JPS6198958A - Intake passage device of multi-cylinder engine - Google Patents

Intake passage device of multi-cylinder engine

Info

Publication number
JPS6198958A
JPS6198958A JP59220395A JP22039584A JPS6198958A JP S6198958 A JPS6198958 A JP S6198958A JP 59220395 A JP59220395 A JP 59220395A JP 22039584 A JP22039584 A JP 22039584A JP S6198958 A JPS6198958 A JP S6198958A
Authority
JP
Japan
Prior art keywords
passage
branch
intake
intake passage
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59220395A
Other languages
Japanese (ja)
Inventor
Kozaburo Okawa
大川 晃三郎
Shigeo Muranaka
村中 重夫
Yutaka Matayoshi
豊 又吉
Junichi Yokoyama
淳一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59220395A priority Critical patent/JPS6198958A/en
Publication of JPS6198958A publication Critical patent/JPS6198958A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10196Carburetted engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10262Flow guides, obstructions, deflectors or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/1045Intake manifolds characterised by the charge distribution between the cylinders/combustion chambers or its homogenisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To improve a distribution characteristic of fuel, by forming a plurality of passage to be divided on the bottom surface of an intake passage part introducing a mixture in a direction distant from an engine in accordance with a number of passages in the side of a fuel supplying means, in the case of an engine equipping an intake manifold of U turn type. CONSTITUTION:An intake manifold 1, setting a twin carburetor onto a mounting flange 2, has a primary side and a secondary side port 3, 4. The intake manifold 1 in the downstream side of these ports 3, 4 has an intake passage part 8, comprising a riser part 6 and a communication path 7 extending in a horizontal direction, and a branch part 10, in which a branch passage 9a, 9b collects in the upstream end, while the branch passage 9a, 9b, branching from the branch part 10 and performing a U turn, is connected with each intake port of an engine 5. Here an intake passage device, providing a partition 21 in the intake passage part 8 in a plane containing its center line C8, thus forms a primary side passage 22 and a secondary side passage 23 to be divided in the intake passage part 8.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はいわゆるUターン式吸気マニボルドを備えた多
気筒エンジンの燃料分配性改善に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to improving fuel distribution in a multi-cylinder engine with a so-called U-turn intake manifold.

〈従来の技術〉 燃料と空気の混合気を一旦エンジンから離れる方向に吸
気通路部を介して分岐部に導き、更に該分岐部から夫々
異なる方向にUターンする複数の分岐通路部を介してエ
ンジンの各気筒に導く構成から成る、いわゆるUターン
式吸気装置が燃料分配性の向上を図る手段として知られ
ている。これを第6図(A)、CB)(実開昭59−5
4742号公報参照)に示す。
<Prior Art> A mixture of fuel and air is once guided away from the engine via an intake passage to a branching part, and then from the branching part to the engine via a plurality of branching passages that make U-turns in different directions. A so-called U-turn type intake system, which is configured to introduce fuel into each cylinder, is known as a means for improving fuel distribution. This is shown in Figure 6 (A), CB)
4742).

図において、吸気マニホルド1は気化器取付フランジ2
を有する。図示しない気化器は該気化器取付フランジ2
上に裁置固定される。気化器はプライマリ側とセカンダ
リ側との通路を有する2連式のもので、これら夫々に連
通ずるプライマリ側ポート3とセカンダリ側ポート4と
が吸気マニホルド1の上流端においてエンジン5のシリ
ンダ列方向に並列して配設されている。
In the figure, the intake manifold 1 is connected to the carburetor mounting flange 2.
has. The carburetor (not shown) is attached to the carburetor mounting flange 2.
It is placed and fixed on top. The carburetor is a two-channel type having passages on a primary side and a secondary side, and a primary side port 3 and a secondary side port 4 that communicate with each other are connected at the upstream end of the intake manifold 1 in the direction of the cylinder row of the engine 5. are arranged in parallel.

