JPS62100731A - Bragg cell - Google Patents

Bragg cell

Info

Publication number
JPS62100731A
JPS62100731A JP24235385A JP24235385A JPS62100731A JP S62100731 A JPS62100731 A JP S62100731A JP 24235385 A JP24235385 A JP 24235385A JP 24235385 A JP24235385 A JP 24235385A JP S62100731 A JPS62100731 A JP S62100731A
Authority
JP
Japan
Prior art keywords
optical
frequency band
surface acoustic
refractive index
surface wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24235385A
Other languages
Japanese (ja)
Inventor
Shiyuuzou Wakou
修三 和高
Koichiro Misu
幸一郎 三須
Tsutomu Nagatsuka
勉 永塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24235385A priority Critical patent/JPS62100731A/en
Publication of JPS62100731A publication Critical patent/JPS62100731A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high diffraction efficiency over a wide band by changing the variation of a light refractive index due to diffusion in respectively positions on the surface of a piezoelectric base. CONSTITUTION:An optical surface waveguide 2 increases the variation of the light refractive index in an area that an elastic surface wave in a high frequency band is transmitted, and reduces the variation in an area that an elastic surface wave in a low frequency band is transmitted. The diffraction efficiency of the optical surface wave depends upon a value obtained by integrating the product of space distribution of the optical surface wave along the depth direction from the surface of the piezo-electric base 1 and the similar space distribution of the elastic surface wave in the depth direction and the diffraction efficiency is increased in accordance with the increase of the value. Consequently, the diffraction efficiency can be increased over a wide frequency band.

Description

【発明の詳細な説明】 〔竜業上の利用分野〕 この発明け1弾14=表面波による光表面波のブラック
回折を用いて周波数分析を行うブラックセルに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of industrial application] This invention relates to a black cell that performs frequency analysis using black diffraction of optical surface waves by surface waves.

〔従来の技術〕[Conventional technology]

@2図は、例えば文献Proceedings of 
TheIEEE、 vol、64. No、3. Ma
rch 1976、 pp318−328や、Appl
ied  0ptics  、vol、19.No、1
8,15  September1980、 pp、3
033−3034などに示されている従来のこの種のブ
ラックセルを示す図である。v;2図(a)は平面図で
あり、第2図(b)は断面図である。%2図体)は第2
図(alのAA/断面における光層折率分布′を示す図
である。第2 fill (al 、 (blにおいて
、(1+はLiNbO3などの圧電体基板、(21け圧
電体基板fl+の表面に、外拡散あるいは金属を内拡散
して形成した光表面波導波路である。(31は弾性表面
波励振用のすだわ状電極、(41はレーザダイオード、
(51はレンズ、(6)は受光素子アレイである。第2
図(c)は外拡散あるいは内拡散に伴う光層折率分布で
あり、第2図(a)のどの断面においても一定である。
Figure @2 is, for example, from the document Proceedings of
TheIEEE, vol, 64. No, 3. Ma
rch 1976, pp318-328, Appl.
ied 0ptics, vol, 19. No.1
8,15 September1980, pp, 3
033-3034, etc., is a diagram illustrating a conventional black cell of this type. v; FIG. 2(a) is a plan view, and FIG. 2(b) is a sectional view. %2 figure) is the second
This is a diagram showing the optical layer refractive index distribution in the AA/cross section of (al). In the second fill (al, (bl), (1+ is a piezoelectric substrate such as LiNbO3, This is an optical surface wave waveguide formed by external diffusion or internal diffusion of metal. (31 is a ridge-shaped electrode for surface acoustic wave excitation, (41 is a laser diode,
(51 is a lens, (6) is a light receiving element array.
FIG. 2(c) shows the optical layer refractive index distribution accompanying external diffusion or internal diffusion, and is constant in any cross section in FIG. 2(a).

すなわち、圧電体基板fli表面における光屈折率変化
量Δnは圧電体基板or表面全体にわたって一定であり
、かつ、圧電体基板+l+の深さ方向に沿つ之分布の関
数形も圧電体基板+11表面全体にわたって一定である
That is, the amount of change in the optical refractive index Δn on the surface of the piezoelectric substrate fli is constant over the entire piezoelectric substrate or surface, and the functional form of the distribution along the depth direction of the piezoelectric substrate +l+ is also the same as the surface of the piezoelectric substrate +11. It is constant throughout.

