JPS62102080A - High-temperature continuous reaction furnace - Google Patents

High-temperature continuous reaction furnace

Info

Publication number
JPS62102080A
JPS62102080A JP24355185A JP24355185A JPS62102080A JP S62102080 A JPS62102080 A JP S62102080A JP 24355185 A JP24355185 A JP 24355185A JP 24355185 A JP24355185 A JP 24355185A JP S62102080 A JPS62102080 A JP S62102080A
Authority
JP
Japan
Prior art keywords
furnace
reaction
reaction vessel
gas
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24355185A
Other languages
Japanese (ja)
Other versions
JPH0231305B2 (en
Inventor
芳宏 久保田
小林 利美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP24355185A priority Critical patent/JPH0231305B2/en
Publication of JPS62102080A publication Critical patent/JPS62102080A/en
Publication of JPH0231305B2 publication Critical patent/JPH0231305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温連続反応炉、特にはセラミック原料として
の窒化けい素、ボロンナイトライドなどの合成に有用と
される高温度で連続的に反応を行なわせるためのプッシ
ャ一式トンネル炉方式の高温連続反応炉に関するもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention is a high-temperature continuous reactor, in particular, a method for continuously reacting at high temperatures that is useful for the synthesis of silicon nitride, boron nitride, etc. as ceramic raw materials. This invention relates to a high-temperature continuous reactor using a pusher-equipped tunnel furnace for carrying out the following steps.

(従来の技術] 窒化けい累やボロンナイトライトナどのセラミック原料
の製造は近年特にその高純度化が要求されていることか
ら、従来のアチソン炉に代えて雰囲気条件や6A度の調
節が容易であるブッシャー式トンネル炉による方法に転
換されつつある。
(Conventional technology) In recent years, the production of ceramic raw materials such as silicon nitride and boron nitrite has required particularly high purity. Therefore, in place of the conventional Acheson furnace, it is easy to adjust the atmospheric conditions and 6A degree. The method is being converted to one using a certain Busher tunnel furnace.

しかして、このプッシャ一式トンネル炉は原料を仕込ん
だ反応容器を連続的に炉内に移送して反応を行なわせる
ものであり、この多くのものはその入口側、出口側に置
換室を設けて炉内雰囲気をきびしく調節するようにされ
ているが、この方法では反応容器が容量の小さいもので
あることから通常は連続的に長期間運転という形で生産
が行なわれている。
However, this pusher-equipped tunnel furnace is one in which a reaction vessel filled with raw materials is continuously transferred into the furnace for reaction, and most of these are equipped with displacement chambers on the inlet and outlet sides. Although the atmosphere inside the furnace is strictly controlled, since the reaction vessel used in this method has a small capacity, production is usually carried out continuously over long periods of time.

しかし、この種の反応炉では炉内を移動する反応容器が
通常上部開口のものとされているためにこれを使用して
長期間反応を続けると、1)反応原料およびその分解物
、副生物、さらCは反応生成物の飛散、蒸着1:よって
炉内各部や発熱体にこれらが付着、たい積するために容
器の搬送が不可能となったり、ヒーター切れが発生し、
炉体も損傷される、 2】高温となった雰囲気ガス、副反応に伴なう発生ガス
などによって炉体が損傷したり、ヒーター切れが発生す
る という事故が多くなり、長期間の運転ができなくなると
いう不利がある。
However, in this type of reactor, the reaction vessel that moves inside the reactor is usually open at the top, so if this is used to continue the reaction for a long period of time, 1) the reaction raw materials, their decomposed products, and by-products; , and C is scattering of reaction products, vapor deposition 1: Therefore, these adhere to and accumulate on various parts of the furnace and the heating element, making it impossible to transport the container or causing the heater to burn out.
The furnace body is also damaged. 2) There are many accidents where the furnace body is damaged or the heater burns out due to high-temperature atmospheric gas and gases generated due to side reactions, making long-term operation impossible. There is a disadvantage that it disappears.

