injection valve, causing the so-called paper rotter phenomenon, which impairs the fuel supply. As a result, the temperature characteristics of the internal combustion engine become low F. To avoid this, the fuel Insulating the injection valve to reduce heat transfer
An attempt has been made for each scale. These are Utsukai 56-
138151. ! 17-178164.58-7044
I5.58-29161 Publication No. A is shown. In addition, especially for internal combustion engines using alcohol, cooling water is circulated through the combustion nozzle 1 to prevent l'C heating. This is published in Japanese Utility Model Application Publication No. 57-35460! fl ;1\ has been done. (Problems that the invention solves) Previous t

【!シた第1の/j法Jなわち燃料噴射弁を断熱祠
ぐカバーりる方法では完全に断熱Jることが内勤ぐあり
種々の条v1−トで有効な方法とは言え<rい。 ま1.:従来の電磁式燃料噴射弁においでは1.1磁ソ
レノイドに所定111以上の電流が流れ、ソレノイドが
抵抗発熱し′C:1イルの被膜がとけることを防11り
る1=めに、バッテリーと燃料噴射弁の間で゛燃料噴射
弁の外部に抵抗を挿入していた。しかしながら、この方
式で1.1抵抗が]ストアツブの曹因ど<rること、抵
抗で/1じる発熱の処即が面倒<iこと/丁とから、ソ
レノイドコイル自体に電流を制限JるII’V IA 
M川をもたせ、外部の抵抗をとりのぞく提案が各種なさ
れている。この技術は特開1げ152−!+!1020
、実開昭59−2981.59−73571月公報イT
とに示されている。 このような技術によればソレノイドイのものが発熱体と
なり、燃料噴射弁を断熱体eカバーtノでもまったく無
駄であるばかりか、逆に6害に作用するものである。 燃料噴射弁に冷7JI水を循環さ■る方法は加熱を防止
する有効な方法であるが、細かな加1−が必要であり、
コストの点からして問題が残っ−(いる。 本願発明は単純で安価でかつ有効に加熱をμ」11する
ことのできる電磁式燃料噴射弁の提供を課題と覆る。 (問題点を解決するための手段) 上記した課題は、内燃機関側の燃r1噴射弁において、
燃料噴射弁の本体外周に故熱用の部(4を取付けてなる
電磁式燃料噴射弁によって実現される。 (作用) 上記のように放熱の為の部+4を設置JることにJ、す
、内燃機関から伝達される熱や燃r1噴射弁内部(生じ
る熱は 放熱部材から人気中に放熱されで燃料噴射弁の
加熱が防止される。この為、ペーパー1]ツクが防+l
−されて内燃機関の6渇特例の低下がit!HJられ、
またソレノイドコイルの被眼の溶融()防ぐことが7゛
きる。 (実施例) まり°第7図に即1ノで、本願発明の要旨である放熱8
1目イを取付(Jる前の一般的な電磁式燃料噴射弁の概
要を説明覆る。 1、固定鉄心2のまわりに]イルがまかれてソレノイド
4が形成されている 2 ソレノイド4は]イルホルダー16に対lノで固定
されている。 3、ソレノイド4はコイルホルダー16ごと、固定鉄心
2ど燃料噴射弁のハウジングボデー6の間に固定されて
いる。 4、ハウジングボデー6は透磁率の高い材質(アルミ、
り1]ム、シリコンを含有4る鋼、いわゆるホロ1ステ
ンレスが用いられている)で形成されている。 5、固定鉄心2どハウジングボデー6の間にはjTl動
畝心14が挿入されCいる。 6、数十により、固定鉄心2、ハウジングボデー6、可
動鉄心14によって磁気回路が形成される。 7、可動鉄心14は軸方向にわずかに動ぎうる。 常時はばね15にJ:す、先端方向に付勢されている。 ソレノイドに通電されるど固定鉄心と可動鉄心の間のわ
ずかな空隙に吸引力が生じ可動鉄心が図の右方向にわず
かに移11J Tl−る。 8、可動鉄心は弁支持筒13に連結されている。 9、弁支持筒13の外周にはフランジ13aが設けられ
、ス1〜ツバ7によりr1容可仙範囲が制限されている
。 10、弁支持筒13の先端には球弁11が固定され、弁
