JPS62103205A - Heavy load pneumatic tyre - Google Patents

Heavy load pneumatic tyre

Info

Publication number
JPS62103205A
JPS62103205A JP61163852A JP16385286A JPS62103205A JP S62103205 A JPS62103205 A JP S62103205A JP 61163852 A JP61163852 A JP 61163852A JP 16385286 A JP16385286 A JP 16385286A JP S62103205 A JPS62103205 A JP S62103205A
Authority
JP
Japan
Prior art keywords
curvature
tread
radius
tire
area ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61163852A
Other languages
Japanese (ja)
Inventor
Takashi Kukimoto
久木元 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of JPS62103205A publication Critical patent/JPS62103205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PURPOSE:To prolong life of a tyre by making the tread part with radii of curvature asymmetrical, large and small, about the tyre equator surface, giving that side of said asymmetrical members which is greater an area ratio smaller than that of the smaller radius side, and thereby causing even wear of the tread surface. CONSTITUTION:Radii of curvature R2, R3 of the contour of tread part 2 which appears on the profile of a tyre 1 including tyre rotation axis are asymmetrical, great and small, about the tyre equator surface. The area ratio of the groove portion on tread 2 surface which is off the ground (negative ratio) is 5-30% on the side R2 with greater radius of curvature, while the corresponding figure 10-40% on the side R3 with smaller radius of curvature. The area ratio on the side R2 with greater radius of curvature shall be smaller than the area ratio on the side R3 with smaller radius of curvature, and fitting is so made that the side R2 is situated outside. This arrangement assures that various types of uneven wear to be generated on the tread surface are prevented, and this uniform worn tread 2 should cause prolonged life of the tyre.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、重荷重用空気入りタイヤのトレッド部の輪
郭の曲率半径に関し、タイヤのシゴルダ一部滑落摩耗と
片ベリ摩耗を防止することに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to the radius of curvature of the contour of the tread portion of a heavy-duty pneumatic tire, and relates to preventing partial sliding wear and one-side rim wear of the tire.

(従来の技術) 重荷重用空気入りタイヤ特にラジアルタイヤでは、前輪
外側のショルダ一部に滑落偏摩耗が多く発生していた。
(Prior Art) In heavy-duty pneumatic tires, especially radial tires, uneven wear due to sliding often occurs on a portion of the outer shoulder of the front wheel.

従来の重荷重用空気入りタイヤでは、滑落偏摩耗の発生
を防止するため、トレッド輪郭の曲率半径が左右対称で
あり左右対称の状態で大きくシトレッド端部の接地圧を
高める方法が用いられていた。又、曲率半径を大きくす
るには通常トレッド容積を増す方法が用いられていた。
In conventional heavy-duty pneumatic tires, in order to prevent uneven wear due to sliding, the radius of curvature of the tread profile is bilaterally symmetrical, and a method has been used to greatly increase the ground contact pressure at the edge of the seat tread in a symmetrical state. Furthermore, in order to increase the radius of curvature, a method of increasing the tread volume has usually been used.

(発明が解決しようとする問題点) 前輪のトレッド端に発生する偏摩耗はトレッドの両端で
なく、装着外側トレッド端に主に発生する。これは、道
路に直線部だけでなく曲線部即ちカーブが存在すること
に起因している。カーブを車両が旋回するさい、遠心力
により車両はローリングを起こし、旋回外側に装着され
たタイヤのトレッド端部に荷重の増大と横力の集中が発
生し、ゆえに装着外側のトレッド端部に偏摩耗が発生し
やすくなる。従来の重荷重用空気入りタイヤでは、トレ
ッド輪郭の曲率半径が左右対称であり、左右対称の状態
で大きくシトレッド端部の接・地圧を高める方法が用い
られ、第16図aのような滑落偏庁耗を防止していた0
曲率半径を大きくするには通常トレッド容積を増す方法
が用いられていたが、トレッド容積の増加をまねくと共
に装着外側の摩耗が早いので片べり摩耗になり、又、タ
イヤトレッド面の接地圧が不均一になり第16図すのよ
うなリブパンチングと呼ばれる異常摩耗が発生してしま
い、タイヤ寿命を減少させる結果となって根本的な解決
には至っていない。
(Problems to be Solved by the Invention) Uneven wear that occurs at the tread ends of the front wheels occurs not at both ends of the tread, but mainly at the outer tread ends. This is due to the fact that roads include not only straight sections but also curved sections. When a vehicle turns around a curve, the centrifugal force causes the vehicle to roll, causing an increase in load and concentration of lateral force on the tread edge of the tire mounted on the outside of the turn. Wear is more likely to occur. In conventional heavy-duty pneumatic tires, the radius of curvature of the tread profile is bilaterally symmetrical, and a method is used to greatly increase the contact/ground pressure at the edge of the tread in a symmetrical state. Prevented office wear 0
In order to increase the radius of curvature, the method of increasing tread volume has usually been used, but this increases the tread volume and causes faster wear on the outer side of the tire, resulting in one-sided wear, and the ground pressure on the tire tread surface is insufficient. This results in uniform wear and abnormal wear called rib punching as shown in Figure 16, resulting in a shortened tire life and no fundamental solution has been reached.

