JPS62102141A - Method and instrument for microanalysis of chemical reaction - Google Patents

Method and instrument for microanalysis of chemical reaction

Info

Publication number
JPS62102141A
JPS62102141A JP24307885A JP24307885A JPS62102141A JP S62102141 A JPS62102141 A JP S62102141A JP 24307885 A JP24307885 A JP 24307885A JP 24307885 A JP24307885 A JP 24307885A JP S62102141 A JPS62102141 A JP S62102141A
Authority
JP
Japan
Prior art keywords
flow cell
reaction
detector
target substance
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24307885A
Other languages
Japanese (ja)
Inventor
Tadao Hoshino
忠夫 星野
Sakae Todate
東館 栄
Masaaki Senda
千田 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP24307885A priority Critical patent/JPS62102141A/en
Publication of JPS62102141A publication Critical patent/JPS62102141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To make easy, quick and exact measurement of the change with age of the absorption spectra after mixing of a reaction reagent with an intended material with a slight amt. of analytical sample by mixing the reaction reagent liquid with an eluate contg. the intended material of a chromatograph and detecting the change of the absorption spectra thereof with age by a multiwavelength simultaneous detector. CONSTITUTION:The eluates from eluate reservoirs 1a, 1b are so mixed as to attain a prescribed concn. by a gradient device 2 and the mixture is fed to a column 5 for sepn. by a liquid feed pump 3. On the other hand, the sample contg. the intended material injected by a sample injector 4 is conducted to the column 5. The reactive reagent soln. is delivered from a reactive reagent soln. reservoir 7 at a specified flow rate by a liquid feed pump 8 and is contacted with the eluate from the column 5 through a light absorbancy detector 6 by a 3-way joint 9. Both liquids are mixed by a mixing coil 10. The liquid mixture is conducted through a 6-way selector valve 11 to a fluid cell contained in the multiwavelength simultaneous detector 12 and controlled to 0-100 deg.C by which the absorbancy of the liquid mixture is continuously measured.

Description

【発明の詳細な説明】 本発明は化学反応の微量分析法及びその装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for microanalysis of chemical reactions and an apparatus therefor.

分析試料中の目的物質を液体クロマトグラフを用いて分
離した後、この目的物質が反応試薬溶液と混合した後の
目的物質の経時変化をスペクトル的に観察する場合、従
来では、目的物質を液体クロマトグラフを用いて分取し
て一度液体クロマトグラフの外番こ取り出し、目的物質
を含むこの分取による分画液位反応試薬溶液を混合して
数mlの容、量はし、この混合液を数mlの容量の角セ
ルに移し換え、分光吸光光度計を用いて1点ないし数点
の波長における光の吸収強度め経時変化、または特定の
波長範囲における光の吸収強度の経時変化、を求めた。
Conventionally, when a target substance in an analysis sample is separated using a liquid chromatograph and the time-dependent changes of the target substance after mixing with a reaction reagent solution are observed spectrally, the target substance is separated using a liquid chromatograph. After fractionating using the graph, take out the outer tube of the liquid chromatograph, mix the fractionated liquid level reaction reagent solution containing the target substance from this fractionation, make a volume of several ml, and add this mixed solution. Transfer it to a square cell with a capacity of several ml, and use a spectroscopic absorption photometer to measure the change over time in the light absorption intensity at one or several wavelengths, or the change over time in the light absorption intensity in a specific wavelength range. Ta.

しかしながら、このような方法では目的物質を一度液体
クロマトグラフの外に取り出だして反応試薬溶液と混合
させなければならない煩わしさがあり、また角セルの容
量に見合った目的物質の分′fimが必要であり、反応
速度が速い場合には吸収スペクトルを求めている間に反
応が進んでしまい正確に反応の経時変化を観察すること
ができない。
However, in this method, the target substance has to be taken out of the liquid chromatograph and mixed with the reaction reagent solution, which is troublesome, and the amount of target substance required to be equal to the capacity of the square cell is required. If the reaction rate is fast, the reaction progresses while the absorption spectrum is being determined, making it impossible to accurately observe the time course of the reaction.