(発明の構成] 本発明はこのような不利を解決した高温連続反応炉に関
するものであり、これは原料物質を装入した、移動方向
のみに開口部を有する反応容器を、ブッシャー式トンネ
ル炉内で連続的に接続させてマッフル状としたのちこの
反応容器を移動させながらこ\に反応ガスを流通させる
ようにしてなることを特徴とするものである。
(Structure of the Invention) The present invention relates to a high-temperature continuous reactor that solves the above-mentioned disadvantages, in which a reaction vessel charged with a raw material and having an opening only in the direction of movement is placed in a busher type tunnel furnace. It is characterized in that after the reaction vessel is connected continuously to form a muffle shape, the reaction gas is caused to flow therethrough while moving the reaction vessel.

すなわち、本発明者らは前記したようなブッシャー式ト
ンネル炉における不利を解決する方法について種々検討
した結果、こ−1:使用される反応容器を移動方向(二
のみ開口部を有するものとし、これに原料を装入してか
らこれをトンネル炉内に連続的に装入し/接続させてマ
ツフル状にし、ついでこ\に反応ガスを送入すると、炉
内に存在する反応容器がその開口部によって接続されて
おり、こ\に送入された反応ガスは反応容器内のみを貫
流するようになるので、反応容器中での原料と反応ガス
との反応が確実(二進行されるし、こ\に発生した分解
物、副生物はこの反応ガスC二伴流されて低温部に設け
られた排出口から炉外に排出され、さらにはこの反応器
から反応原料や副生物、反応生成物が反応器外に飛散す
ることもないので、炉体が損傷されたり、ヒーター切れ
が発生することもIEいということを見出し、この反応
容器の形状、構造、さら(−まこの反応方法などについ
ての研究を進めて本発明を完成させた。
That is, the present inventors have studied various ways to solve the disadvantages of the Busher type tunnel furnace as described above, and have found the following: After charging the raw material into the tunnel furnace, the raw material is continuously charged/connected to the tunnel furnace to form a matzuru shape, and then the reaction gas is fed into the tunnel furnace. The reaction gas introduced here flows only through the reaction vessel, so the reaction between the raw materials and the reaction gas in the reaction vessel is ensured. The decomposition products and byproducts generated in the reaction gas C2 are discharged from the furnace through the outlet provided in the low-temperature section, and the reaction raw materials, byproducts, and reaction products are further removed from this reactor. We discovered that since there is no scattering outside the reactor, there is no risk of damage to the reactor or heater burnout. The research progressed and the present invention was completed.

本発明の高温連続反応炉は上記したよう1:移動方向の
みに開口部を有する反応容器を使用するものであるが、
この反応容器の形状は連続マツフルを形成することので
きるようなものであれば直方体、立方体、筒状などのい
ずれであってもよい。
As mentioned above, the high-temperature continuous reactor of the present invention uses a reaction vessel having an opening only in the direction of movement.
The shape of this reaction container may be any shape such as a rectangular parallelepiped, a cube, or a cylinder, as long as it can form a continuous matzuru.

すなわち、このものは例えば第1図に示したような形状
、構造を有するものとされるが、このものは図示されて
いるようにトンネル炉内移動方向とされる図面における
左右の壁面(二は開口部1が設けられており、移動方向
と直角となる両側面2、天井面3、底面4は完全に閉鎖
された形状、構造とされているが、この天井面などは気
密保持、また加熱源からの熱を遮断するためにカーボン
製の蓋構造を設けたものとしてもよい。
That is, this thing has the shape and structure shown in FIG. 1, for example, but this thing has the left and right wall surfaces (the two are An opening 1 is provided, and both side surfaces 2, ceiling surface 3, and bottom surface 4 that are perpendicular to the direction of movement have a completely closed shape and structure, but the ceiling surface etc. must be kept airtight and heated. A carbon lid structure may be provided to block heat from the source.

