JPS62101898A - Centrifugal compressor - Google Patents

Centrifugal compressor

Info

Publication number
JPS62101898A
JPS62101898A JP24038385A JP24038385A JPS62101898A JP S62101898 A JPS62101898 A JP S62101898A JP 24038385 A JP24038385 A JP 24038385A JP 24038385 A JP24038385 A JP 24038385A JP S62101898 A JPS62101898 A JP S62101898A
Authority
JP
Japan
Prior art keywords
gas
diffuser
hole
wall surface
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24038385A
Other languages
Japanese (ja)
Inventor
Shiro Hattori
司郎 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24038385A priority Critical patent/JPS62101898A/en
Publication of JPS62101898A publication Critical patent/JPS62101898A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To improve compression efficiency by accelerating slow speed gas near a wall surface by making gas, introduced from a high pressure side through a gas blowout hole arranged at a diffuser inlet, blow out in the direction of a main gas stream. CONSTITUTION:A gas blowout hole 10 is arranged as near to an impeller outlet of the inner diameter part of a diffuser wall on the side of a wall surface 8 as possible. Gas near the wall surface is accelerated in the radial direction by introducing high pressure gas from a discharge side of a gas passage 11 into the hole 10 and by blowing out the gas from the hole 10 in the direction of gas flow within the diffuser. Accordingly the gas speed distribution becomes more uniform and efficiency and pressure rise in that stage is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、遠心圧縮機、特に遠心圧縮機のディフューザ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a centrifugal compressor, and in particular to a diffuser for a centrifugal compressor.

〔従来の技術〕[Conventional technology]

第6図は遠心圧縮機の組立断面図を示すもので、同図に
おいて、lはインはう、2はディフューザ。
FIG. 6 shows an assembled cross-sectional view of the centrifugal compressor, in which 1 indicates an intrusion, and 2 indicates a diffuser.

3はディフューザ2の案内羽根、4は単室、5は主軸で
ある。ガスは吸込室6からインペラ1に導かれ、その中
を流れて速度エネルギを与へられる。
3 is a guide vane of the diffuser 2, 4 is a single chamber, and 5 is a main shaft. The gas is led from the suction chamber 6 to the impeller 1, through which it flows and is imparted with velocity energy.

ガスはインペラ1の中を流れてその速度エネルギの一部
は圧力上昇に変化する。
Gas flows through the impeller 1 and part of its velocity energy is converted into pressure increase.

インペラ出口でガスの保有する速度エネルギはガスがデ
ィフューザ2の中を流れ減速すると共に圧力上昇に変換
する。第6図は多段の圧縮機の場合を示し、圧力上昇し
たガスはディフューザの案内羽根3で次段のインはうl
に案内され1次段で更に圧力が上昇し、その様にして順
次圧力上昇を重ね吐出室7から外部へ吐出する。
The velocity energy possessed by the gas at the impeller outlet is converted into pressure increase as the gas flows through the diffuser 2 and is decelerated. Figure 6 shows the case of a multi-stage compressor, in which the gas with increased pressure passes through the guide vanes 3 of the diffuser to the next stage.
The pressure is further increased in the first stage, and the pressure increases in sequence and is discharged from the discharge chamber 7 to the outside.

第7図はナイフユーザ2とインにラ−1の部分拡大図で
あり、第8図はディフューザ入口部のA−A線上のガス
の速度分布を示す。
FIG. 7 is a partially enlarged view of the knife user 2 and the inner roller 1, and FIG. 8 shows the velocity distribution of gas on line A--A at the diffuser inlet.

ガス流路の壁面に接する部分ではガスの粘性に依る摩擦
損失に依り速度が低くなるので、第8図に示すように、
流路の中央で速度の大きい山形の分布を示す。
At the part of the gas flow path in contact with the wall surface, the velocity decreases due to friction loss caused by the viscosity of the gas, so as shown in Figure 8,
It shows a mountain-shaped distribution with high velocity in the center of the channel.

ガスはイン(う1の入口部ではほぼ軸方向に吸込まれる
が、イン投う−出口では半径方向に流れの方向を変へそ
の際遠心力の作用を受ける。その為に流れは壁面9側に
偏シ、速度分布の山の頂点は第8図に示される様に壁面
9側に偏る。
The gas is sucked in almost axially at the inlet of the inlet (1), but at the inlet and outlet the gas changes direction in the radial direction and is subject to the action of centrifugal force. The peak of the velocity distribution is biased toward the wall surface 9 as shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第8図に示す様にディフューザ2の巾に沿って速度が不
均一である様な場合には、減速して圧力上昇の過程で壁
面近くで速度が低下しても尚中央部で速度の早い部分が
残る事になシ、渦の発生が多くなシ、効率の低下或は圧
力上昇値が低下するなどの問題がある。
As shown in Figure 8, if the speed is uneven along the width of the diffuser 2, even if the speed decreases near the wall during the process of deceleration and pressure rise, the speed will still be high in the center. There are problems such as a portion remaining, a large number of vortices being generated, a decrease in efficiency, and a decrease in pressure increase value.