座面10と当接し−(いる。 11、本燃料噴用弁I G、Lノズルカバー9が内燃機
関側へ、他端はスI・レージ−17を経由して、燃料ポ
ンプに連結1)でいる。弁体の軸心近傍番31燃料通路
とな−)(いる。 12、ソレノイドが通電し、可動鉄心が固定鉄心の側I
J引寄1!られると、弁支持筒13を介して、球弁11
ど弁座面10の間に間隙が生じる。 この結束、燃利か内燃機関側に@躬される。 13、バルブボア′−12I;L弁支持体13を摺動可
能に★持し、A−リング3.5.flは燃$+1が漏れ
出イ1いようにシールしている。 14、ソレノイ1:への通電(31外部接続端子18に
よつ(いる。 この燃料噴射弁t、Lソレノイドに通電して使用される
が、でのときソレノイドには抵抗により発熱が111;
る。ハウジングボデーは透磁率の高い電磁スラーンレス
が用いられ(いるが、この材料は金属材オ′+1のイ「
かC(,1熱伝導率が比較的低い。従って、熱が逃げに
くく、−1イルが加熱されや1い問題貞を1・11つC
いる。 31、lこ内燃l層間からの熱伝達を防11するために
燃¥+117! 1J・1弁を断熱(イでカバーしでし
まうと、ソレノイドからの発熱が燃料噴射弁に籠もって
しまうことh’ l’)、この1段を用いることばCぎ
(2い。 イこで本願発明eは燃r1噴射弁のまわりに放熱用の部
材を取(!I l:jて、燃料噴…弁の加熱を防11シ
ている。以下図面1〜6に例示する実施例を説明する。 第1実施例 本実施例は第1図(a)に示すアルミ製の6&熱川カバ
ー(100)を(b)に示ずように、ソレノイドコイル
(4)が配回されている位置の外周に密着、挿入してい
る。このアルミ製の筒が放熱作用を営なむものであるこ
とは、以下の解析と実験結束によって理解される。 今ソレノイドコイルの外1¥をrl、ハウジングボデー
の外径をr2、アルミ筒の外径をr3として、ソレノイ
ドコイルの発熱量を1助間あたりQ力11り一とする。 ここで軸方向に中位艮をとって考えると、ニュートンの
冷7Jlの法則により、カバーの無い時 0−2παr
2(12°−1’a) (1)カバーの在るlI=’i
  Q −2yr a r3 (Ta−Ta)  (2
)が成立する。Iこだしαは表面熱伝達率、Taは外気
温、■2°はカバーが無い時のハウジングボデーの表面
混用、I’ 31.L 7’ルミ簡の表面温度である。 つぎにアルミ筒内部の淘iプ[1フアイルを定常状態と
仮定して求める。半経をr、アルミの前払にI率をに3
ど16と次の微分方程式が成立する。 (、)−−−−−2yr r k3 dl/dr   
      (3)V−の1(を解い−C1式(2)か
ら得られる境界条例を代入Jるど r(r)=Ta+(1/(2yr U r3)40/(
27r k3)*In(r3/r)  (4)81:た
ハウジングボデーどアルミ筒の境界の2111は(2=
Ta10/(2yr  a  r3)十〇/(2πに3
)*In(r3/r2)  (5)となる。 −)ぎにハウジングボデー内部の温石分布について同様
のML DIをして、境界条件に式(5)を用いると、
1’(r)−Ta*Q/(2yr tx r3)+Q/
(2πに3)*1n(r3/r2)+Q/(2πに2)
*1n(r2/r) (6)となり、ここでに2は電磁
ステンレスの熱伝導率であり、これから、ソレノイドの
表面温度はT1=Ta*O/(2yr  a r3)+
0/(2πに3)*In(r3/r2)+Q/(2πに
2)*In(r2/rl)  (7)どなる。  9 一 つぎにカバーがない状態で式(1)の境界条f1を用い
て、同様の片1nを4るど、 T(r)=Ta+Q/(2π (Z  r2)l/(2
yr  k2)*1n(r2/r  )(8)となり、
ソレノイドの表向温度6.1 TI’  −Ta+O/(:)πrx r2)+Q/(
2πに2)本In(r2/rl)(9)となる。 ここでカバーのない状態でのソレノイドの表向温度とカ
バーの在る状態でのソレノイドの表面N lltを比較
するために、式(9)から式(7)を減するど■1°−
T1=Q/(2π)*((1/(αr2)+(In r
2)/に3)−(1/(αr3)4(In r3)/に
3))(10)となる。 ここテf (r ) = (k3/α)*(1/r)+
In(r)   (11)とおき、−例としてに3にア
ルミの熱伝導率を、αに10km/hPi!iの風速が
管にあたる時の表面熱伝達率を代入すると、k3/αの
値はほぼ0.05となる。この値を式(11)に代入し
てグラフ化したものが第8図に示されている。 このグラフからt(「)の値はrが0.05  (中位
はメートル)で最低値をとり、50111以下の範囲で
i、1. r’の増大とどもにf (r)の伯が減少す
ることを示しτいる。これを式(10)と対比するど、
11°−11=(1/(2πに3)*(1’ff2)−