そこで本発明は、トレッド表面に生じる滑落偏摩耗、片
ベリ摩耗、あるいは、リブパンチング等の異常摩耗の発
生を防止し、トレッド部を均一に摩耗させる事によって
タイヤ寿命を向上させることを目的とする。
Therefore, the purpose of the present invention is to prevent the occurrence of abnormal wear such as sliding uneven wear, one-side edge wear, or rib punching that occurs on the tread surface, and to improve the life of the tire by uniformly wearing the tread portion. .

(問題点を解決するための手段) すなわち本発明は、タイヤ回転軸を含むタイヤ横断面に
現われるトレッド部輪郭の曲率半径が、タイヤ赤道面に
関し大小非対称となり、トレッド表面での接地しない溝
部分の面積比率(以ド、ネガティブ比率と言う)が、曲
率半径が大きい側が5〜30%であり、他方の曲率半径
が小さい側が10〜40%であり、そして、曲率半径の
大きい側の面積比率が曲率半径の小さい側の面積比率よ
り小さいことを特徴とする重荷重用空気入りタイヤから
なる。
(Means for Solving the Problems) That is, the present invention provides that the radius of curvature of the tread contour appearing in the cross section of the tire including the rotational axis of the tire is asymmetrical in size with respect to the tire equatorial plane, and the groove portions on the tread surface that do not touch the ground are The area ratio (hereinafter referred to as negative ratio) is 5 to 30% on the side with the larger radius of curvature, 10 to 40% on the other side with the smaller radius of curvature, and the area ratio on the side with the larger radius of curvature is It consists of a heavy-duty pneumatic tire characterized by a smaller radius of curvature than the area ratio on the smaller side.

さらに効果的に異常摩耗を防止するためには、トレッド
部輪郭の曲率半径の差が、トレッドの回転軸方向最大接
地巾の0.75〜1.50倍であり、トレッド部輪郭の
曲率半径の大なるものと小なるものの平均がトレッドの
回転軸方向最大接地巾に対して2.5〜3.0であるこ
とが好ま1゜い。
In order to more effectively prevent abnormal wear, the difference in the radius of curvature of the tread contour should be 0.75 to 1.50 times the maximum ground contact width in the rotational axis direction of the tread; It is preferable that the average of the larger and smaller values is 1° with respect to the maximum ground contact width in the rotational axis direction of the tread.

又、トレッド部輪郭の大なる曲率半径は、トレッドの回
転軸方向最大接地巾の2.90〜3゜70倍であり、小
なる曲率半径は、2.30〜2.60倍であることがそ
の実施態様として推奨される。
Further, the large radius of curvature of the tread contour is 2.90 to 3.70 times the maximum ground contact width in the direction of the rotational axis of the tread, and the small radius of curvature is 2.30 to 2.60 times. This is recommended as an implementation.

トレッド表面でのネガティブ比率は、12〜25%が好
ましく、曲率半径が大なる側のネガティブ比率は、曲率
半径が小なる側のネガティブ比率の0.3〜0.8倍で
あることが望ましい。
The negative ratio on the tread surface is preferably 12 to 25%, and the negative ratio on the side with a larger radius of curvature is desirably 0.3 to 0.8 times the negative ratio on the side with a smaller radius of curvature.

(作 用) 第3図に示すように、トレッドのネガティブ比率を変え
ると、摩耗速度が変化する。また、曲率半径の大きい側
と小さい側でネガティブ比率が等しい場合は装着外側に
なる曲率半径の大きい側への外力(コーナリング時等の
)の人力が大きく摩耗が早い、そうすると、トレッド輪
郭の曲率半径の非対称性を持続させることができず、摩
耗が進むにつれ装着外側の曲率半径が内側に比べ、小さ
くなってい〈。
(Function) As shown in Figure 3, changing the negative ratio of the tread changes the wear rate. In addition, if the negative ratio is equal on the side with a large radius of curvature and the side with a small radius of curvature, the external force (during cornering, etc.) on the side with a large radius of curvature will be greater and the wear will be faster.In this case, the radius of curvature of the tread contour The asymmetry cannot be maintained, and as wear progresses, the radius of curvature on the outside of the attachment becomes smaller than that on the inside.

本発明は、曲率半径の非対称と摩耗速度を左右するネガ
ティブ比率をコントロールすることとを組合せることに
より、装着外側トレッドの接地圧と接地剛性とを上げて
、装着外側の滑落摩耗と片へり摩耗を改良するものであ
る。
The present invention combines the asymmetry of the radius of curvature and the control of the negative ratio that influences the wear rate to increase the ground pressure and ground rigidity of the outer tread, thereby preventing sliding wear and one-edge wear on the outer side of the tread. It is intended to improve.