次に動作釦ついて説明する。レーザダイオード(4)か
ら光表面波導波路(2)に入射した光表面波は、レンズ
(6)により平行光に変換され、他方のレンズ(61に
より受光素子アレイ(6)が取付けられた端面に集束す
る。すだれ状電極13)により励振された弾性表面波ビ
ームと光表面波ビームとを、ある特定の角変でクロスさ
せれば、光表面波ビームは回折され、弾性表面波が励振
されていない場合とは異なる受光素子に集光する。上記
回折角度は、弾性表面波の周波数により変わる。したが
って、受光素子アレイ(6)中のどの受光素子の出力が
大かをモニタしておけば、弾性表面波の周波数を知るこ
とかできる。すなわち、レーダーなどの受信電波をRF
帯に変換し、この信号を用いてすだれ状電極(3)を介
して弾性表面波を励振しておけば、受信電波の周波数分
析を行うことができる。
Next, the operation buttons will be explained. The optical surface wave that enters the optical surface wave waveguide (2) from the laser diode (4) is converted into parallel light by the lens (6), and is transmitted to the end face where the photodetector array (6) is attached by the other lens (61). When the surface acoustic wave beam excited by the interdigital electrode 13) and the optical surface wave beam are crossed at a certain angle, the optical surface wave beam is diffracted and the surface acoustic wave is focused. The light is focused on a different light-receiving element than when there is no light. The above-mentioned diffraction angle changes depending on the frequency of the surface acoustic wave. Therefore, by monitoring which light receiving element in the light receiving element array (6) has a large output, it is possible to know the frequency of the surface acoustic wave. In other words, radio waves received from radar etc. are converted into RF
By converting the signal into a band and using this signal to excite surface acoustic waves via the interdigital electrode (3), it is possible to perform frequency analysis of the received radio wave.

ところで、この種のブラックセルにおける回折効率、す
なわち回折光と入射光との強度比は、例えば、文献Pr
oceadingg of the IBBE、 vo
l、54゜No、3. March 19’76、 p
p、318−328に示されているように、入射光の圧
電体基板[11深さ方向に沿った空間分布2回折元の同
様の空間分布および弾性表面波の同様の空間分布の3ケ
をかけ算し、さらに深さ方向に沿ってt分して得られる
値に依存し。
By the way, the diffraction efficiency in this type of black cell, that is, the intensity ratio of diffracted light and incident light, is described in, for example, the document Pr.
oceading of the IBBE, vo
l, 54°No, 3. March 19'76, p
318-328, the piezoelectric substrate of the incident light [11] Spatial distribution along the depth direction, 2. Similar spatial distribution of the diffraction source, and 3. It depends on the value obtained by multiplying and further dividing by t along the depth direction.

この値が大きい方が回折効率が大きい。入射光および回
折光の上記空間分布は、拡散に伴う光屈折率変化量Δn
に依存し、Δnが大きい方が入射光および回折光とも、
圧電体基板tl+表面近傍に、より集中して分布する。
The larger this value is, the greater the diffraction efficiency is. The above spatial distribution of the incident light and the diffracted light is determined by the amount of change in the optical refractive index Δn due to diffusion.
The larger Δn is, the larger the incident light and the diffracted light,
It is distributed more concentrated near the piezoelectric substrate tl+ surface.

一方、弾性表面波に関する上記空間分布は、周波数が高
(fXるにしたがって。
On the other hand, the above spatial distribution regarding surface acoustic waves is as the frequency increases (fX).

圧電体基板(11表面近傍に、より集中して分布する。It is more concentratedly distributed near the surface of the piezoelectric substrate (11).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

さて、従来この種のブラックセルでは、@sU。 Now, conventionally, this type of black cell is @sU.

第4図を用いて示したように、拡散に伴う光屈折率変化
量Δnは、圧電体基板(li表面全体にわたって一定で
あった。したがって、光表面波の上記空間分布も圧電体
基板fli表面全体にわたって一定であり、このため、
嘉い回折効率を得られる弾性表面波の周波数範囲が限定
されてしまい、広帯域にわたって回折効率よ〈信号の周
波数分析をできない欠点かあった。
As shown in FIG. 4, the amount of change in the optical refractive index Δn due to diffusion was constant over the entire surface of the piezoelectric substrate (li. Therefore, the spatial distribution of the optical surface waves was also is constant throughout, so
The frequency range of surface acoustic waves in which good diffraction efficiency can be obtained is limited, and the diffraction efficiency and signal frequency analysis cannot be performed over a wide band.