f(r3))    (12)ど<Cす、燃料噴θ・1
弁の半径が50111m以下の範囲で・口、アルミ筒に
より、放熱効果が生じ、その効果はカバーの半径が50
mmに近いほど大きいことを怠味している。実施例の燃
料噴射弁は外径がほぼ21 mmであり、この条件を充
分満している。 ト配解析はグラス化されて第9図に示される。 この図で1の曲線はカバーの無い状態での閤葭分イII
リ−イ【わら式(8)のグラフであり、下の曲線はカバ
ーのイ1−る状態ずなわち、式<4>、(6)のグラフ
である。 ここでΔT1はカバーによって、表面積が増大しC表面
記亀が低Fする湯亀差であり、ΔF2はカバ一体中に/
1じる温度差である。ΔT1がΔ丁2.1りも大きい条
fi下でカバーが放熱作用を営なむことが即断される。 h’l熱効宋は熱伝導率の高い材料の【ようがΔT2が
小さいことから、有効である。アルミ以外にも、銅、銀
などが適している。 つぎに実験結果を説明する。本実験に用いた燃料噴射弁
はハウジングボデーの外径が21mmであり、これに種
々の外径のアルミ筒を挿入、密むして、ソレノイドに3
0分間連続通電し−C第1図(b)のM点の温度をリー
ミスタによって測定した。筒の長さ(ま略16mmであ
り、第1図(【))に示されるように、ソレノイドより
も若干長い・tプ以−トにより、アルミ筒が有効’/K
ht熱祠として機能していることがMf認される。 実施例2 これは第2図に示されるように、アルミ筒(2(10)
の円周トに3枚のhl熱用フィンをもうけたしのである
。筒の長さは第1実鉋例と等しくしてフィンの外径を3
Qmm、フィンのないところの径を23mmとしたとこ
ろ、105℃まで濡面が低下した。これt、を第1実施
例よりも放熱効果が高いことを示【ノでいる。 実施例3 これは第3図に示】ように、放熱部+A(3(10)に
軸方向にのびる放熱用フィンを等間隔に8枚設置IIコ
ニ例て゛ある。この場合もフィンの外径を30mmどし
kどころ、109℃まで低下した。はぼ第2実施例どt
it等の放熱効果が得られる。 実施pA/I これは第4図に示されるように、第1実施例よV)6若
十良い1i(400)でカバーするものであり、411
実施例よりも大きな放熱効果が得られる。第2.3実施
例のようなフィンと併用することも当然0I能である。 実施例5 これは第5図に示されるように、燃料噴出弁のほぼ全長
にわたって、放熱用の筒(500)を取付けた例eある
。この場合主どしてソレノイドの近傍では、ソレノイド
からの発熱を放熱し、燃料噴射弁の先端部では内燃機関
から伝達する熱を放熱する。 従って、このタイプは、ソレノイドの発熱が大きい高速
運転状態でも、内燃機関が高温になる低速運転状態ある
いは運転停止1直後のいずれの状態でも燃料噴射弁の加
熱を防1!二することができる。 実施例に の例は第6図に承りように、燃料噴射弁の先端部側に放
熱部材(600)を取付けたものであり、主として内燃
機関から伝達り−る熱で燃料噴射弁が加熱されることを
防止する。 尚第5,6実施例の場合にも放熱用フィンと組合わせる
ことが当黙り能である。 (効果) 以上のように燃料噴射弁に適宜放熱用の部材を取付ける
ことにより、燃料噴射弁の加熱を有効に防止することが
て゛きる。 これにより、まず燃料の加熱が防止できベーパーロック
等の不具合を生じさゼむい。従つ−(、内燃機関の高渇
特竹の低下を1!11止することが(・きる。 またソレノイド=lイルの発熱をイj効にhり熱し、−
1/I  − −1イルの被Ifψの溶融を防11することができる。 以+ 1J二、1;す、苛酷な条f1下ぐ使用可能(7
燃斜噴01 ji’が実現(・さ゛、その#6造は甲純
ぐあり、丈夫で′//1曲イ11)のである。 4、図面の簡11j /7.μm明 第1・−6図の各(a)は燃料噴訃1弁に取付IJられ
る放熱用部祠の第1〜6実施例を示し、(b)はこれが
燃II 171射弁に取付番フられた状態の中央断面図
を承り。第7図は放熱部祠が取イ・目ノられる以前の電
磁式燃料噴射弁の中央断面図をホづ。第8図はhり熱作
用が営まれることをμm明Jるために用いられる1(の
グラフであり、第0図は燃料噴用弁ど放熱用カバーの温
度分布を示1図である。