本発明はかかる事情を背景としてなされたものであり、
その目的とするところは分析試料中の目的物質が反応試
薬溶液と混合した後のスペクトルの経時変化の分析を微
量の分析試料で容易にかつ迅速にしかも正確に行うこと
のできる方法ならびに装置を提供することにある。
The present invention was made against this background,
The purpose is to provide a method and device that can easily, quickly, and accurately analyze the change in spectrum over time after a target substance in an analytical sample is mixed with a reaction reagent solution using a trace amount of an analytical sample. It's about doing.

かくのごとき目的を達成するために、本発明は、分析試
料から目的物質を液体クロマトグラフを用い、て分離し
たのち、分離された目的物質を含む溶出液に反応試薬溶
液を混入させ、ついでこゐ混合液を多波長同時検出器に
内′蔵された微容量の流動セル内に導いたのち保持し、
反応混合液が示す吸収スペクトルの経時変化を多波長同
時検出器を用いて観察することによって目的物質の流動
セル内での反応を分析するようにしたものである。さら
に反応を一定の温度に保つために流動セルは温調される
In order to achieve the above object, the present invention involves separating a target substance from an analysis sample using a liquid chromatograph, mixing a reaction reagent solution into the eluate containing the separated target substance, and then The mixed liquid is introduced into a micro-capacity flow cell built into a multi-wavelength simultaneous detector, and then held.
The reaction of the target substance in the flow cell is analyzed by observing the change over time in the absorption spectrum of the reaction mixture using a multi-wavelength simultaneous detector. Additionally, the flow cell is temperature controlled to maintain the reaction at a constant temperature.

かかる本発明を実施するに好適な装置としては1分離用
カラムを用いて分析試料中の目的物質を分離する液体ク
ロマトグラフィ方式による分離Ill構と、分離機構か
ら流出する目的物質を含む流出液が流通する流動セルを
内蔵した吸光検出器または多波長同時検出器と、吸光検
出器または多波長同時検出器の流動セルからの流出液に
反応試薬溶液を混入させる混入機構と、これらの反応試
薬溶液と目的物質を含む流出液とを混合させるための反
応コイルと、反応コイノル内で生成される反応混合液の
示す吸収スペクトルの経時変化を観察するための多波長
同時検出器と、反応コイル内で生成される反応混合液を
多波長同時検出器が内蔵する流動セルに導きかつ保持す
るためのバルブとを含むよう位した装。 置がある。
A suitable apparatus for carrying out the present invention is a separation system using a liquid chromatography method in which a target substance in an analysis sample is separated using a separation column, and a system in which an effluent containing the target substance flowing out from a separation mechanism is circulated. an absorption detector or a multi-wavelength simultaneous detector with a built-in flow cell, a mixing mechanism for mixing a reaction reagent solution into the effluent from the flow cell of the absorption detector or the multi-wavelength simultaneous detector, and a mixing mechanism for mixing the reaction reagent solution with A reaction coil for mixing the effluent containing the target substance, a simultaneous multi-wavelength detector for observing the change over time in the absorption spectrum of the reaction mixture produced in the reaction coil, and and a valve for guiding and holding the reaction mixture to a flow cell containing a simultaneous multi-wavelength detector. There is a place.

この好適な装置の一例が流路図として第1図に示されて
いる。この図においてla、lbは?8離液溜であり、
分析試料から目的物質を分離するための溶離液がそれぞ
れ収容されている。
An example of this suitable apparatus is shown in FIG. 1 as a flow diagram. What are la and lb in this diagram? 8 syneresis reservoir,
Each contains an eluent for separating a target substance from an analysis sample.