この発明は、上記の欠点を解消するためになされたもの
で、広帯域にわたって回折効率よく周波数分析できるブ
ラックセルを得ることを目的とする。
This invention was made to eliminate the above-mentioned drawbacks, and aims to obtain a black cell that can perform frequency analysis with high diffraction efficiency over a wide band.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るブラックセルでは、拡散に伴う光屈折率
変化量を、圧電体基板(11表面の場所ごとて変えるこ
とにより、広帯彼特性を得たものである。
In the black cell according to the present invention, broadband characteristics are obtained by varying the amount of change in the optical refractive index due to diffusion at different locations on the surface of the piezoelectric substrate (11).

〔作用] すなわち、この発明におけるブラックセルでは、高い周
波数帯の弾性表面波が云ばんする領域では光屈折率変化
量を大きくし、低い周波数帯の弾性表面波が云ばんする
咀確で社、光屈折率変化量を小さくすることにより広帯
域にわたり富い回折効率が得られる。
[Function] In other words, in the black cell of the present invention, the amount of change in the optical refractive index is increased in the region where surface acoustic waves in the high frequency band occur, and the amount of change in the optical refractive index is increased in the region where the surface acoustic waves in the low frequency band occur. By reducing the amount of change in the optical refractive index, high diffraction efficiency can be obtained over a wide band.

〔実施例〕〔Example〕

以下、この発明の一実権例を第1図を用いて説明する。 Hereinafter, one practical example of this invention will be explained using FIG. 1.

!g1図(a)は平面図、第1図(b)け断面図である
。第1794 (c) 、 (d) (dそれぞれ第1
(3(alのAA’、 BB/断面における光層折率分
布である。第1図(a) 、 (b)において、fil
はI、1Nbo3などの圧電体基板、13+は弾性表面
波励振用のすだれ状’tlE権、(4)はレーザダイオ
ード、(51はレンズ、(6)は受光素子アレイであり
、これらは従来と同様のものである。しかし、拡散によ
り形成した光表面波導波路(2)は、従来と異なり、拡
散に伴う光屈折率変化量△nか、第1v!I(Q) 、
 (d)に示すように、高い周波数帯の弾性表面波が云
ばんする領域では大きく、低い周波数帯の弾性表面波が
伝ばんする領域では小さくiるように形成1.ている。
! FIG. 1(a) is a plan view, and FIG. 1(b) is a sectional view. 1794 (c), (d) (d each 1st
(3 (This is the optical layer refractive index distribution in the AA', BB/cross section of al. In Figure 1 (a) and (b), fil
is a piezoelectric substrate such as I, 1Nbo3, 13+ is a blind-shaped 'tlE right for surface acoustic wave excitation, (4) is a laser diode, (51 is a lens, and (6) is a light receiving element array. These are conventional However, unlike the conventional optical surface wave waveguide (2) formed by diffusion, the optical refractive index change amount △n due to diffusion is
As shown in (d), it is formed so that it is large in the region where the surface acoustic waves in the high frequency band propagate, and small in the region where the surface acoustic waves in the low frequency band propagates.1. ing.

なお、光屈折率変化量Δnは、場所ごとにステップ状に
変るのではなく、滑らかに変るようになし、光表面波が
大きな反射を起こさないようにしている。
Note that the amount of change in the optical refractive index Δn does not change stepwise from place to place, but changes smoothly to prevent large reflections of optical surface waves.

第1図に示すブラックセルにおいても、レーザダイオー
ド(4)から光表面波導波路(21に入射した光表面波
は、レンズ(51により平行光に変換され、他方のレン
ズ(6)により受光素子アレイ(6)が取付けられた端
面に集束する。また、すだれ状電ti13+により励振
された弾性表面波と、光表面波とを、従来と同様の角変
でクロスさせれば、光表面波は弾性表面波の周波数に依
存した角度方向に回折され、弾性表面波を励振していな
い場合とは異なる受光素子に集光する。したがって、受
光素子アレイ(6)中のどの受光素子の出力が大かをモ
ニタしておけば、従来と同様に弾性表面波の周波数を分
析できる。
In the black cell shown in FIG. 1, the optical surface wave that enters the optical surface wave waveguide (21) from the laser diode (4) is converted into parallel light by the lens (51), and the other lens (6) passes the optical surface wave to the light receiving element array. (6) is focused on the attached end face.Also, if the surface acoustic wave excited by the interdigital electric Ti13+ and the optical surface wave are crossed with the same angular change as in the conventional case, the optical surface wave will become an elastic wave. The light is diffracted in an angular direction that depends on the frequency of the surface wave, and is focused on a different light receiving element than when the surface acoustic wave is not excited.Therefore, which light receiving element in the light receiving element array (6) has a large output? By monitoring this, the frequency of surface acoustic waves can be analyzed in the same way as before.