プライマリ側及びセカンダリ側ポート3,4の下流側の
吸気マニホルドlは、気化器下部のライザ部6と該ライ
ザ部6から一旦エンジン5より水平に離れる方向に延び
る連通路7とからなる吸気通路部8と、該連通路7が接
続されかつ分岐通路部9a、9bがその上流端で集合す
る分岐部10と、該分岐部10から分岐してUターンし
車両進行方向にシリンダ列があるように配設されたエン
ジン5のフロント側に延びる前記分岐通路部9aとリア
側に延びる分岐通路部9bと、を有する。分岐通路部9
a、9bは夫々2股に分岐して各気筒の吸気ポートに連
通ずる。
The intake manifold 1 on the downstream side of the primary side and secondary side ports 3 and 4 is an intake passage section consisting of a riser section 6 at the bottom of the carburetor and a communication passage 7 extending from the riser section 6 in a direction horizontally away from the engine 5. 8, a branching part 10 to which the communication passage 7 is connected and the branching passage parts 9a and 9b gather at the upstream end thereof, and a branching part 10 branching from the branching part 10 and making a U-turn so that there is a cylinder row in the direction of vehicle movement. It has the branch passage section 9a extending toward the front side of the engine 5 disposed therein, and the branch passage section 9b extending toward the rear side. Branch passage section 9
a and 9b each branch into two branches and communicate with the intake ports of each cylinder.

かかる構成によると、気化器から供給される燃料と空気
の混合気はプライマリ側ポート3又はプライマリ側ポー
ト3とセカンダリ側ポート4を通ってライザ部6に向か
い、その後エンジン5から離れる方向に連通路7を通っ
て分岐部10に至る。
According to this configuration, the mixture of fuel and air supplied from the carburetor passes through the primary side port 3 or through the primary side port 3 and the secondary side port 4 to the riser part 6, and then passes through the communication path in the direction away from the engine 5. 7 and reaches the branch 10.

分岐部10の壁面1こ衝突した混合気は前後に分岐し、
分岐通路部9a、9bを介して各気筒に導入される。
The mixture that collides with the wall of the branching part 10 branches back and forth,
It is introduced into each cylinder via branch passages 9a and 9b.

このような混合気の流れによると、ライザ部6からエン
ジン5より離れることなく分岐通路にスムーズに導かれ
るようにしたいわゆるバナナ式或いはトーナメント式と
呼ばれるUターン式でない通常の吸気マニホルドに比べ
、混合気がライザ部6より一旦分岐部10内壁に衝突し
て各分岐通路部9a、9bに導かれるから、一般にUタ
ーン式の吸気マニホルドの方が燃料の分配性能が高いも
のであるとされている。
According to this flow of the air-fuel mixture, compared to a normal intake manifold that is not a U-turn type, such as a so-called banana type or tournament type, which smoothly guides the mixture from the riser part 6 to the branch passage without leaving the engine 5, the mixture is Since the air from the riser section 6 collides with the inner wall of the branch section 10 and is guided to each branch passage section 9a, 9b, it is generally said that the U-turn type intake manifold has higher fuel distribution performance. .

〈発明が解決しようとする問題点〉 しかしながら、上記従来のUターン式吸気マニホルドに
おいては、プライマリ側ポート3の中心軸C3及びセカ
ンダリ側ポート4の中心軸C4と吸気通路部8の中心軸
C8とが相互にオフセットしているため、図に示すよう
に連通路7内の混合気流は旋回流となる。かかる混合気
の旋回流はエンジン運転状態によってフローパターンが
変化するものである。
<Problems to be Solved by the Invention> However, in the conventional U-turn type intake manifold, the central axis C3 of the primary side port 3, the central axis C4 of the secondary side port 4, and the central axis C8 of the intake passage portion 8 are are offset from each other, so the air mixture flow in the communication passage 7 becomes a swirling flow as shown in the figure. The flow pattern of the swirling flow of the air-fuel mixture changes depending on the engine operating condition.