これらの溶離液はグラジェント装置2により所定の濃度
勾配になるようにその混合比が調整されて溶離液送液ボ
ン13によって、通常の液体クロマトグラフィーに用い
られる充填剤を充填した分離用カラム5に連続的に供給
されるよう樟なっている。溶離液送液ポンプ3と分離用
カラム5との間は、試料注入器4が設けられており、試
料注入器4より注入された目的物質を含む試料が分離用
カラム5に導かれるようになっている。6は流動セルを
内蔵した吸光検出器または多波長同時検出器であり、分
離用カラム5からの溶出液力吸光度を連続的にモニター
する。
The mixing ratio of these eluents is adjusted by the gradient device 2 so as to have a predetermined concentration gradient, and the eluent is sent to the separation column 5 filled with a packing material used in ordinary liquid chromatography by the eluent supply bomb 13. It is made of camphor so that it can be continuously supplied. A sample injector 4 is provided between the eluent feed pump 3 and the separation column 5, and the sample containing the target substance injected from the sample injector 4 is guided to the separation column 5. ing. Reference numeral 6 denotes an absorption detector or a multi-wavelength simultaneous detector having a built-in flow cell, and continuously monitors the absorbance of the eluate from the separation column 5.

7は反応試薬溶液溜であり、この反応゛試薬溶液は反応
試薬溶液送液ポンプ8によって一定の流麗で送り出され
るとともに、吸光検出器または多波長同時検出器6を通
過した分離用カラム5からの溶出液と三方ジヨイント9
で接液し、ミキシ〉′クコイル10で両溶液が混合され
反応混合液が調製される。11は六方切り替えバルプで
あり、多波長同時検出器12に内蔵された流動セルに反
応混合液を導くために、かつ保持するなめに用いられる
。即ち、第1図の六方切り替えバルブ11において、実
線で示された流路の場合には反応混合液は多波長同時検
出12に内蔵された流動セルに導かれ、点線で示されな
流路の場合樟は反応混合液は流動セルに保持される。多
波長同時検出12に内蔵された流動セルには流動セル内
での反応温度を一定樟保つための温調装置が接続されて
いる。
7 is a reaction reagent solution reservoir, and this reaction reagent solution is sent out with a constant flow by a reaction reagent solution feed pump 8, and is also collected from the separation column 5 after passing through an absorption detector or a simultaneous multi-wavelength detector 6. Eluate and three-way joint 9
Both solutions are mixed in a mixer 10 to prepare a reaction mixture. Reference numeral 11 denotes a hexagonal switching valve, which is used to guide and hold the reaction mixture to the flow cell built into the multi-wavelength simultaneous detector 12. That is, in the hexagonal switching valve 11 in FIG. 1, in the case of the flow path shown by the solid line, the reaction mixture is guided to the flow cell built in the multi-wavelength simultaneous detection 12, and in the case of the flow path shown by the dotted line. In case of camphor, the reaction mixture is kept in a flow cell. A temperature control device is connected to the flow cell built into the multi-wavelength simultaneous detection 12 to maintain a constant reaction temperature within the flow cell.

ちなみに、かかる本発明の効果を確認するために、糖尿
病患者と組状赤血球患者から得た溶血の混合試斜沖のヘ
モグロビンおよびグリコシレイテッドヘモグロビンにつ
いて反応の経時変化を分析した結果を以下にしめす、。
Incidentally, in order to confirm the effects of the present invention, the results of analyzing the time course of the reaction of hemoglobin and glycosylated hemoglobin in mixed hemolyzed samples obtained from diabetic patients and grouped red blood cells patients are shown below.

測定条件はつぎの通りである。The measurement conditions are as follows.

多波長同時検出器:MULTI−320(日本分光工業
(株)製)、流動セル容i−4μl。
Multi-wavelength simultaneous detector: MULTI-320 (manufactured by JASCO Corporation), flow cell volume i-4 μl.