[! The first method, ie, the method of covering the fuel injector with heat insulation, cannot be said to be an effective method in various situations where it is impossible to completely insulate the fuel injection valve. 1. : In a conventional electromagnetic fuel injection valve, a current of a predetermined value of 111 or more flows through the 1.1 magnetic solenoid, which causes the solenoid to generate resistance and prevent the film from melting. A resistor was inserted externally between the fuel injection valve and the fuel injection valve. However, in this method, the current is limited to the solenoid coil itself because the 1.1 resistance is the cause of the storage and it is troublesome to deal with the heat generated by the resistance. II'V IA
Various proposals have been made to strengthen the M River and remove external resistance. This technology is published in Japanese Unexamined Patent Application Publication No. 152-152-! +! 1020
, Utility Model Publication No. 59-2981.59-73571
and is shown. According to such a technique, the solenoid becomes a heating element, and even if the fuel injection valve is covered with a heat insulating material, it is not only useless, but also causes harm. Circulating cold 7JI water through the fuel injection valve is an effective method to prevent overheating, but requires small adjustments.
There remains a problem in terms of cost.The present invention aims to provide an electromagnetic fuel injection valve that is simple, inexpensive, and can effectively reduce heating. The above-mentioned problem is solved in the fuel r1 injection valve on the internal combustion engine side.
This is realized by an electromagnetic fuel injection valve which has a waste heat part (4) attached to the outer periphery of the fuel injection valve body. (Function) By installing the heat radiation part (4) as described above, , the heat transferred from the internal combustion engine and the heat generated inside the fuel injection valve is radiated from the heat dissipation member and prevents the fuel injection valve from heating.
-The reduction of the internal combustion engine's 6 thirst special case is it! HJ is done,
Also, it is possible to prevent the solenoid coil from melting (). (Example) At No. 1 in Figure 7, heat dissipation 8, which is the gist of the present invention, is shown.