従って効率向上と一段当シの圧力上昇値の向上の為には
ディフューザ内で巾方向に出来る限b 一様な速度分布
を持つ事が望ましい。
Therefore, in order to improve efficiency and increase the value of pressure rise per stage, it is desirable to have a velocity distribution that is as uniform as possible in the width direction within the diffuser.

流れの偏シは速度分布を一層悪くするので従来よジイン
ベラ1の羽根を3次元的に曲げて壁面8から壁面9に向
って圧力が高い様な圧力分布を持たせ一様流れに近付け
るなどの努力が為されている。併し3次元的に曲った羽
根の加工は製作が容易でなくコスト上昇を伴う。
Since the unevenness of the flow worsens the velocity distribution, conventional methods have been used, such as bending the blades of the di-inverter 1 three-dimensionally to create a pressure distribution in which the pressure is higher from the wall surface 8 to the wall surface 9, thereby approaching a uniform flow. Efforts are being made. However, processing three-dimensionally curved blades is not easy to manufacture and increases costs.

又、翼の形状を改良しようとしても強度上や加工上の制
約から流体力学的に理想的な形状が現実に実現出来ると
は限らない。
Further, even if an attempt is made to improve the shape of the blade, it is not always possible to actually achieve a hydrodynamically ideal shape due to constraints on strength and processing.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

第1図において、壁面8側のディフユーザ壁の内径部の
インはう出口に出来るだけ近くガス吹出し穴10を設け
、此の穴に穴11に依り吐出側(自分自身の吐出側或は
1段又はそれ以上の高圧1(!Iの段)から高圧ガスを
導き、穴10からディフューザ内のガスの流れ方向(第
4図のvAの方向)に吹出させ壁面近くのガスを半径方
向に加速する。
In FIG. 1, a gas blowout hole 10 is provided as close as possible to the inlet outlet of the inner diameter part of the diffuser wall on the wall surface 8 side, and a gas blowout hole 10 is provided in this hole through a hole 11 to connect to the discharge side (one's own discharge side or one High pressure gas is introduced from the high pressure 1 (stage !I) of stage or higher, and is blown out from hole 10 in the direction of gas flow in the diffuser (direction of vA in Figure 4), accelerating the gas near the wall surface in the radial direction. do.

なお、吹出穴10は、第3図に示す如く、インにう出口
のガスの流れ方向に、且つ断面上では第1図に示す如く
半径方向に出来る限り傾けて設ける。
The blow-off holes 10 are provided so as to be inclined as much as possible in the gas flow direction at the inlet and outlet, as shown in FIG. 3, and in the radial direction as shown in FIG. 1 in cross section.

〔作用〕[Effect]

壁面近くの速度の遅いガスを主流の流れ方向に吹田穴1
0から吹出すガスで増速し、第8図に示す従来の速度分
布に比して一様化された第2図に示すような速度分布を
生ずる。
Suita hole 1 directs the slow gas near the wall to the main flow direction.
The speed is increased by the gas blown out from zero, producing a speed distribution as shown in FIG. 2, which is more uniform than the conventional speed distribution shown in FIG.

〔実施例〕〔Example〕

第1図において、1はインはう、2はディフューザ、3
はディフューザ2の案内羽根、4は単室、5は主軸で、
以上の部材は従来技術の項で説明した同一符号の部材と
実質的に同一である。
In Figure 1, 1 is an in-crowd, 2 is a diffuser, and 3
is the guide vane of diffuser 2, 4 is a single chamber, 5 is the main shaft,
The above members are substantially the same as the members with the same reference numerals described in the prior art section.

10はガス吹出し穴で、壁面8側のディフユーザ壁の内
径部に、イン尽う1の出口に出来るだけ接近して設けら
れる。
Reference numeral 10 denotes a gas blowing hole, which is provided in the inner diameter part of the diffuser wall on the side of the wall surface 8, as close as possible to the outlet of the exhaust gas 1.

またガス吹出し穴10は、第3図に示す如くインはう出
口のガスの流れの方向に、且つ断面では第1図に示す如
く半径方向に出来る限シ傾けて設けられる。
Further, the gas blowout hole 10 is inclined as much as possible in the direction of gas flow at the inlet outlet, as shown in FIG. 3, and in the radial direction as shown in FIG. 1 in cross section.