本発明のタイヤではネガティブ比率が小さ過ぎると排水
性能に支障を来たし、大き過ぎると対摩耗性箋が悪化す
ることによって前記の5〜30%及10〜40%の値が
定められた。また、曲率半径の差は少なくとも70mm
以上が滑落対策には効果的である。
In the tire of the present invention, if the negative ratio is too small, the drainage performance will be impaired, and if it is too large, the wear resistance will deteriorate, so the above-mentioned values of 5 to 30% and 10 to 40% were determined. Also, the difference in radius of curvature is at least 70 mm
The above measures are effective in preventing slips and falls.

従来においては、走行条件等の違いから曲率半径の非対
称の度合の適正値を求めることは困難であった。発明者
のさらなる研究により、トレッドの曲率半径の大なるも
のと小なるものの差の適正値を求めた。第15図は、車
両装着外側と内側の摩耗量の比と曲率半径の差の関係を
シュミレート計算して求めたものである。縦軸は、摩耗
量大なるものを小なるもので割った商であり、1.0が
均一摩耗である。横軸は、トレッドの回転軸方向最大接
地iJに対する曲率半径の差である。タイヤを2−D4
車(前輪2輪、駆動輪2輪、遊輪2輪)の前輪に曲率半
径が大なる側が車両の外側になるように装着し、aは高
速路をbは一般路をCは山坂路をそれぞれ主体に走行し
た場合である。
Conventionally, it has been difficult to determine an appropriate value for the degree of asymmetry of the radius of curvature due to differences in driving conditions and the like. Through further research by the inventor, an appropriate value for the difference between a large radius of curvature and a small radius of curvature of the tread was determined. FIG. 15 shows the relationship between the ratio of the amount of wear on the outside and inside of the vehicle and the difference in the radius of curvature, which was obtained through simulation calculation. The vertical axis is the quotient of the larger amount of wear divided by the smaller amount of wear, and 1.0 is uniform wear. The horizontal axis is the difference in radius of curvature with respect to the maximum ground contact iJ of the tread in the rotational axis direction. 2-D4 tires
Attach to the front wheels of a car (2 front wheels, 2 drive wheels, 2 idle wheels) so that the side with the larger radius of curvature is on the outside of the vehicle. This is the case when the vehicle is mainly driven.

尚、それぞれの路でのタイヤにかかる横力Gを第1表に
示す、横力Gは、重力加速度に対するタイヤにかかる横
力の比で示す。
Table 1 shows the lateral force G applied to the tire on each road. The lateral force G is expressed as the ratio of the lateral force applied to the tire to the gravitational acceleration.

第1表 第15図より1曲率半径の差は、トレッドの回転軸方向
最大接Ill!II]の0.75〜1.50倍が最も良
好であることがわかる。0.75倍より小であると、山
坂路を走行する場合に装着外側の摩耗j11が内側に比
較して大きすぎ、1.50倍より大きいと、高速路を主
体に走行する場合に内側の摩耗量が大きすぎる。
From Table 1, Figure 15, the difference in radius of curvature is the maximum tangent in the direction of the rotational axis of the tread, Ill! II] is found to be 0.75 to 1.50 times the best. If it is smaller than 0.75 times, the wear j11 on the outer side of the mounting will be too large compared to the inner side when driving on a mountain slope, and if it is larger than 1.50 times, the wear j11 on the inside will be too large when driving mainly on highways. The amount of wear is too large.

(実施例) 第1図に本発明のタイヤの断面を、第2図に従来技術の
タイヤの断面を示している。第2図のタイヤのトレッド
部輪郭の曲率半径(R1)は580mmであり、その路
面は第4図に示すが、そのネガティブ比率は内外とも1
2%である。また第1図の装着外側のトレッド部輪郭の
曲率半径(R2)は690+smであって装着内側のそ
れ(R3)は470■であり、その曲率半径の差は22
0重腸となっており、その踏面は第6図に示すが、その
ネガティブ比率は装着外側が12%、装着内側が20%
になっている。
(Example) FIG. 1 shows a cross section of a tire according to the present invention, and FIG. 2 shows a cross section of a tire according to the prior art. The radius of curvature (R1) of the tread contour of the tire in Figure 2 is 580 mm, and the road surface is shown in Figure 4, where the negative ratio is 1 for both the inside and outside.
It is 2%. In addition, the radius of curvature (R2) of the tread contour on the outside of the installation in Fig. 1 is 690+sm, and that on the inside of the installation (R3) is 470■, and the difference in the radius of curvature is 22
The tread surface is shown in Figure 6, and the negative ratio is 12% on the outer side and 20% on the inner side.
It has become.

その他の実施例を第10a図〜第14b図に示し、ネガ
ティブ比を第2表に記す。
Other examples are shown in Figures 10a to 14b, and the negative ratios are listed in Table 2.

また、本発IJIのタイヤでは、最も外側の溝深さが他
の溝深さよりも深いことが良好である。これは、装着外
側の曲率半径が大きいためトレッドのゲージが厚いので
深さを深くとれるため装着内側に比べ厚い分だけ深くし
てあり、摩耗寿命を伸ばすメリットがある。
Further, in the IJI tire of the present invention, it is preferable that the outermost groove depth is deeper than the other groove depths. This is because the radius of curvature on the outer side of the tread is larger, and the tread gauge is thicker, so the tread depth can be made deeper than on the inner side, which has the advantage of extending wear life.