1. Install the 1st part A. 3. The solenoid 4, together with the coil holder 16, is fixed between the fixed iron core 2 and the housing body 6 of the fuel injector. 4. The housing body 6 has magnetic permeability. high quality materials (aluminum,
It is made of silicon-containing steel, so-called Holo 1 stainless steel. 5. A jTl dynamic ridge core 14 is inserted between the fixed iron core 2 and the housing body 6. 6, a magnetic circuit is formed by the fixed iron core 2, the housing body 6, and the movable iron core 14. 7. The movable core 14 can move slightly in the axial direction. At all times, the spring 15 is biased toward the tip. When the solenoid is energized, a suction force is generated in the slight gap between the fixed iron core and the movable iron core, causing the movable iron core to move slightly to the right in the figure. 8. The movable iron core is connected to the valve support cylinder 13. 9. A flange 13a is provided on the outer periphery of the valve support cylinder 13, and the range of r1 capacity is limited by the collar 7. 10. A ball valve 11 is fixed to the tip of the valve support cylinder 13, and is in contact with the valve seat surface 10. 11. This fuel injection valve IG, L nozzle cover 9 is attached to the internal combustion engine side, and the other end is in contact with the valve seat surface 10. is connected to the fuel pump via the storage unit 17 (1). 12. The solenoid is energized and the movable core is connected to the fixed core side I.
J pull 1! When the ball valve 11 is
A gap is created between the valve seat surfaces 10. This unity is affected by fuel and internal combustion engines. 13, valve bore'-12I; slidably holds the L valve support 13, and A-ring 3.5. fl is sealed to prevent fuel +1 from leaking out. 14, Solenoid 1: is energized (31 is connected to the external connection terminal 18). This fuel injection valve T and L solenoids are energized and used, but when energized, the solenoid generates heat due to resistance.
Ru. The housing body is made of electromagnetic slanless material with high magnetic permeability (although this material has a metal material O'+1 grade).
C(,1Thermal conductivity is relatively low.Therefore, it is difficult for heat to escape, and -1Il is less likely to be heated.1.11C)
There is. 31.In order to prevent heat transfer from between the internal combustion layers, ¥117! 1J・1 valve is insulated (if it is not covered with A, the heat generated from the solenoid will be trapped in the fuel injection valve h'l'), and the word C using this 1st stage is (2). Invention e includes a heat dissipating member around the fuel injection valve to prevent the fuel injection valve from heating.Hereinafter, embodiments illustrated in FIGS. 1 to 6 will be described. First Embodiment In this embodiment, the aluminum 6 & Atagawa cover (100) shown in FIG. It is tightly inserted into the outer periphery.The fact that this aluminum cylinder performs a heat dissipation function can be understood from the following analysis and experimental results.The outer diameter of the solenoid coil is rl, and the outer diameter of the housing body is Let r2 be the outside diameter of the aluminum cylinder, r3 be the outer diameter of the aluminum cylinder, and let the calorific value of the solenoid coil be 11 Q force per 1 swell.Here, if we consider the middle position in the axial direction, Newton's law of cold 7Jl Therefore, when there is no cover, 0−2παr
2 (12°-1'a) (1) lI with cover = 'i
Q -2yr a r3 (Ta-Ta) (2
) holds true. I Kodashi α is the surface heat transfer coefficient, Ta is the outside temperature, ■2° is the surface mixture of the housing body when there is no cover, I' 31. L 7' is the surface temperature of the lumi paper. Next, the ablation inside the aluminum cylinder is determined assuming that one file is in a steady state. Half life is r, I rate is 3 for advance payment of aluminum.