測定波長−390nmから700nmまでIQ rr 
mごとに32の波長 吸光検出器:UVIDEC−100−VI (日本分光
工業(株)製)、流動セル容量−8μ! ?8離液送液ポンプおよびグラジェント装置:TRI 
 ROTAR−VI(E1本分光1業(株)製) 分離用カラム:DVT−119(内径8mm長さ60m
m、旭化成工業(株)製) カラム温度:24命C 移動相:A液として0.01%のアジ化ナトリウムを含
む30mMのリン酸ナトリウムvI街液(pH5,50
)、B液として0.01%のアジ化ナトリウムおよび0
.6Mの塩化ナトリウムを含む30mMのリン酸ナトリ
ウムMWi液(pH5,50)を調製し、A/Bの混合
比を(89/11 )から(87713)まで直線的に
8分間で変化させ、ついで(83/17)まで直線的に
8分間で変化させ、ついで(75/25 )まで直線的
に8分間で変化させ、ついで(50150)まで直線的
に25分間で変化させ、ついヤ6分間(50150)を
保持した。
Measurement wavelength - IQ rr from 390nm to 700nm
32 wavelength absorption detector every m: UVIDEC-100-VI (manufactured by JASCO Corporation), flow cell capacity -8μ! ? 8 Syneresis pump and gradient device: TRI
ROTAR-VI (manufactured by E1Bonko Igyo Co., Ltd.) Separation column: DVT-119 (inner diameter 8 mm, length 60 m
(manufactured by Asahi Kasei Industries, Ltd.) Column temperature: 24C Mobile phase: 30mM sodium phosphate vI street solution containing 0.01% sodium azide as solution A (pH 5,50
), 0.01% sodium azide as solution B and 0
.. A 30 mM sodium phosphate MWi solution (pH 5,50) containing 6 M sodium chloride was prepared, the A/B mixing ratio was changed linearly from (89/11) to (87713) in 8 minutes, and then ( 83/17) in 8 minutes, then 75/25 in 8 minutes, then 50150 in 25 minutes, then 6 minutes (50150). ) was retained.

溶離液流ffi:1.5ml/min 反応試薬溶液送液ポンプ: 5P−024(日本分光工
業(株)製) 反応試薬溶液:0.1M水酸化ナトリウム水溶液 反応試薬溶液流量:1.2ml/min反応温度=30
°C 第2図に糖尿病患者と組状赤血球患者から溶血の混合試
料のクロマトグラムと代表的両分の吸収スペクトルを示
す、ビーク12はヘモグロビン−F、16は安定型グリ
コシレイテッドヘモグロビン、21はヘモグロビン−A
、24はヘモグロビン−8である。それらのスペクI・
ルは16のみ少しく異なるようにみえるがほぼ一致して
いる。第3図に反応試薬溶液との混合後10.44.7
8.112.359秒間の画分離2.16.24の吸収
スペクトル変化を示す。
Eluent flow ffi: 1.5 ml/min Reaction reagent solution feed pump: 5P-024 (manufactured by JASCO Corporation) Reaction reagent solution: 0.1M sodium hydroxide aqueous solution Reaction reagent solution flow rate: 1.2 ml/min Reaction temperature = 30
°C Figure 2 shows the chromatogram and representative absorption spectra of a mixed hemolyzed sample from a diabetic patient and a grouped cell patient. Peak 12 is hemoglobin-F, peak 16 is stable glycosylated hemoglobin, and peak 21 is hemoglobin-F. hemoglobin-A
, 24 is hemoglobin-8. Those spec I・
Although only 16 appears to be slightly different, they are almost identical. Figure 3 shows 10.44.7 after mixing with the reaction reagent solution.
8.112. Shows the absorption spectrum change of fractionation 2.16.24 during 359 seconds.

反応試薬溶液との混合直後では画分離2と24とのスペ
クトルはほぼ一致しているが、その経時変化は画分離2
のほうが遅く、ヘモグロビン−Fの特性を示している0
画分離6は画分24と同様に反応試薬溶液混合後のスペ
クトルの経時変化が速かった。
Immediately after mixing with the reaction reagent solution, the spectra of fractions 2 and 24 are almost the same, but the change over time is different from that of fraction 2.
0 is slower and exhibits the characteristics of hemoglobin-F.
Fraction 6, like fraction 24, showed a rapid change in spectrum over time after mixing the reaction reagent solution.