11はガス吹出し穴10と吐出側(同一段の吐出側。Reference numeral 11 indicates the discharge side of the gas blowout hole 10 (discharge side on the same stage).

或いは1段又はそれ以上高圧側)とを連通させるガス通
路で、ガス通路11からガス吹出し穴10に導。
or one or more stages of high pressure side), leading from the gas passage 11 to the gas blowing hole 10.

かれた高圧ガスがディフューザ2内のガス流方向(第4
図のvAの方向)に噴出し、壁面近くのガスを半径方向
に加速する。
The released high-pressure gas flows in the gas flow direction (fourth direction) in the diffuser 2.
The gas is ejected in the direction of vA in the figure), accelerating the gas near the wall in the radial direction.

第4図はインペラ内を流れるガスの速度3角形で、 V
wはインペラ外周の周速度、vGはインペラに対するガ
スの流れ速度、vAはインペラ出口に於けるガスの絶体
速度即ち静止しているディフューザに対する流入方向と
流入速度を示し、ガス吹出し穴10の方向(第3図)を
第4図vAの方向に一致させる。
Figure 4 shows the velocity triangle of the gas flowing inside the impeller, and V
w is the peripheral speed of the impeller outer periphery, vG is the flow velocity of the gas with respect to the impeller, vA is the absolute velocity of the gas at the impeller outlet, that is, the inflow direction and inflow velocity with respect to the stationary diffuser, and the direction of the gas blowing hole 10 (Fig. 3) to match the direction of vA in Fig. 4.

このようにガス吹出し穴10から吹出すガスによシ、壁
面近くの速度の遅いガスが主流の流れ方向に加速され、
第8図に示す従来の速度分布に比して一様化された第2
図に示すような速度分布を生ずる。
In this way, the gas blowing out from the gas blowing hole 10 accelerates the slow gas near the wall in the direction of the mainstream flow,
The second speed distribution is more uniform than the conventional speed distribution shown in Figure 8.
This produces a velocity distribution as shown in the figure.

なお、ガス吹出し大工0は、第5図に示すように。In addition, the gas blowing carpenter 0 is as shown in FIG.

半径方向に2列に配置してもよい。They may be arranged in two rows in the radial direction.

〔発明の効果〕〔Effect of the invention〕

ディフューザ入口部に設けたガス吹出し穴から高圧側か
ら導いたガスを主流ガスの流れ方向に吹出させ、壁面近
くの低速のガスを増速することにより、ディフューザ内
で巾方向に中央に高い山形に且つその山が吐出側に偏っ
たガスの速度分布を。
Gas introduced from the high-pressure side is blown out from the gas blow-off hole provided at the diffuser inlet in the flow direction of the mainstream gas, and by accelerating the low-speed gas near the wall, it forms a high mountain in the center of the width in the diffuser. In addition, the velocity distribution of the gas is biased toward the discharge side.

第2図に示す様に一様な速度分布に近付けることができ
、従ってその段の効率と圧力上昇値が改善される。
As shown in FIG. 2, a uniform velocity distribution can be approached, thus improving the efficiency and pressure rise of the stage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明遠心圧縮機の実施例においてイィベラと
ディフューザの近傍を示す断面図、第2図は第1図のB
−B断面におけるガスの速度分布図、 第3図は第1図のC−C断面及び矢視図、第4図はイン
ペラ内を流れるガスの速度3角形、第5図はガス吹出し
穴を2列に配置した他の実施例を示す。 第6図は遠心圧縮機の全体構成を示す組立断面図、第7
図は従来装置においてインペラとディフューザの近傍を
示す断面図、第8図は第7図のA−A断面におけるガス
の速度分布図である。 1・・・イン4う、     2・・・ディフューザ。 3・・・ディフューザの案内羽根、  4・・・車室。 5・・・主軸、10・・・ガス吹出し穴。 11・・・ガス通路。 復代理人 弁理士  岡 本 重 文 外2名 第1囚 U−−一力ス通路 第2区 第5図
Figure 1 is a cross-sectional view showing the vicinity of the Eibera and diffuser in an embodiment of the centrifugal compressor of the present invention, and Figure 2 is B of Figure 1.
Figure 3 is the CC cross section and arrow view of Figure 1, Figure 4 is the velocity triangle of the gas flowing inside the impeller, Figure 5 is the gas velocity distribution diagram at the -B cross section, Figure 5 is the gas blowout hole 2 Another example is shown arranged in columns. Figure 6 is an assembled sectional view showing the overall configuration of the centrifugal compressor;
The figure is a sectional view showing the vicinity of the impeller and diffuser in a conventional device, and FIG. 8 is a gas velocity distribution diagram in the AA cross section of FIG. 7. 1...in4, 2...diffuser. 3... Diffuser guide vane, 4... Vehicle compartment. 5...Main shaft, 10...Gas blowout hole. 11...Gas passage. Sub-Agent Patent Attorney Shige Okamoto Two extra prisoners 1st prisoner U - Ichiriki Susai 2nd Ward Figure 5