しかし、従来とは異なり、光表面波導波路(2)はその
光屈折率変化量を、高い周波数帯の弾性表面波が云ばん
する@域では太き(、低い周波数帯の弾性表面波が云ぼ
んする領域では小さくしている。
However, unlike the conventional optical surface wave waveguide (2), the amount of change in the optical refractive index of the optical surface acoustic wave waveguide (2) is thicker in the @ region where the surface acoustic waves in the high frequency band is called (and where the surface acoustic waves in the lower frequency band is called). It is made smaller in areas where it is blurred.

光表面波の回折効率は、前述し念ように、光表面波の圧
電体基板fi+表面から深さ方向に沿った空間分布と、
弾性表面波の同様の空間分布との積を、深さ方向に沿っ
て積分して得られる値の大きさに依存し、この値が大き
い方が回折効率が大きい。
As mentioned above, the diffraction efficiency of optical surface waves is determined by the spatial distribution of optical surface waves along the depth direction from the piezoelectric substrate fi+ surface,
It depends on the magnitude of the value obtained by integrating the product with a similar spatial distribution of surface acoustic waves along the depth direction, and the larger this value, the greater the diffraction efficiency.

′@1図に示すブラックセルでは、低い周波数帯、すな
わち、圧電体基板(1)の表面から、より深いところま
でエネルギーを分布して伝ばんする弾性表面波の周波数
帯では、光表面波導波路(2)の光屈折率変化量を小さ
くしているから、光表面波も深いところまでエネルギー
を分布して云ばんしている。
'@1 In the black cell shown in Figure 1, in the low frequency band, that is, the frequency band of surface acoustic waves where energy is distributed and propagated from the surface of the piezoelectric substrate (1) to a deeper place, an optical surface wave waveguide is used. Since the amount of change in the optical refractive index (2) is made small, the energy of the optical surface waves is distributed even deep.

し念がって、弾性表面波の空間分布と光表面波の空間分
布の積を深さ方向に沿って積分した値は。
As a precaution, the value obtained by integrating the product of the spatial distribution of surface acoustic waves and the spatial distribution of optical surface waves along the depth direction is

従来に比べ大きくなる。一方、高い周波数帯、すなわち
、圧電体基板+lj表面近傍によりエネルギーを集中し
て云ばんする弾性表面波の周波数帯では、光表面波導波
路(21の光屈折率変化量を大きくしているから、光表
面波も圧電体基板(11表面近傍によりエネルギーを集
中して云ばんしている。したがって、弾性表面波の空間
分布と光表面波の空間分布の精を深さ方向に沿って積分
した値は、従来に比べ大きくなる。すなわち、第1図に
示すこの発明に係るブラックセルでは、従来に比べ広い
周波数帯域にわたり回折効充を大永くできる利点がある
It will be larger than before. On the other hand, in a high frequency band, that is, a frequency band of surface acoustic waves in which energy is concentrated near the surface of the piezoelectric substrate +lj, the amount of change in the optical refractive index of the optical surface wave waveguide (21) is increased. Optical surface waves also concentrate energy near the surface of the piezoelectric substrate (11).Therefore, the value is the integral of the spatial distribution of surface acoustic waves and the spatial distribution of optical surface waves along the depth direction. In other words, the black cell according to the present invention shown in FIG. 1 has the advantage that the diffraction effect can be extended over a wider frequency band than in the past.