一方、比較的燃料流量が多いエンジンの高負荷運転時や
エンジン低温運転時等では、燃料の多くが吸気通路内壁
に沿って流れる、いわゆる液膜流となり、これが混合気
流にひきずられてエンジン5に導かれるため、前記の如
く混合気のフローパターンが運転状態によって変化する
と、連通路7から分岐部10への燃料の流出パターンが
変化してしまい、ひい才は各分岐通路部9a、9bに流
れる燃料量に差が生じ各気筒への燃料分配性が悪化する
おそれがある。
On the other hand, during high-load operation of the engine with a relatively large fuel flow rate or when the engine is operated at low temperature, most of the fuel flows along the inner wall of the intake passage, forming a so-called liquid film flow, which is dragged by the air mixture flow and flows into the engine 5. Therefore, when the flow pattern of the air-fuel mixture changes depending on the operating condition as described above, the outflow pattern of fuel from the communication passage 7 to the branch part 10 changes, and the fuel flows to each branch passage part 9a, 9b. There is a risk that a difference will occur in the amount of fuel and the fuel distribution to each cylinder will deteriorate.

かかる現象が生じると、各気筒間の所望の混合比形成が
困難となり燃焼が悪化するから、排気性状及び燃費の悪
化が免れ得なくなり、また出力トルクが低下して加速感
の悪化、或いはサージの減少等、運転性の悪化をもたら
し易い。このような不都合はプライマリ側ボート及びセ
カンダリ側ポートの2つの通路を有する気化器に限らず
複数の通路を有する燃料供給手段に一般に生じるもので
ある。
When such a phenomenon occurs, it becomes difficult to form the desired mixture ratio between each cylinder and combustion deteriorates, which inevitably leads to deterioration of exhaust properties and fuel efficiency.In addition, the output torque decreases, resulting in a worsening of the feeling of acceleration or surges. This tends to lead to deterioration in drivability, such as a decrease in Such inconveniences occur not only in carburetors having two passages, a primary side port and a secondary side port, but also in fuel supply means having a plurality of passages in general.

本発明は上記従来の不都合に鑑み、上流に複数の通路を
有する燃料供給手段を接続したUターン式の吸気通路装
置において、前記複数の通路から導かれる液膜流を独立
して分岐部に導き、エンジン運転状態に応じた混合気の
フローパターンの変化に関わらず、常に燃料の分配性能
が良い吸気通路装置を提供することを目的とする。
In view of the above-mentioned conventional disadvantages, the present invention provides a U-turn type intake passage device in which a fuel supply means having a plurality of passages is connected upstream, in which a liquid film flow led from the plurality of passages is independently guided to a branch part. It is an object of the present invention to provide an intake passage device that always has good fuel distribution performance regardless of changes in the flow pattern of the air-fuel mixture according to engine operating conditions.

く問題点を解決するための手段〉 そのために本発明では、上流に複数の通路を有する燃料
供給手段を接続したUターン式の吸気通路装置において
、前記複数の通路に上流端が連通しかつ吸気をエンジン
から離れる方向に導いて分岐部に導入する吸気通路部の
少なくとも底面上に起立する隔壁を燃料供給手段側の複
数の通路を仕切る隔壁の延長面上に設ける。
Means for Solving Problems> To this end, in the present invention, in a U-turn type intake passage device in which a fuel supply means having a plurality of passages is connected upstream, an upstream end communicates with the plurality of passages and an intake passage is provided. A partition wall that stands up at least on the bottom surface of the intake passage section that guides the air in a direction away from the engine and introduces it into the branch section is provided on an extended surface of the partition wall that partitions the plurality of passages on the fuel supply means side.

く作用) これにより吸気通路部を通る燃料の液膜流は混合気のフ
ローパターンに左右されることなく、隔壁に案内され一
定の経路を通って分岐部の所定箇所に導かれる。従って
導かれた液状燃料は各分岐通路に略均等に分配される。
As a result, the liquid film flow of the fuel passing through the intake passage is guided by the partition wall and guided through a fixed path to a predetermined location of the branch portion, without being influenced by the flow pattern of the air-fuel mixture. Therefore, the guided liquid fuel is distributed approximately equally to each branch passage.