Claims (1)

【特許請求の範囲】[Claims] 遠心圧縮機のディフューザ入口部の壁面に放射状にガス
吹出し穴を設け、また前記ガス吹出し穴と高圧側とを連
通するガス通路を設け、高圧側からのガスを前記ガス吹
出し穴からディフューザ主流中へ吹出させ、ディフュー
ザ入口部におけるガスの速度分布を均一にしたことを特
徴とする遠心圧縮機。
Gas blow-off holes are provided radially on the wall surface of the diffuser inlet of the centrifugal compressor, and a gas passage is provided that communicates the gas blow-off holes with the high-pressure side, and gas from the high-pressure side is directed from the gas blow-off holes into the main stream of the diffuser. A centrifugal compressor characterized by blowing out gas to make the velocity distribution of gas uniform at the diffuser inlet.
JP24038385A 1985-10-29 1985-10-29 Centrifugal compressor Pending JPS62101898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24038385A JPS62101898A (en) 1985-10-29 1985-10-29 Centrifugal compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24038385A JPS62101898A (en) 1985-10-29 1985-10-29 Centrifugal compressor

Publications (1)

Publication Number Publication Date
JPS62101898A true JPS62101898A (en) 1987-05-12

Family

ID=17058669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24038385A Pending JPS62101898A (en) 1985-10-29 1985-10-29 Centrifugal compressor

Country Status (1)

Country Link
JP (1) JPS62101898A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1061586A (en) * 1996-06-07 1998-03-03 Carrier Corp Centrifugal compressor and method for controlling centrifugal compressor
JP2008175124A (en) * 2007-01-18 2008-07-31 Ihi Corp Centrifugal compressor
CN104564831A (en) * 2014-12-26 2015-04-29 珠海格力电器股份有限公司 Diffuser structure applied to compressor
CN105114327A (en) * 2015-09-15 2015-12-02 珠海格力电器股份有限公司 Multi-stage compressor and refrigerating system provided with same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1061586A (en) * 1996-06-07 1998-03-03 Carrier Corp Centrifugal compressor and method for controlling centrifugal compressor
JP2008175124A (en) * 2007-01-18 2008-07-31 Ihi Corp Centrifugal compressor
CN104564831A (en) * 2014-12-26 2015-04-29 珠海格力电器股份有限公司 Diffuser structure applied to compressor
CN105114327A (en) * 2015-09-15 2015-12-02 珠海格力电器股份有限公司 Multi-stage compressor and refrigerating system provided with same

Similar Documents

Publication Publication Date Title
US3824029A (en) Centrifugal supersonic compressor
JP5235253B2 (en) Convex compressor casing
US3690786A (en) Low pressure end diffuser for axial flow elastic fluid turbines
US9890792B2 (en) Radial or mixed-flow compressor diffuser having vanes
US3658437A (en) Diffuser including vaneless and vaned sections
KR101885402B1 (en) Gas turbine diffuser blowing method and corresponding diffuser
EP3133295B1 (en) Diffuser, airflow generating apparatus, and electrical device
US8287236B2 (en) Multistage centrifugal compressor
JPH08165999A (en) Axial flow blower
US5143511A (en) Regenerative centrifugal compressor
US3876328A (en) Compressor with improved performance diffuser
JPH08232895A (en) Radial fluid machine
US5167486A (en) Turbo-machine stage having reduced secondary losses
GB2068461A (en) Regenerative turbo machines
JPS62101898A (en) Centrifugal compressor
JPH0979192A (en) Multistage centrifugal compressor and its inter-stage injection flow passage structure
JP2000064848A (en) Turbo-charger
JP3578692B2 (en) Turbo compressor
JPH06257597A (en) Cascade structure of axial flow compressor
KR20030063369A (en) Axial flow turbo compressor
JPH04334798A (en) Diffuser for centrifugal fluid machine
KR20220116332A (en) an outlet area of a compressor, a compressor having an outlet area of the above type, and a turbocharger having a compressor
JPH0738641Y2 (en) Multi-stage axial turbine
JPS64561B2 (en)
JP2002021785A (en) Centrifugal compressor