16, the following differential equation holds true. (,)---2yr r k3 dl/dr
(3) Solve V-1 (-C1 Substitute the boundary ordinance obtained from equation (2) J r (r) = Ta + (1/(2yr U r3) 40/(
27r k3)*In(r3/r) (4) 81: 2111 at the boundary of the housing body and aluminum cylinder is (2=
Ta10/(2yr a r3) 10/(2π to 3
)*In(r3/r2) (5). -) Next, if we perform similar ML DI on the hot stone distribution inside the housing body and use equation (5) as the boundary condition, we get
1'(r)-Ta*Q/(2yr tx r3)+Q/
(3 in 2π)*1n(r3/r2)+Q/(2 in 2π)
*1n(r2/r) (6), where 2 is the thermal conductivity of the electromagnetic stainless steel, and from this, the surface temperature of the solenoid is T1=Ta*O/(2yr a r3)+
0/(3 in 2π)*In(r3/r2)+Q/(2 in 2π)*In(r2/rl) (7) Roar. 9 Using the boundary strip f1 of equation (1) with no cover on the first piece, 4 times the same piece 1n, T(r)=Ta+Q/(2π (Z r2)l/(2
yr k2)*1n(r2/r) (8),
Solenoid surface temperature 6.1 TI' -Ta+O/(:)πrx r2)+Q/(
2) In(r2/rl) (9) at 2π. Here, in order to compare the surface temperature of the solenoid with no cover and the surface temperature of the solenoid with the cover, subtract equation (7) from equation (9).
T1=Q/(2π)*((1/(αr2)+(In r
2)/to 3)-(1/(αr3)4(In r3)/to 3)) (10). Here, f (r) = (k3/α)*(1/r)+
In(r) (11), - As an example, 3 is the thermal conductivity of aluminum, and α is 10 km/hPi! Substituting the surface heat transfer coefficient when the wind speed of i hits the pipe, the value of k3/α becomes approximately 0.05. A graph obtained by substituting this value into equation (11) is shown in FIG. From this graph, the value of t (') has the lowest value when r is 0.05 (the median is meters), and in the range of 50111 or less, i, 1. As r' increases, the ratio of f (r) increases. It shows that τ decreases.Comparing this with equation (10), we get
11°-11=(1/(3 to 2π)*(1'ff2)-
f(r3)) (12) Do<C, fuel injection θ・1
When the radius of the valve is 50111 m or less, the mouth and aluminum cylinder produce a heat dissipation effect, and this effect is greater than the radius of the cover of 50 m.
The closer it is to mm, the larger it is. The fuel injection valve of the example has an outer diameter of approximately 21 mm, which fully satisfies this condition. The distribution analysis is shown in a glass form in FIG. In this figure, the curve 1 is the curve 1 without the cover.
This is a graph of equation (8), and the lower curve is a graph of the cover's condition, that is, equations <4> and (6). Here, ΔT1 is the difference in hot water temperature due to the cover increasing the surface area and lowering the C surface temperature, and ΔF2 is the difference in temperature when the cover is integrated.
There is a temperature difference of 1. It is immediately determined that the cover performs a heat dissipation function under the row fi in which ΔT1 is greater than ΔT2.1. h'l thermal effect is effective because ΔT2 is small compared to materials with high thermal conductivity. In addition to aluminum, copper, silver, etc. are also suitable. Next, the experimental results will be explained. The fuel injection valve used in this experiment has a housing body with an outer diameter of 21 mm, and aluminum cylinders of various outer diameters are inserted into this and tightly pressed to form a solenoid.
Continuous current was applied for 0 minutes, and the temperature at point M in Figure 1(b) was measured using a Reamister. The length of the cylinder (approximately 16 mm, as shown in Figure 1 ([)), is slightly longer than the solenoid.The aluminum cylinder is effective due to the t port.
Mf is recognized to be functioning as a ht heat shrine. Example 2 This is an aluminum cylinder (2 (10)
Three HL heating fins were placed around the circumference of the fin. The length of the cylinder is the same as the first example, and the outer diameter of the fin is 3.
When Qmm and the diameter without fins were set to 23 mm, the wetted surface decreased to 105°C. This t indicates that the heat dissipation effect is higher than that of the first embodiment. Embodiment 3 As shown in Fig. 3, there is an example in which eight heat dissipation fins extending in the axial direction are installed at equal intervals in the heat dissipation part +A (3 (10)).In this case, the outer diameter of the fins is The temperature decreased to 109°C, far from 30mm.
Heat dissipation effects such as IT can be obtained. Implementation pA/I As shown in FIG.