第2表  ネガティブ比率 (発明の効果) 第1図(第6図のトレッド)の実施例と第2図(第4図
のトレッド)の比較例1、及第1図(第5図のトレッド
)の比較例2のタイヤを実走行試験により、トレッド端
の偏摩耗性能比較を行った。
Table 2 Negative ratio (effect of the invention) Comparison example 1 between the embodiment shown in Fig. 1 (tread shown in Fig. 6) and Fig. 2 (tread shown in Fig. 4), and Fig. 1 (tread shown in Fig. 5) The tire of Comparative Example 2 was subjected to an actual running test to compare the uneven wear performance of the tread edge.

試験条件 車両    ニドラック・・・前2輪後4輪型装着位置
  :前輪 (実施例のタイヤは、曲率半 径大(R2)なる側を車両の外 側に装着した) 走行路   ニ一般路30%、高速路70%タイヤサイ
ズ: 11R22,51BPR内圧    : 7.7
5 Kg/ crn’積載率   : 100% トウ・イン量=3騰■ 試験結果を第7図〜第9図に示す、第7図は実施例によ
るタイヤの走行による曲率半径の変化を表わしたもので
、第8図は比較例2のものであり、そして第9図は走行
による曲率半径の差を表わしたものである。これらの図
によると、比較例のタイヤが走行にしたがい滑落摩耗も
しくは片べり摩耗で装着外側の曲率半径が装着内側のよ
り小さくなるのに対し、実施例のタイヤは走行によって
も装着外側の曲率半径と装着内側の曲率半径との差は殆
ど変らず外側の滑落摩耗の発生は5万Km走行でも見ら
れなかった。
Test conditions Vehicle: Nidrak...2 front wheels, 4 rear wheels Mounting position: Front wheels (The tire in the example was mounted with the side with the larger radius of curvature (R2) on the outside of the vehicle) Driving road: 30% general road, high speed Road 70% Tire size: 11R22,51BPR Internal pressure: 7.7
5 Kg/crn' loading rate: 100% Toe-in amount = 3 rises The test results are shown in Figures 7 to 9. Figure 7 shows the change in the radius of curvature due to running of the tire according to the example FIG. 8 shows Comparative Example 2, and FIG. 9 shows the difference in radius of curvature due to running. According to these figures, the radius of curvature on the outer side of the tire of the comparative example becomes smaller than the radius of curvature on the inner side of the tire due to sliding wear or one-sided wear as the tire of the comparative example is worn, while the radius of curvature on the outer side of the tire of the example decreases even as the tire is driven. The difference between the radius of curvature on the inner side and the inner side was almost unchanged, and no occurrence of sliding wear on the outer side was observed even after driving for 50,000 km.

さらに、第15図の結果を確認するために、第3表aの
ようなA−Fのタイヤを用意し、下記のような試験条件
で比較試験を行なった。
Furthermore, in order to confirm the results shown in FIG. 15, tires A to F as shown in Table 3 a were prepared and a comparative test was conducted under the following test conditions.

試験条件 ・車両    ニドラック・・・前2輪後4輪型・装着
位置  :前輪 Φタイヤサイズ: 11R22、51flPR・内圧 
   : 7.75 Kg/ cゴ・積載率   : 
100% 拳 トウ・イン量:3ml ・車両外側に曲率半径大になる側を装着。
Test conditions/Vehicle Nidrak...2 front wheels, 4 rear wheels, installation position: Front wheel Φ tire size: 11R22, 51flPR, internal pressure
: 7.75 Kg/loading rate:
100% Fist Toe-in amount: 3ml ・Attach the side with the larger radius of curvature to the outside of the vehicle.

結果も第3表aに示すが、表中CR差とは、トレッドの
曲率゛ト径の大なるものと小なるものの差(R3−R2
)であり、TWとは、トレッドの回転軸方向最大接地用
である。タイヤE、Fは、トレッドの曲率半径の大なる
ものと小なるものの差が、トレッドの回転軸方向最大接
地用に対して小さすぎるものと、大きすぎるものである
。タイヤEは、山板路で車両装着外側で偏摩耗が激しく
、タイヤFは、高速路で車両装着内側で偏摩耗が激しい
ことがわかる。一方、A、B、Cのタイヤは、はとんど
偏摩耗の発生がなかった。
The results are also shown in Table 3a, and the CR difference in the table refers to the difference between the tread with a large and small curvature diameter (R3-R2).
), and TW is the maximum ground contact in the rotational axis direction of the tread. In tires E and F, the difference in the radius of curvature of the tread is too small and too large for maximum ground contact in the rotational axis direction of the tread. It can be seen that tire E has severe uneven wear on the outside of the vehicle on the mountain plank road, and tire F has severe uneven wear on the inside of the vehicle on the highway. On the other hand, tires A, B, and C had almost no uneven wear.