以上述べたように、本発明により、微ヱの試料で目的物
質を液体クロマトグラにより分離した後、反応試薬溶液
と混合し、スペクトル的にその反応過程を観察すること
ができる。
As described above, according to the present invention, it is possible to separate a target substance from a small sample by liquid chromatography, mix it with a reaction reagent solution, and observe the reaction process spectrally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる装置の一実施例を示す流路図で
あり、第2図は本発明手法を行う過程で得られたクロマ
トグラムと吸収スペクトルであり、第3図は本発明手法
に従って得られたスペクトルの経時変化である。 1a、1b:溶離液溜、2:グラジェント装置、3:溶
離液送液ポンプ、4:試料注入器、5:分離用カラム、
6:吸光検出器または多波長同時検出器、7:反応液溜
、8:反応試薬溶液送液ポンプ、9:三方ジヨイント、
10:ミキシングコイル、11:六方切り替えバルブ、
12:多波長同時検出器 第1図 第2図 400    500    600    700 
nm第3図
FIG. 1 is a flow path diagram showing an embodiment of the apparatus according to the present invention, FIG. 2 is a chromatogram and absorption spectrum obtained in the process of carrying out the method of the present invention, and FIG. 3 is a flow diagram showing an embodiment of the apparatus according to the present invention. This is the time course of the spectrum obtained according to the following. 1a, 1b: Eluent reservoir, 2: Gradient device, 3: Eluent feed pump, 4: Sample injector, 5: Separation column,
6: Absorption detector or multi-wavelength simultaneous detector, 7: Reaction liquid reservoir, 8: Reaction reagent solution feeding pump, 9: Three-way joint,
10: Mixing coil, 11: Six-way switching valve,
12: Multi-wavelength simultaneous detector Fig. 1 Fig. 2 400 500 600 700
nm figure 3

Claims (1)

【特許請求の範囲】 1)分析試料から目的物質を液体クロマトグラフを用い
て分離したのち、分離された目的物質を含む溶出液に反
応試薬溶液を混入させ、ついでこの混合液を多波長同時
検出器に内蔵された流動セル内に導いたのち保持し、混
合液が示す吸収スペクトルの経時変化を多波長同時検出
器を用いて観察することによって目的物質の流動セル内
での反応を解析することを特徴とする分析方法。 2)特許請求の範囲第1項記載の流動セル内での反応を
0℃から100℃の範囲の温度に制御することによって
行うことを特徴とする分析方法。 3)特許請求の範囲第1項記載の流動セル内での反応を
100μl以下の微少容量の流動セルで行うことを特徴
とする分析方法。 4)分離用カラムを用いて分析試料中の目的物質を分離
する液体クロマトグラフィ方式による分離機構と、分離
機構から流出する目的物質を含む流出液が流通する流動
セルを内蔵した吸光検出器と、吸光検出器の流動セルか
らの流出液に反応試薬溶液を混入させる混入機構と、こ
れらの反応試薬溶液と目的物質を含む流出液とを混合さ
せるための反応コイルと、混合によつて生成される反応
混合液の示す吸収スペクトルの経時変化を観察するため
の多波長同時検出器と、反応混合液を多波長同時検出器
に内蔵された流動セルに導きかつ保持するためのバルブ
とを含むことを特徴とする分析装置。 5)特許請求の範囲第4項記載の多波長同時検出器に内
蔵される流動セルの温度を制御するための温調装置。 6)特許請求の範囲第4項記載の多波長同時検出器に内
蔵される、反応混合液を保持するための容量100μl
以下の流動セル。
[Claims] 1) After separating the target substance from the analysis sample using liquid chromatography, a reaction reagent solution is mixed into the eluate containing the separated target substance, and then this mixture is detected at multiple wavelengths simultaneously. The reaction of the target substance in the flow cell is analyzed by guiding the mixture into a flow cell built into the device and holding it, and observing the change in absorption spectrum exhibited by the mixture over time using a simultaneous multi-wavelength detector. An analysis method characterized by 2) An analysis method characterized in that the reaction in the flow cell according to claim 1 is carried out by controlling the temperature in the range of 0°C to 100°C. 3) An analysis method characterized in that the reaction in a flow cell according to claim 1 is carried out in a flow cell with a minute volume of 100 μl or less. 4) A separation mechanism using a liquid chromatography method that separates the target substance in an analysis sample using a separation column, an absorption detector with a built-in flow cell through which the effluent containing the target substance flowing out from the separation mechanism flows, and a light absorption detector. A mixing mechanism that mixes a reaction reagent solution into the effluent from the flow cell of the detector, a reaction coil that mixes these reaction reagent solutions and the effluent containing the target substance, and a reaction generated by the mixing. It is characterized by comprising a multi-wavelength simultaneous detector for observing changes over time in the absorption spectrum exhibited by the mixed solution, and a valve for guiding and holding the reaction mixture into a flow cell built into the multi-wavelength simultaneous detector. Analyzer for 5) A temperature control device for controlling the temperature of a flow cell built into the simultaneous multi-wavelength detector according to claim 4. 6) A capacity of 100 μl for holding the reaction mixture, which is built into the simultaneous multi-wavelength detector according to claim 4.
Flow cell below.
JP24307885A 1985-10-29 1985-10-29 Method and instrument for microanalysis of chemical reaction Pending JPS62102141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24307885A JPS62102141A (en) 1985-10-29 1985-10-29 Method and instrument for microanalysis of chemical reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24307885A JPS62102141A (en) 1985-10-29 1985-10-29 Method and instrument for microanalysis of chemical reaction