なお、以上は第1図に示す一実檜例の場合について説明
したが、この発明はこれに限らず、光表面波導波路(2
;は、すだれ状電極(31が配置さねた領域をさけて、
光表面波が云ばんする領域のみに第1図と同様に、光屈
折率変化量に分布をもたせて形鱗してもよいつ 〔発明の効果〕 以上のように、この発明によれば、光表面波導波路(2
)を拡散に伴う光屈折率変化量が、低い周波数帯の弾性
表面波を云ばんさせる@麟では小さく、高い周波数帯の
弾性表面波を云ばんさせる領域では太きく−hるように
して、圧電体基板(11表面に形成したことにより、従
来に比べ、より広い周波数帯にわたって回折効率を大き
(できる利点がある。
Although the above description has been made regarding the case of the one-cypress example shown in FIG.
; is the interdigital electrode (avoiding the area where 31 is placed,
As shown in FIG. 1, the amount of change in the optical refractive index may be distributed and shaped only in the region where the optical surface waves occur. [Effects of the Invention] As described above, according to the present invention, Optical surface wave waveguide (2
) is made so that the amount of change in the optical refractive index due to diffusion is small in the region where surface acoustic waves in the low frequency band are promoted, and thick in the region where the surface acoustic waves in the high frequency band are promoted, By forming the piezoelectric substrate on the surface of the piezoelectric substrate (11), there is an advantage that the diffraction efficiency can be increased over a wider frequency band than in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実楕例によるブラックセルを示す
図、第2図は従来のこの種のブラックセルを示す図であ
る。 (1)は圧電体基板、(2)は光表面波導波路、(3;
はすだわ状電極、(4)はレーザダイオード、(5)け
レンズ、(6)は受光素子アレイである。 なお、図中、同一符号は同−又は相当部分を示す。 第1図 2.4更光J象+アレ1
FIG. 1 is a diagram showing a black cell according to an elliptical example of the present invention, and FIG. 2 is a diagram showing a conventional black cell of this type. (1) is a piezoelectric substrate, (2) is an optical surface wave waveguide, (3;
(4) is a laser diode, (5) is a lens, and (6) is a light receiving element array. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Figure 1 2.4 Shinko J Elephant + Are 1

Claims (1)

【特許請求の範囲】[Claims] 圧電体基板表面に、拡散により光表面波導波路を形成す
るとともに、弾性表面波励振用すだれ状電極を設け、弾
性表面波による光表面波のブラック回折を用いて周波数
分析を行うブラックセルにおいて、上記拡散に伴う光屈
折率変化量が、高い周波数帯の弾性表面波を伝ぱんさせ
る領域は大きく、低い周波数帯の弾性表面波を伝ぱんさ
せる領域では小さくなるように上記光表面波導波路を上
記圧電体基板表面に形成したことを特徴とするブラック
セル。
In a black cell, an optical surface wave waveguide is formed by diffusion on the surface of a piezoelectric substrate, and interdigital electrodes for surface acoustic wave excitation are provided, and frequency analysis is performed using black diffraction of optical surface waves caused by surface acoustic waves. The optical surface wave waveguide is connected to the piezoelectric waveguide so that the amount of change in the optical refractive index due to diffusion is large in a region where surface acoustic waves in a high frequency band propagate and is small in a region where a surface acoustic wave in a low frequency band propagates. A black cell characterized by being formed on the surface of a body substrate.
JP24235385A 1985-10-28 1985-10-28 Bragg cell Pending JPS62100731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24235385A JPS62100731A (en) 1985-10-28 1985-10-28 Bragg cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24235385A JPS62100731A (en) 1985-10-28 1985-10-28 Bragg cell

Publications (1)

Publication Number Publication Date
JPS62100731A true JPS62100731A (en) 1987-05-11

Family

ID=17087928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24235385A Pending JPS62100731A (en) 1985-10-28 1985-10-28 Bragg cell

Country Status (1)

Country Link
JP (1) JPS62100731A (en)

Similar Documents

Publication Publication Date Title
Hamilton et al. An integrated optical RF spectrum analyzer
US4253060A (en) RF Spectrum analyzer
US5418866A (en) Surface acoustic wave devices for controlling high frequency signals using modified crystalline materials
JPS61132935A (en) Optical deflector of surface acoustic wave
US5657152A (en) Acoustooptic device
JPH08286160A (en) Acoustooptic filter
Abdelrazek et al. An integrated optic RE spectrum analyzer in a ZnO-GaAs-AlGaAs waveguides
JPS62100731A (en) Bragg cell
US4558926A (en) Acousto-optic beam deflector
JP3633045B2 (en) Wavelength filter
JPH0435859Y2 (en)
JPS6150291B2 (en)
US5361159A (en) Angular acousto-optical deflection device and spectrum analyzer using such a device
JPH063373Y2 (en) Bragg cell
US4259726A (en) Diode array convolver
JPS6210411B2 (en)
JP2553367B2 (en) Multiple reflection type surface acoustic wave optical diffraction element
JP2985457B2 (en) Acousto-optic tunable wavelength filter
US5675207A (en) Surface acoustic waver convolver
JP3276088B2 (en) Waveguide type acousto-optic device
JPH0622814Y2 (en) Bragg cell
JPS6064225A (en) Acoustooptic spectrum analyzer
JPS6317428A (en) Bragg cell
Passaro et al. Design and performance of GaAs-based guided-wave heterodyne circuits for signal processing
Chen et al. Integrated optic (Bragg) spectrum analyzer