A greater heat dissipation effect than in the example can be obtained. Of course, it is also possible to use it in combination with fins as in the 2.3 embodiment. Embodiment 5 As shown in FIG. 5, this is an example e in which a heat radiation cylinder (500) is attached over almost the entire length of the fuel injection valve. In this case, heat generated from the solenoid is mainly radiated near the solenoid, and heat transmitted from the internal combustion engine is radiated at the tip of the fuel injection valve. Therefore, this type prevents the fuel injection valve from overheating in any of the following conditions: high-speed operating conditions where the solenoid generates a large amount of heat, low-speed operating conditions where the internal combustion engine becomes hot, or immediately after the engine has stopped operating! Two can be done. As shown in FIG. 6, the example of the embodiment is one in which a heat radiating member (600) is attached to the tip end side of the fuel injection valve, and the fuel injection valve is heated mainly by heat transferred from the internal combustion engine. Prevent this from happening. In the case of the fifth and sixth embodiments, it is also possible to combine the heat dissipation fins. (Effects) By appropriately attaching a heat radiation member to the fuel injection valve as described above, heating of the fuel injection valve can be effectively prevented. This prevents heating of the fuel and prevents problems such as vapor lock. Therefore, it is possible to stop the drop in the high-drainage characteristic of the internal combustion engine by 1!11 (.
It is possible to prevent melting of Ifψ of 1/I − −1 yl. + 1J2, 1; Can be used under harsh conditions f1 (7
The combustion angle injection 01 ji' has been realized (・The #6 construction is solid and durable'//1 song A11). 4. Simplification of drawings 11j /7. Figures 1 and 6 (a) show the first to sixth embodiments of the heat dissipation part installed on the fuel injection valve 1, and (b) shows the installation number of the heat dissipation part installed on the fuel injection valve 171. We accept a central sectional view of the flattened state. Figure 7 shows a central sectional view of an electromagnetic fuel injection valve before the heat radiation part was removed. FIG. 8 is a graph 1 (1) which is used to confirm that the heating action is taking place, and FIG. 0 is a graph showing the temperature distribution of the heat dissipation cover of the fuel injection valve.

Claims (6)

【特許請求の範囲】[Claims] (1) 内燃機関用の燃料噴射弁において、燃料噴射弁
の本体外周に放熱用の部材を取付けてなる電磁式燃料噴
射弁。
(1) An electromagnetic fuel injection valve for internal combustion engines, in which a heat radiation member is attached to the outer periphery of the fuel injection valve body.
(2) 放熱用の部材が高熱伝導率の筒状体であること
を特徴とする特許請求の範囲第1項に記載の電磁式燃料
噴射弁。
(2) The electromagnetic fuel injection valve according to claim 1, wherein the heat radiation member is a cylindrical body with high thermal conductivity.
(3) 放熱用の部材が高熱伝導率の放熱用のフィンを
有することを特徴とする特許請求の範囲第1項または第
2項に記載の電磁式燃料噴射弁。
(3) The electromagnetic fuel injection valve according to claim 1 or 2, wherein the heat radiation member has heat radiation fins with high thermal conductivity.
(4) 放熱用の部材が燃料噴射弁の本体中に組付けら
れたソレノイドコイルが存在する位置の外周に取付けら
れていることを特徴とする特許請求の範囲第1項から第
3項のいずれかに記載の電磁式燃料噴射弁。
(4) Any one of claims 1 to 3, characterized in that the heat radiation member is attached to the outer periphery of a position where a solenoid coil assembled into the main body of the fuel injection valve is present. The electromagnetic fuel injection valve described in the book.
(5) 放熱用の部材が燃料噴射弁の本体の先端側外周
に取付けられていることを特徴とする特許請求の範囲第
1項から第3項のいずれかに記載の電磁式燃料噴射弁。
(5) The electromagnetic fuel injection valve according to any one of claims 1 to 3, wherein a heat radiation member is attached to the outer periphery of the front end side of the main body of the fuel injection valve.