次に、トレッドのネガティブ比の最適値を確認するため
に、同様なテスト方法にて第3表a、bCのタイヤA−
Cと、タイヤG−Qを比較試験した。この結果より、ト
レッド面全面のネガティブ比率は、25%以下が良好で
、曲率半径が大なる側のネガティブ比率は、小なる側の
0.3〜0゜8倍が好ましいことがわかる。トレッド面
全面のネガティブ比率が25%を越えると、タイヤOの
ようにトレッド全体の摩耗量が極端に悪化してしまう。
Next, in order to confirm the optimal value of the negative ratio of the tread, the tires A-
A comparative test was conducted between Tire C and Tire G-Q. From these results, it can be seen that the negative ratio of the entire tread surface is preferably 25% or less, and the negative ratio on the side where the radius of curvature is larger is preferably 0.3 to 0.8 times that on the side where the radius of curvature is smaller. When the negative ratio of the entire tread surface exceeds 25%, the wear amount of the entire tread becomes extremely worse as in tire O.

又、曲率半径が大なる側のネガティブ比率が、小なる側
の0.3倍より小さいと、タイヤHあるいはPのように
車両装着内側に偏摩耗が発生し、逆に0.8倍より大き
いと、タイヤI、K。
Also, if the negative ratio on the side where the radius of curvature is larger is less than 0.3 times that on the side where the radius of curvature is small, uneven wear will occur on the inside of the vehicle, as in tires H or P, and conversely, it is larger than 0.8 times. And tires I and K.

Lのように車両装着外側に偏摩耗が発生してしまいタイ
ヤの寿命を著しく短くする。一方、タイヤA、B、C,
I、J、M、N、Qは、トレッド面がほぼ均一に摩耗し
ており、トレッドが摩滅するまでタイヤの性能が維持さ
れ、タイヤの寿命が長くなる。
As shown in L, uneven wear occurs on the outside of the vehicle, significantly shortening the life of the tire. On the other hand, tires A, B, C,
For I, J, M, N, and Q, the tread surface wears almost uniformly, the performance of the tire is maintained until the tread wears out, and the life of the tire is extended.

さらに、ネガティブ比率とウェット性能の関係を確認す
るために、第3表のタイヤのうち、B。
Furthermore, in order to confirm the relationship between negative ratio and wet performance, B of the tires in Table 3 was used.

D、G、H,I、P、のタイヤを牽引されたトレーラ−
に装着し、内圧7.75kg/crn’、100%荷重
で、ぬれた路面を毎時60kmの速度で走行させ、タイ
ヤの路面との庁擦係数であるW e t g (Pea
k)を測定した。結果は、タイヤDを100として指数
表示されており、そのW e、 t p。
A trailer towed by tires D, G, H, I, P.
The tire was mounted on a tire and run on a wet road at a speed of 60 km/h with an internal pressure of 7.75 kg/crn' and a 100% load, and W e t g (Pea
k) was measured. The results are expressed as an index with tire D set as 100, and the results are expressed as W e, t p.

は0.46で、指数大なるものほど良である。この結果
から、ウェット性能はネガティブ比率がl2%より小さ
くなると極端に悪化することがわかる。
is 0.46, and the larger the index, the better. From this result, it can be seen that the wet performance deteriorates extremely when the negative ratio becomes smaller than 12%.

第16図は、トレッド輪郭の平均曲率半径について、車
両装着外側の異常摩耗の度合を第17図のように比較し
た結果である。第17図aは、一般に滑落厚耗と呼ばれ
る異常摩耗で、第17図すは、リブパンチング呼ばれる
異常摩耗である。双方とも、シゴルダーリブとセカンド
リブの摩耗量の差を測定した。試験方法は前記した偏摩
耗の比較試験と同様であり、一般路を50 、OOOk
m走行させた。試験に供したタイヤは、第4表のごとく
である。尚、タイヤW−Zは、車両装着外側のネガティ
ブ比率が12%、内側のそれが20%である。
FIG. 16 shows the results of comparing the degree of abnormal wear on the outside of the vehicle, as shown in FIG. 17, with respect to the average radius of curvature of the tread profile. Fig. 17a shows abnormal wear generally called sliding wear, and Fig. 17s shows abnormal wear called rib punching. In both cases, the difference in the amount of wear between the sigolder rib and the second rib was measured. The test method was the same as the uneven wear comparison test described above, and the test was carried out on a general road at 50
I ran it for m. The tires used in the test are shown in Table 4. Note that the tire W-Z has a negative ratio of 12% on the outside where it is mounted on the vehicle and 20% on the inside.

第4表 外側R2・・・車両装着外側のトレッド輪郭曲率半径内
側R3・・・車両装着内側のトレッド輪郭曲率半径平均
CR・・・外側トレッド輪郭曲率半径と内側トレッド輪
郭の曲率半径の平均 この結果より、トレッド輪郭の平均曲率半径はトレッ[
・の回転軸方向最大接地111の2.5〜3゜0倍であ
ることが好ましい。この範囲以外であると、h1落摩耗
あるいはリブパンチング等の異常摩耗が激しくタイヤ寿
命を悪化させてしまう。
Table 4: Outside R2...Tread contour radius of curvature on the outside of the vehicle installed Inside R3...Average tread contour radius of curvature on the inside of the vehicle installed CR...Average of the radius of curvature of the outside tread contour and the radius of curvature of the inside tread contour This result Therefore, the average radius of curvature of the tread profile is
It is preferably 2.5 to 3 degrees 0 times the maximum ground contact 111 in the direction of the rotational axis. If it is outside this range, abnormal wear such as h1 drop wear or rib punching will be severe and the tire life will be deteriorated.