本発明の反応炉はこの反応容器をトンネル炉内に連続的
に装入し、これらを接続させてマツフル動装置12によ
って容器入口部13に装架された反応容器14を駆動さ
せ、これを順次接続させてマツフル状とするのであるが
、これには炉内の入口側と出口側に遮断布15.16が
設けられているので炉中央部は低温部となる容器入口部
13、出口部17と雰囲気遮断されるようにされている
In the reactor of the present invention, these reaction vessels are continuously charged into a tunnel furnace, and by connecting them, the reaction vessel 14 mounted on the vessel inlet 13 is driven by the matsuflu drive device 12, which is sequentially driven. They are connected to form a matsufuru shape, and since shielding cloths 15 and 16 are provided on the inlet and outlet sides of the furnace, the central part of the furnace is a low-temperature area, the container inlet part 13 and the outlet part 17. And the atmosphere is blocked off.

また、この炉11にはその出口側に容器取出部17が設
けられ、炉内には反応炉内を所望の反応温度に保持する
ための加熱用ヒーター18が設けられており、その出口
側f二は反応ガス導入口19が、また炉の中央部には反
応ガスまたは不活性ガスを導入するためのガス導入口2
0が、さら(二この入口側低温部f二はガス排出口21
が設けられている。
Further, this furnace 11 is provided with a container take-out part 17 on its exit side, and a heating heater 18 for maintaining the inside of the reactor at a desired reaction temperature is provided in the furnace. Second is a reaction gas inlet 19, and in the center of the furnace is a gas inlet 2 for introducing a reaction gas or an inert gas.
0 is further (2) This inlet side low temperature part f2 is the gas outlet 21
is provided.

なお、この反応炉11を構成する炉材、加熱用ヒーター
、反応容器を形成する材質は任意のものとされるが、こ
の反応炉がセラミック原料材を合成するために通常は8
00〜2,200℃の高温で運転されるものであること
から、これらはいずれも耐熱性のものとすることがよく
、したがってこの炉材についてはアルミナ、カーボン、
ボロンナイトライド、ムライト、ジルコン、窒化けい素
などとし、ヒーターは炭化けい素、タングステン、カー
ボンなどで作られたものとすることがよいが、この反応
容器については生成物との反応性、汚染性などから目的
とする生成物、この原料物質の種類::応じて窒化けい
素、カーボン、アlレミナなどで作ったものとすればよ
い。なお、この反応容器に装入される原料物質は通常固
体状のものとされるが、これは必要(二応じブリケット
状、塊状体として装入してもよい。
Note that the furnace material constituting this reactor 11, the heating heater, and the material forming the reaction vessel may be made of any material, but in order for this reactor to synthesize ceramic raw materials, it is usually
Since it is operated at a high temperature of 00 to 2,200 degrees Celsius, it is best to use heat-resistant materials for this furnace, such as alumina, carbon,
Boron nitride, mullite, zircon, silicon nitride, etc. are preferably used, and the heater is preferably made of silicon carbide, tungsten, carbon, etc.; Depending on the desired product and the type of raw material, it may be made of silicon nitride, carbon, alumina, etc. The raw material charged into this reaction vessel is usually in solid form, but it may be charged in the form of briquettes or lumps if necessary.

この高温連続反応炉11によって反応を行なわせるには
、反応容器14に原料物質を装入してからこれを容器入
口部13に装架し、これらを容器駆動装置12によって
連続面に炉内に移動させてマツフル状としたのち、加熱
ヒーター18からの加熱によって炉内を所定温度に上昇
させ、ついで反応ガス導入口19から反応ガスを送入す
ればよく、このようにすると反応ガスが反応容器+4に
設けられている開口部1を通って連接されている反応容
器14の中を通過するので、目的とする反応が反応容器
14の中で行なわれ、この反応で得られた反応生成物は
反応容器14が容器取出部11に到着したときに二製品
として取り出される。
In order to carry out a reaction in this high-temperature continuous reactor 11, raw materials are charged into the reaction vessel 14, and then loaded onto the vessel inlet 13, and then transferred into the furnace on a continuous surface by the vessel drive device 12. After it is moved to form a pine-like shape, the inside of the furnace is heated to a predetermined temperature by the heating heater 18, and then the reaction gas is introduced from the reaction gas inlet 19. In this way, the reaction gas flows into the reaction vessel. Since it passes through the opening 1 provided at +4 into the connected reaction vessel 14, the desired reaction takes place in the reaction vessel 14, and the reaction product obtained in this reaction is When the reaction container 14 arrives at the container removal section 11, it is taken out as two products.