(6) 放熱用の部材が燃料噴射弁の本体のほぼ全長に
わたつて取り付けられていることを特徴とする特許請求
の範囲第1項から第3項のいずれかに記載の電磁式燃料
噴射弁。
(6) The electromagnetic fuel injection valve according to any one of claims 1 to 3, characterized in that a heat radiation member is attached over almost the entire length of the main body of the fuel injection valve. .
JP24327985A 1985-10-30 1985-10-30 Electromagnetic fuel injection valve Pending JPS62103456A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24327985A JPS62103456A (en) 1985-10-30 1985-10-30 Electromagnetic fuel injection valve
US06/922,170 US4742964A (en) 1985-10-30 1986-10-23 Electromagnetic fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24327985A JPS62103456A (en) 1985-10-30 1985-10-30 Electromagnetic fuel injection valve

Publications (1)

Publication Number Publication Date
JPS62103456A true JPS62103456A (en) 1987-05-13

Family

ID=17101495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24327985A Pending JPS62103456A (en) 1985-10-30 1985-10-30 Electromagnetic fuel injection valve

Country Status (1)

Country Link
JP (1) JPS62103456A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828075A1 (en) 1996-09-10 1998-03-11 Toyota Jidosha Kabushiki Kaisha Deposit reduction fuel injection valve
US5860394A (en) * 1996-03-27 1999-01-19 Toyota Jidosha Kabushiki Kaisha Method for suppressing formation of deposits on fuel injector and device for injecting fuel
FR2905992A3 (en) * 2006-09-18 2008-03-21 Renault Sas Injector fixing cold support for motor vehicle, has cold body comprising heat exchange surface with ambient air, where surface has cooling blades, which extend from body towards exterior of support made of aluminum
US20180328326A1 (en) * 2015-11-27 2018-11-15 Robert Bosch Gmbh Injector set-up having a thermal protection sleeve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5860394A (en) * 1996-03-27 1999-01-19 Toyota Jidosha Kabushiki Kaisha Method for suppressing formation of deposits on fuel injector and device for injecting fuel
EP0828075A1 (en) 1996-09-10 1998-03-11 Toyota Jidosha Kabushiki Kaisha Deposit reduction fuel injection valve
FR2905992A3 (en) * 2006-09-18 2008-03-21 Renault Sas Injector fixing cold support for motor vehicle, has cold body comprising heat exchange surface with ambient air, where surface has cooling blades, which extend from body towards exterior of support made of aluminum
US20180328326A1 (en) * 2015-11-27 2018-11-15 Robert Bosch Gmbh Injector set-up having a thermal protection sleeve

Similar Documents

Publication Publication Date Title
US4742964A (en) Electromagnetic fuel injector
US4091782A (en) Fuel preheating apparatus
US3989019A (en) Fuel heating apparatus
BRPI0901755A2 (en) heated apparatus for heating fuel in a fuel injector, fuel injector of an internal combustion engine, and, method for increasing the thermal efficiency of a heated fuel injector
KR101764598B1 (en) Cooling-Water Heater
US20100078507A1 (en) Heated and insulated fuel injector
US2432169A (en) Electric immersion heater
US6499442B2 (en) Integral water pump/electronic engine temperature control valve
JPS62103456A (en) Electromagnetic fuel injection valve
US2369937A (en) Carburetor intake air heater
KR100416730B1 (en) Glow plug
JP2011064142A (en) Water jacket structure
US2573095A (en) Intake manifold for internalcombustion engines
JP2020128841A (en) Heat exchange structure body and heat storage heating device
US4979483A (en) Diesel fuel heater
CN107060907B (en) A kind of bearing block heat insulation structural and the gas-turbine unit with the structure
CN207004631U (en) A kind of full-sized car accessory
JP2006329089A (en) Latent heat storage device for engine and engine
US2554921A (en) Internal-combustion engine
JPS6016760Y2 (en) Liquefied gas engine fuel heating device
CA1327923C (en) Diesel fuel heater
US4463739A (en) Fuel preheater with vapor lock prevention means
CN207795383U (en) A kind of integral new-energy passenger radiator
JPH0224939Y2 (en)
JPS6145067B2 (en)