この発明のタイヤは、内側のトレッド曲率半径が小さい
ため、そこでの接地圧負担が低下することにより、対称
トレッドタイヤより、外側トレッド端部の接地圧が高く
なり滑落偏摩耗の進行を遅くらすことができ、かつ外側
トレッドのネガティブ比率が小さいことにより、接地剛
性が高くなり片ベリ偏摩耗を効果的に防止できる。タイ
ヤを使用する際、その使用条件は個々でそれぞれ異なる
ため、本発明によれば以上のようなトレッド輪郭の曲率
半径に加えてネガティブ比率の非対称の組合せの相乗効
果によって、いかなる使用条件によっても偏摩耗の発生
をほとんど防1トすることが可能となる。
Since the tire of this invention has a small inner tread radius of curvature, the ground contact pressure load there is reduced, so the ground contact pressure at the outer tread end is higher than in a symmetrical tread tire, slowing down the progression of uneven wear. This and the small negative ratio of the outer tread increase ground contact rigidity and effectively prevent uneven wear on one side. When using a tire, the usage conditions differ from one to another, so according to the present invention, the synergistic effect of the asymmetric combination of the curvature radius of the tread profile and the negative ratio as described above allows the tires to be biased regardless of the usage conditions. It becomes possible to almost prevent the occurrence of wear.

そ[2て、従来の対称トレッドタイヤでは、トレッド容
積を増加して曲率半径を大きくしていたが、この発明の
非対称トレッドタイヤでは、装着外側のトレッド輪郭の
曲率を径を装着内側のそれに比べ大きくすることにより
、トレッド容積をそれほど増加せずに偏摩耗の抑制が達
成できる。
[2] In conventional symmetric tread tires, the radius of curvature was increased by increasing the tread volume, but in the asymmetric tread tire of this invention, the radius of curvature of the tread profile on the outer side of the tire is compared to that on the inner side of the tire. By increasing the size, uneven wear can be suppressed without significantly increasing the tread volume.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のタイヤ、 第2図は従来技術のタイヤ、 第3図は試験結果、 第4図は従来技術のタイヤの路面、 第5図は比較例のタイヤの踏面、 第6図は本発明のタイヤの路面、 第7図〜第9図は試験結果、 第10a図〜第14b図は他の実施例、第15図は曲率
半径の差と偏摩耗の関係図、第16図は偏摩耗の説明図
、 第17図は曲率半径と偏摩耗の関係図である。 1・・・タイヤ     2・・・トレンドR1,R2
,R3・・・トレッド輪郭の曲十半径第1図 第3図     第4図 第5図     第6図 第9図 第10a図 第10b図 第110図 第12a図 第13b図 第14a図 第15図 トレンド輪郭の滋篩#F!乱/トレ/ド最大巾第16図
C第16図b 1、二      第17図
Figure 1 shows the tire of the present invention, Figure 2 shows the tire of the prior art, Figure 3 shows the test results, Figure 4 shows the road surface of the tire of the prior art, Figure 5 shows the tread of the comparative tire, and Figure 6 7 to 9 are test results, 10a to 14b are other examples, 15 is a diagram showing the relationship between the difference in radius of curvature and uneven wear, and 16 is the road surface of the tire of the present invention. is an explanatory diagram of uneven wear, and FIG. 17 is a diagram showing the relationship between the radius of curvature and uneven wear. 1...Tire 2...Trend R1, R2
, R3...Tread contour radius Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 9 Fig. 10a Fig. 10b Fig. 110 Fig. 12a Fig. 13b Fig. 14a Fig. 15 Shigeshiro #F with trendy contours! Maximum width of disturbance/tread/do Fig. 16 C Fig. 16 b 1, 2 Fig. 17

Claims (8)