なお、この場合この反応を不活性ガス雰囲気下で行なわ
せると0には炉中央部I:設けられているガス導入口2
0から不活性ガスをそれが反応容器よりもや\高圧とな
るような圧力で添加すれば不活性ガスが反応容器14の
連接部から反応容器中に流入されるので目的を達するこ
とができるが、目的によってはこの不活性ガスに代えて
反応ガスをこのガス導入口20から流入させてもよい。
In this case, if this reaction is carried out under an inert gas atmosphere, the central part of the furnace I: the gas inlet 2 provided is
If an inert gas is added from 0 at a pressure that is slightly higher than that of the reaction vessel, the inert gas will flow into the reaction vessel from the connecting part of the reaction vessel 14, so the purpose can be achieved. Depending on the purpose, a reactive gas may be introduced from the gas inlet 20 instead of the inert gas.

本発明の高温連続反応炉による反応は上記したよう(ユ
して行なわれ、これによれば反応容器14がトンネル炉
内の移動方向のみに開口部lを有するものとされ、反応
ガスがこの開口部を通して反応器内を縦貫して走行する
ので、この反応による排ガスはこの反応ガスに伴流され
てガス排気口21から系外に排出されるし、この反応容
器14はその両側部、天井部、底部が完全に密閉された
ものとなっているので原料やその分解物、反応副生物な
どが飛散または蒸発によって炉内壁部や加熱用ヒーター
に付着することがなく、分解ガス、副生ガスなども排気
ガスとして排気口から排出されるので炉内がこれらの付
着によって汚損、損傷されることもなく、したがって容
器の搬送が止りたり、ヒーター切れすることもないので
長期運転が可能になるという有利性が与えられる。
The reaction in the high-temperature continuous reactor of the present invention is carried out as described above. According to this, the reaction vessel 14 has an opening l only in the direction of movement within the tunnel furnace, and the reaction gas is The reaction vessel 14 runs vertically through the inside of the reactor through the reactor, so the exhaust gas from this reaction is followed by the reaction gas and discharged out of the system from the gas exhaust port 21. Since the bottom is completely sealed, raw materials, their decomposition products, reaction by-products, etc. will not scatter or evaporate and will not adhere to the furnace inner wall or heating heater, preventing cracked gas, by-product gas, etc. Since these substances are discharged from the exhaust port as exhaust gas, the inside of the furnace will not be contaminated or damaged by these substances, and therefore, the conveyance of containers will not stop or the heater will not burn out, making long-term operation possible. gender is given.

つぎに本発明の実施例をあげる。Next, examples of the present invention will be given.

実施例1、比較例1 アルミナを炉材とし、タングステンヒーターを取りつけ
た長さ15mの第2図に示したような高温連続反応炉中
に、四塩化けい素とアンモニアとを反応させて得たシリ
コンイミドのブリケット状物を不活性雰囲気下に3KP
装入した第1図に示したような窒化けい素製の内容積2
0gの反応容器を装架したのち、炉内に炉中央部のガス
導入口から窒素ガスを水柱50朋の圧力で圧入して窒素
ガス雰囲気にすると共に、炉内最高温部の温度を1.4
00℃に維持するように加熱し、ついでこの反応容器を
容器駆動装置を甲いて一つの反応容器が炉内最高温部を
120分で通過するような速度で駆動させてマツフル状
とすると共に炉出口側に設けられている反応ガス導入口
から水素ガスを5%含有する窒素ガスを251/分の速
度で送入して反応させたところ、窒化けい素を1.3t
/月で得ることができ、3ケ月連続運転後に炉を解体し
て炉材、ヒーターの消耗をしらべたところ、これには何
の消耗も認められず、炉壁には何の堆積物もなかった。
Example 1, Comparative Example 1 Silicon tetrachloride and ammonia were reacted in a 15 m long high-temperature continuous reactor as shown in Fig. 2, using alumina as the furnace material and equipped with a tungsten heater. 3KP of silicon imide briquettes in an inert atmosphere
Charged internal volume 2 made of silicon nitride as shown in Figure 1
After installing a 0g reaction vessel, nitrogen gas is injected into the furnace from the gas inlet at the center of the furnace at a pressure of 50 mm of water to create a nitrogen gas atmosphere, and the temperature of the hottest part of the furnace is set to 1. 4
The reactor is heated to maintain the temperature at 00°C, and then the reactor is driven by a container drive device at such a speed that one reactor passes through the hottest part of the furnace in 120 minutes to form a pine-flour-like shape, and When nitrogen gas containing 5% hydrogen gas was introduced at a rate of 251/min from the reaction gas inlet provided on the outlet side and reacted, 1.3 tons of silicon nitride was removed.
After three months of continuous operation, we dismantled the furnace and examined the wear and tear on the furnace materials and heater, and found no wear and tear on the furnace walls. Ta.