Publications (1)

Publication Number Publication Date
JPS62102141A true JPS62102141A (en) 1987-05-12

Family

ID=17098452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24307885A Pending JPS62102141A (en) 1985-10-29 1985-10-29 Method and instrument for microanalysis of chemical reaction

Country Status (1)

Country Link
JP (1) JPS62102141A (en)

Similar Documents

Publication Publication Date Title
AU661349B2 (en) Protein chromatography system
EP0047130A2 (en) Flow analysis
EP2012111B1 (en) Method of measuring glycohemoglobin concentration and apparatus for concentration measurement
EP1544612A1 (en) Chromatography system and method for operating the same
US4486097A (en) Flow analysis
US4610544A (en) Flow analysis
EP2015053B1 (en) Method for determination of glycosylated hemoglobin level and apparatus for determination of the level
JPS62102141A (en) Method and instrument for microanalysis of chemical reaction
Hauser Determination of alkali ions in biological and environmental samples
Zenki Determination of alkaline earth metals by ion-exchange chromatography with spectrophotometric detection
McDowell et al. Application of a vidicon tube as a multiwavelength detector for liquid chromatography
JPS5914191B2 (en) Saccharide analysis method and equipment
Brown Current high-performance liquid chromatographic methodology in analysis of nucleotides, nucleosides, and their bases. I
Costa et al. RAPID DETERMINATION OF TRYPTOPHAN AND ITS METABOLITES ALONG THE KYNURENINE PATWAY BY HPLC.
Thome et al. Direct coupling of glass capillary columns to a mass spectrometer
USRE24876E (en) Multiple column chromatographic apparatus
JPH076966B2 (en) Saccharide analysis method and device
Harvey Separation Techniques of Chromatography
JPH0113059B2 (en)
EP0469519A2 (en) Method for analyzing glycoalbumin
JPS60138461A (en) Analyzing method of nitrosophenol
JPH0310076B2 (en)
SU741146A1 (en) Method of chromato-distributive analysis of multicomponent mixtures of substances
JPS61219864A (en) Method and apparatus for analyzing histamine
JPH0429058A (en) Method and apparatus for analyzing saccharides