【特許請求の範囲】[Claims] (1)タイヤ回転軸を含むタイヤ横断面に現われるトレ
ッド部輪郭の曲率半径が、タイヤ赤道面に関し大小非対
称となり、 トレッド表面での接地しない溝部分の面積比率が、曲率
半径が大きい側が5〜30%であり、他方の曲率半径が
小さい側が10〜40%であり、曲率半径の大きい側の
面積比率が曲率半径の小さい側の面積比率より小さく、
曲率半径の大きい側が車両の外側になるように装着する
ことを特徴とする重荷重用空気入りタイヤ。
(1) The radius of curvature of the tread contour that appears in the cross section of the tire, including the axis of rotation of the tire, is asymmetrical in size with respect to the tire equatorial plane, and the area ratio of the groove portion that does not touch the ground on the tread surface is 5 to 30 on the side with the larger radius of curvature. %, the other side with a smaller radius of curvature is 10 to 40%, the area ratio on the side with a larger radius of curvature is smaller than the area ratio on the side with a smaller radius of curvature,
A heavy-duty pneumatic tire that is installed with the side with a larger radius of curvature facing the outside of the vehicle.
(2)曲率半径の差が、70mm以上になることを特徴
とする特許請求の範囲1記載の重荷重用空気入りタイヤ
(2) The heavy-duty pneumatic tire according to claim 1, wherein the difference in radius of curvature is 70 mm or more.
(3)曲率半径の大きい側の溝の少なくとも1本の溝深
さが、曲率半径の小さい側の溝深さより深いことを特徴
とする特許請求の範囲1記載の重荷重用空気入りタイヤ
(3) The heavy-duty pneumatic tire according to claim 1, wherein the groove depth of at least one of the grooves on the side with a larger radius of curvature is deeper than the groove depth on the side with a smaller radius of curvature.
(4)レッド部輪郭の曲率半径の大なるものと小なるも
のの差が、トレッドの回転軸方向最大接地巾の0.75
〜1.50倍であることを特徴とする特許請求の範囲1
記載の重荷重用空気入りタイヤ。
(4) The difference between the large and small radius of curvature of the red contour is 0.75 of the maximum ground contact width in the direction of the rotational axis of the tread.
Claim 1 characterized in that it is ~1.50 times
Heavy-duty pneumatic tires listed.
(5)トレッド部輪郭の曲率半径の大なるものと小なる
ものの平均がトレッドの回転軸方向最大接地巾に対して
2.5〜3.0であることを特徴とする特許請求の範囲
1記載の重荷重用空気入りタイヤ。
(5) Claim 1, characterized in that the average of the large and small radius of curvature of the tread contour is 2.5 to 3.0 with respect to the maximum ground contact width in the rotational axis direction of the tread. pneumatic tires for heavy loads.
(6)トレッド部輪郭の大なる曲率半径は、トレッドの
回転軸方向最大接地巾の2.90〜3.70倍であり、
小なる曲率半径は、2.30〜2.60倍であることを
特徴とする特許請求の範囲1記載の重荷重用空気入りタ
イヤ。
(6) The large radius of curvature of the tread portion contour is 2.90 to 3.70 times the maximum ground contact width in the rotational axis direction of the tread,
The pneumatic tire for heavy loads according to claim 1, wherein the small radius of curvature is 2.30 to 2.60 times.
(7)トレッド全表面での接地しない溝部分の面積比率
は、12〜25%であることを特徴とする特許請求の範
囲1記載の重荷重用空気入りタイヤ。
(7) The heavy-duty pneumatic tire according to claim 1, wherein the area ratio of the groove portions that do not touch the ground on the entire tread surface is 12 to 25%.
(8)曲率半径が大なる側トレッド全表面での接地しな
い溝部分の面積比率は、曲率半径が小なる側の面積比率
の0.3〜0.8倍であることを特徴とする特許請求の
範囲1記載の重荷重用空気入りタイヤ。
(8) A patent claim characterized in that the area ratio of the groove portion that does not touch the ground on the entire surface of the tread on the side with a larger radius of curvature is 0.3 to 0.8 times the area ratio on the side with a smaller radius of curvature. A pneumatic tire for heavy loads according to Range 1.
JP61163852A 1985-07-19 1986-07-14 Heavy load pneumatic tyre Pending JPS62103205A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15804585 1985-07-19
JP60-158045 1985-07-19

Publications (1)

Publication Number Publication Date
JPS62103205A true JPS62103205A (en) 1987-05-13

Family

ID=15663083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163852A Pending JPS62103205A (en) 1985-07-19 1986-07-14 Heavy load pneumatic tyre

Country Status (1)

Country Link
JP (1) JPS62103205A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225103A (en) * 1988-11-21 1990-09-07 Sumitomo Rubber Ind Ltd Tire for vehicle
JPH04193607A (en) * 1990-11-28 1992-07-13 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH11198608A (en) * 1998-01-09 1999-07-27 Ohtsu Tire & Rubber Co Ltd :The Pneumatic radial tire
JPH11208217A (en) * 1998-01-21 1999-08-03 Ohtsu Tire & Rubber Co Ltd :The Pneumatic radial tire
JP2002029215A (en) * 2000-07-18 2002-01-29 Bridgestone Corp Pneumatic tire
JP2010215221A (en) * 2009-02-20 2010-09-30 Yokohama Rubber Co Ltd:The Pneumatic tire
US8037910B2 (en) * 2009-04-17 2011-10-18 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2015068605A1 (en) * 2013-11-06 2015-05-14 横浜ゴム株式会社 Pneumatic tire
WO2015083474A1 (en) * 2013-12-06 2015-06-11 住友ゴム工業株式会社 Heavy duty tire
US20160001604A1 (en) * 2013-02-25 2016-01-07 The Yokohama Rubber Co., Ltd. Pneumatic Tire
CN105579250A (en) * 2013-10-30 2016-05-11 横滨橡胶株式会社 Pneumatic tire
JP2016088198A (en) * 2014-10-31 2016-05-23 東洋ゴム工業株式会社 Pneumatic tire
CN106573506A (en) * 2014-06-17 2017-04-19 横滨橡胶株式会社 Pneumatic tire
JP2018122707A (en) * 2017-01-31 2018-08-09 住友ゴム工業株式会社 tire
US10195905B2 (en) * 2013-04-25 2019-02-05 Bridgestone Corporation Pneumatic tire
US10308075B2 (en) * 2013-12-27 2019-06-04 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2020090264A (en) * 2018-12-07 2020-06-11 Toyo Tire株式会社 Pneumatic tire