しかし、上記において反応容器として上部のみが開口し
た同容量のものを使用したほかは上記と同様にして反応
させたところ、この場合には炉内に塩化アンモニウム、
シリカが沈積したために反応開始後56時間後(二は搬
送系が故障し、反応を停止することになった。
However, when the reaction was carried out in the same manner as above except that a reaction vessel of the same capacity with only the top open was used as the reaction vessel, in this case ammonium chloride and
Due to the deposition of silica, the reaction had to be stopped 56 hours after the start of the reaction (secondly, the transport system broke down and the reaction was stopped).

実施例2、比較例2 カーボンフェルトを中心としたカーボンを炉材とし、カ
ーボン電極からなるヒーターを設けた長さ137nの第
2図に示したような高温連続反応炉中に、金属けい素を
0.7 KF装入した第1図に示したような窒化けい素
製の内容積151の反応容器を装架したのち、炉内に炉
中央部のガス導入口から窒素ガスを圧入して炉内を水柱
50朋の窒素ガス雰囲気とすると共に炉内均熱部の温度
を1,300°Cに維持し、ついでこの反応容器を一つ
の反応容器が炉内均熱部を240分で通過するような速
度で容器駆動装置を用いて駆動させてマツフル状とする
と共に炉出口側に設けられている反応ガス導入口から窒
素ガスとアンモニアガスとの1:1の混合ガスを351
/分の速度で送入して反応させたところ、窒化けい素を
It/月で得ることができ、3ケ月連続運転後に炉を解
体して炉材、ヒーターの消耗なしらへたところ、炉材、
ヒーターには何の消耗も認められず、炉内には何らの堆
積物もなかった。
Example 2, Comparative Example 2 Silicon metal was placed in a high-temperature continuous reactor as shown in Fig. 2, which had a length of 137 nm and was equipped with a heater made of carbon electrodes and a furnace material made of carbon, mainly carbon felt. After installing a reaction vessel made of silicon nitride with an internal volume of 151 cm as shown in Fig. 1 and charged with 0.7 KF, nitrogen gas was injected into the furnace from the gas inlet in the center of the furnace. A nitrogen gas atmosphere of 50 mm of water was created inside the reactor, and the temperature of the soaking section inside the furnace was maintained at 1,300°C, and then one reaction vessel passed through the soaking section inside the furnace in 240 minutes. A container driving device is used to drive the container at such a speed as to make it into a matte shape, and a 1:1 mixed gas of nitrogen gas and ammonia gas is supplied from the reactant gas inlet provided on the furnace outlet side.
When the reaction was carried out by feeding the furnace at a rate of /min, silicon nitride could be obtained at It/month.After three months of continuous operation, the furnace was dismantled and the furnace materials and heaters were no longer consumed. wood,
The heater showed no wear and there were no deposits in the furnace.

しかし、比較のため峯−上記1:おいて反応容器として
上部のみが開口している同容量のものを使用したほかは
上記と同様(二して反応させたところ、この場合には8
日目に電極が切れたので操業を中止し、炉を解体したと
ころ、すべてのカーボンヒーターがやせて細くなって一
部で切断しており、炉壁も著しく消耗していた。
However, for comparison, a reaction vessel of the same capacity with only the top open was used as the reaction vessel in Mine - above 1.
The electrode broke on the first day, so operations were stopped and the furnace was dismantled to find that all the carbon heaters had become thin and thin and had been cut off in some places, and the furnace walls were also severely worn out.