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225103A (en) * 1988-11-21 1990-09-07 Sumitomo Rubber Ind Ltd Tire for vehicle
JPH04193607A (en) * 1990-11-28 1992-07-13 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH11198608A (en) * 1998-01-09 1999-07-27 Ohtsu Tire & Rubber Co Ltd :The Pneumatic radial tire
JPH11208217A (en) * 1998-01-21 1999-08-03 Ohtsu Tire & Rubber Co Ltd :The Pneumatic radial tire
JP2002029215A (en) * 2000-07-18 2002-01-29 Bridgestone Corp Pneumatic tire
JP2010215221A (en) * 2009-02-20 2010-09-30 Yokohama Rubber Co Ltd:The Pneumatic tire
JP4697336B2 (en) * 2009-02-20 2011-06-08 横浜ゴム株式会社 Pneumatic tire
US8573269B2 (en) 2009-02-20 2013-11-05 The Yokohama Rubber Co., Ltd. Pneumatic tire with tread having continuous ribs and a block row
US8037910B2 (en) * 2009-04-17 2011-10-18 The Yokohama Rubber Co., Ltd. Pneumatic tire
US20160001604A1 (en) * 2013-02-25 2016-01-07 The Yokohama Rubber Co., Ltd. Pneumatic Tire
US9884518B2 (en) * 2013-02-25 2018-02-06 The Yokohama Rubber Co., Ltd. Pneumatic tire
US10195905B2 (en) * 2013-04-25 2019-02-05 Bridgestone Corporation Pneumatic tire
CN105579250A (en) * 2013-10-30 2016-05-11 横滨橡胶株式会社 Pneumatic tire
WO2015068605A1 (en) * 2013-11-06 2015-05-14 横浜ゴム株式会社 Pneumatic tire
CN105705345A (en) * 2013-11-06 2016-06-22 横滨橡胶株式会社 Abnormal sound diagnosis device
JP5880782B2 (en) * 2013-11-06 2016-03-09 横浜ゴム株式会社 Pneumatic tire
US10105992B2 (en) 2013-11-06 2018-10-23 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2015083474A1 (en) * 2013-12-06 2015-06-11 住友ゴム工業株式会社 Heavy duty tire
CN105745092A (en) * 2013-12-06 2016-07-06 住友橡胶工业株式会社 Heavy duty tire
JP2015110394A (en) * 2013-12-06 2015-06-18 住友ゴム工業株式会社 Tire for heavy load
US10252579B2 (en) 2013-12-06 2019-04-09 Sumitomo Rubber Industries, Ltd. Heavy duty tire
US10308075B2 (en) * 2013-12-27 2019-06-04 The Yokohama Rubber Co., Ltd. Pneumatic tire
CN106573506A (en) * 2014-06-17 2017-04-19 横滨橡胶株式会社 Pneumatic tire
JP2016088198A (en) * 2014-10-31 2016-05-23 東洋ゴム工業株式会社 Pneumatic tire
JP2018122707A (en) * 2017-01-31 2018-08-09 住友ゴム工業株式会社 tire
JP2020090264A (en) * 2018-12-07 2020-06-11 Toyo Tire株式会社 Pneumatic tire

Similar Documents

Publication Publication Date Title
JP5238050B2 (en) Pneumatic tire
EP0602989A1 (en) Pneumatic tyre
US4840210A (en) Heavy duty pneumatic radial tires
JPS62103205A (en) Heavy load pneumatic tyre
US6000450A (en) Studless tire
EP0342908A2 (en) Pneumatic tyre
JPS6192902A (en) Pneumatic radial tyre for heavy loading
JPH05319029A (en) Pneumatic radial tire for heavy load
CN101242963B (en) Pneumatic tire
JPH0891023A (en) Radial tire for taxi
CN110091676B (en) Tyre for vehicle wheels
JPH1134614A (en) Pneumatic tire
JPH0234404A (en) Heavy duty pneumatic radial tire
JPH03271003A (en) Pneumatic tire
US12017483B2 (en) Truck tire tread with decoupling void and associated decoupling void sipe
JPS592641B2 (en) Radial pneumatic tires for heavy vehicles
JP2554256B2 (en) Pneumatic radial tire pattern for heavy loads
EP3533624B1 (en) Pneumatic tire
JPH03200405A (en) Pneumatic tire for heavy load
JP2878356B2 (en) Heavy duty pneumatic tires
JP4148601B2 (en) Pneumatic tire
JPS6317102A (en) Heavy-duty pneumatic tire
JPS5849501A (en) Pneumatic radial tire
CN115489237B (en) Snow tire with asymmetric tire patterns
JP2011201522A (en) Pneumatic tire