実施例3、比較例3 実施例2と同じトンネル炉中C二はう酸とリン酸カルシ
ウムとの1:1の混合物を6KP装入したカーボン製の
第1図に示したような内容積301の反応客器を装架し
たのち、炉中央部のガス導入口から窒素ガスを圧入して
炉内を水柱50顛の窒素ガス雰囲気とすると共に炉内均
熱部の温度を2.000°Cに維持し、ついでこの反応
容器を一つの反応容器が炉内均熱部を1,200分で通
過するような速度で容器駆動装置を用いて駆動させてマ
ツフル状とすると共に炉出口(1111に設けた反応ガ
ス導入口からアンモニアを5%含む窒素ガスを501/
分の速度で送入して反応させたところ、ボロンナイトラ
イドを1 t/月で得ることができ、3ケ月の連続運転
後に炉を解体して炉材、ヒーターの消耗をしらべたとこ
ろ、炉材、ヒーターには消耗が認められず、炉内(二は
何の堆積物乞なかった。
Example 3, Comparative Example 3 Reaction in the same tunnel furnace as in Example 2, made of carbon and having an internal volume 301 as shown in FIG. After installing the customer equipment, nitrogen gas is injected from the gas inlet in the center of the furnace to create a nitrogen gas atmosphere of 50 water columns inside the furnace, and the temperature of the soaking section inside the furnace is maintained at 2.000°C. Then, this reaction vessel was driven using a vessel driving device at such a speed that one reaction vessel passed through the in-furnace soaking section in 1,200 minutes to form a matzuru shape. Inject nitrogen gas containing 5% ammonia from the reaction gas inlet into 501/
When the reaction was carried out by feeding the furnace at a rate of 30 minutes, boron nitride could be obtained at 1 t/month. After 3 months of continuous operation, the furnace was dismantled and the wear and tear of the furnace materials and heaters was examined. There was no evidence of wear and tear on the wood or heater, and there was no buildup inside the furnace.

しかし、比較のため(二上記において反応容器として上
部のみが開口しているものを使用したほかは上記と同様
にして反応させたところ、この場合には反応開始3日目
にほとんどのカーボンヒーターが切れたので操業を中止
し、炉を解体したところ、炉材およびカーボンヒーター
のいずれもが消耗しており、さらに炉壁(=は白色の沈
着物が著しく付着していた。
However, for comparison (2), we conducted the reaction in the same manner as above except for using a reaction vessel with only the top open; in this case, most of the carbon heaters were removed on the 3rd day after the start of the reaction. When the burnout occurred, we stopped operations and dismantled the furnace.We found that both the furnace material and the carbon heater were worn out, and there was a significant amount of white deposits on the furnace wall.

【図面の簡単な説明】[Brief explanation of drawings]

@1図は本発明の高温連続反応炉に使用される反応容器
の斜視図、′@2図はこの反応炉の縦IIJT面図を例
示したものである。 1・・・開口部、−2・・・側壁部、  3・・・天井
部、4・・・底面部、  11・・・反応炉、12・・
・容器駆動装置、  14・・・反応容器、19・・・
反応ガス導入口、 20・・・ガス導入口、21・・・
ガス排出口。 特許出願人 信越化学工業株式会社 第1図 第2図
Figure @1 is a perspective view of a reaction vessel used in the high-temperature continuous reactor of the present invention, and Figure '@2 is a vertical IIJT view of this reactor. DESCRIPTION OF SYMBOLS 1... Opening part, -2... Side wall part, 3... Ceiling part, 4... Bottom part, 11... Reactor, 12...
- Container driving device, 14... Reaction container, 19...
Reaction gas inlet, 20... Gas inlet, 21...
Gas outlet. Patent applicant Shin-Etsu Chemical Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、原料物質を装入した、移動方向のみに開口部を有す
る反応容器を、ブッシャー式トンネル炉内で連続的に接
続させてマッフル状としたのちこの反応容器を移動させ
ながらこゝに反応ガスを流通させるようにしてなること
を特徴とする高温連続反応炉。 2、炉の低温部分に炉内雰囲気ガス排出口を設けてなる
特許請求の範囲第1項記載の高温連続反応炉。
[Claims] 1. A reaction vessel charged with a raw material and having an opening only in the direction of movement is continuously connected in a Busher tunnel furnace to form a muffle, and then the reaction vessel is moved. A high-temperature continuous reactor characterized in that a reactant gas is circulated throughout the reactor. 2. The high-temperature continuous reactor according to claim 1, wherein a furnace atmosphere gas discharge port is provided in a low-temperature portion of the furnace.
JP24355185A 1985-10-30 1985-10-30 KOONRENZOKUHANNORO Expired - Lifetime JPH0231305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24355185A JPH0231305B2 (en) 1985-10-30 1985-10-30 KOONRENZOKUHANNORO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24355185A JPH0231305B2 (en) 1985-10-30 1985-10-30 KOONRENZOKUHANNORO

Publications (2)

Publication Number Publication Date
JPS62102080A true JPS62102080A (en) 1987-05-12
JPH0231305B2 JPH0231305B2 (en) 1990-07-12

Family

ID=17105547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24355185A Expired - Lifetime JPH0231305B2 (en) 1985-10-30 1985-10-30 KOONRENZOKUHANNORO

Country Status (1)

Country Link
JP (1) JPH0231305B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065556A1 (en) 2011-11-02 2013-05-10 株式会社カネカ Process for continuous production of boron nitride powder
WO2014109134A1 (en) * 2013-01-10 2014-07-17 株式会社カネカ Hexagonal boron nitride, and resin molded article having high thermal conductivities which is produced using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510705U (en) * 1991-07-19 1993-02-12 日鍛バルブ株式会社 Valve lifter for internal combustion engine
CN105066689A (en) * 2015-09-09 2015-11-18 湖北晶洋科技股份有限公司 Connected graphite crucible applied to producing vanadium-nitrogen alloy products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065556A1 (en) 2011-11-02 2013-05-10 株式会社カネカ Process for continuous production of boron nitride powder
JPWO2013065556A1 (en) * 2011-11-02 2015-04-02 株式会社カネカ Continuous production method of boron nitride powder
WO2014109134A1 (en) * 2013-01-10 2014-07-17 株式会社カネカ Hexagonal boron nitride, and resin molded article having high thermal conductivities which is produced using same
JPWO2014109134A1 (en) * 2013-01-10 2017-01-19 株式会社カネカ Hexagonal boron nitride and high thermal conductive resin molding using the same

Also Published As

Publication number Publication date
JPH0231305B2 (en) 1990-07-12

Similar Documents

Publication Publication Date Title
US6022515A (en) Process for producing silicon carbide
US4986967A (en) Furnace structure for ceramic powder production
JPS5917046B2 (en) Method for producing intermediate products for producing silicon and/or silicon carbide
EP0120572B1 (en) Process for preparing an iron oxide
JPH0638911B2 (en) Method for producing non-oxide powder
JPS62102080A (en) High-temperature continuous reaction furnace
KR101047842B1 (en) Apparatus and method for depositing ultrafine particles from the gas phase
US4983553A (en) Continuous carbothermal reactor
US3677713A (en) Furnace for the manufacture of ceramic whiskers
US3839077A (en) Decomposition of metal carbonyls
US3092455A (en) Process of making aluminum nitride
WO2004013044A1 (en) Methods for heating a fluidized bed silicon manufacture apparatus
JPH07509690A (en) Method for producing metal sulfides
US3800740A (en) Apparatus for decomposition of metal carbonyls
JPH028964B2 (en)
US3311452A (en) Production of pyrogenic pigments
JPS6332730B2 (en)
US3050365A (en) Prevention of formation of incrustations during oxidation of ferric chloride
US3086847A (en) Boron production
ES468692A1 (en) Process for thermally treating fine-grained solids
US1129510A (en) Process of producing alkali carbonitrid.
JPS58213607A (en) Preparation of silicon imide and/or silicon nitride
US3679359A (en) Continuous manufacture of cuprous chloride
IL47643A (en) Oxidation of magnesium chloride
EP0249498A1 (en) Apparatus for preparing cyanuric acid