〈実施例〉 以下に本発明の実施例を図面に基づいて説明する。尚第
6図に示す従来例と同様な要素にはこれと同一符号を付
してその説明を省略する。
<Example> Examples of the present invention will be described below based on the drawings. Elements similar to those of the conventional example shown in FIG. 6 are designated by the same reference numerals and their explanations will be omitted.

第1図に示す第1の実施例において、吸気マニホルト2
0の気化器取付フランジ2上に載置固定される気化器は
エンジン5のシリンダ列方向に並列に配置されるプライ
マリ側通路とセカンダリ側通路とを備えた2連式の気化
器であり、これら通路間の仕切壁と吸気通路部8の中心
線C6を含む平面内の吸気通路部8に隔壁21を設け、
これによりその両側にプライマリ側通路22とセカンダ
リ側通路23とを分離形成する。
In the first embodiment shown in FIG.
The carburetor mounted and fixed on the carburetor mounting flange 2 of the engine 5 is a two-channel carburetor having a primary side passage and a secondary side passage arranged in parallel in the cylinder row direction of the engine 5. A partition wall 21 is provided in the intake passage section 8 within a plane including the partition wall between the passages and the center line C6 of the intake passage section 8,
Thereby, a primary side passage 22 and a secondary side passage 23 are formed separately on both sides thereof.

前記隔壁21は第6図に示すプライマリ側ポート3及び
セカンダリ側ポート4の仕切壁をも兼ねるものであり、
ライザ部6は該隔壁21によって完全に2分されている
が、連通路7においては前記隔壁がその底面7aから所
定高さだけ立設されてこれより上方はプライマリ及びセ
カンダリ側通路22゜23を相互連通ずる空間24を形
成している。連通路7内の隔壁21は分岐部10に向け
て徐々にその高さが低減する構成となっている。
The partition wall 21 also serves as a partition wall between the primary port 3 and the secondary port 4 shown in FIG.
The riser section 6 is completely divided into two parts by the partition wall 21, but in the communication path 7, the partition wall stands up from the bottom surface 7a by a predetermined height, and above it, the primary and secondary side paths 22 and 23 are connected. A mutually communicating space 24 is formed. The height of the partition wall 21 in the communication path 7 gradually decreases toward the branch portion 10.

吸気通路部8のプライマリ及びセカンダリ側通路22.
23の中心線C3は夫々対応する気化器のプライマリ側
通路及びセカンダリ側通路の中心線と一敗しており、ま
た吸気通路部8の出口部においてはプライマリ及びセカ
ンダリ側通路22.23の中心線C8が分岐部10の中
心線C3゜に対し略直交する方向を向(ように構成され
ている。つまりプライマリ及びセカンダリ側通路22.
23と分岐部10の相対的位置は略T字型を構成してい
る。
Primary and secondary side passages 22 of the intake passage section 8.
The center line C3 of 23 is aligned with the center line of the primary side passage and the secondary side passage of the corresponding carburetor, and at the outlet of the intake passage section 8, the center line C3 of the primary and secondary side passage 22, 23 is aligned with the center line of the primary side passage and the secondary side passage of the corresponding carburetor. C8 is oriented in a direction substantially perpendicular to the center line C3 of the branching portion 10. In other words, the primary and secondary side passages 22.
The relative positions of the branch portion 23 and the branch portion 10 form a substantially T-shape.

かかる構成によると、上流側の燃料供給手段におけるプ
ライマリ側通路から送られる吸気は、吸気通路部8の隔
壁21によって仕切られたプライマリ側通路に独立して
導入される一方、燃料供給手段のセカンダリ側通路は同
様に吸気通路部8のセカンダリ側通路23に独立して導
入される。このため吸気流れに沿って流下してきた燃料
の液膜流は隔壁21に当たって、隔壁21とプライマリ
及びセカンダリ側通路22.23の底面とによって形成
される角部22a、23aに集合して隔壁21の下部に
沿って分岐部10まで案内されていく。
According to this configuration, intake air sent from the primary side passage in the upstream fuel supply means is independently introduced into the primary side passage partitioned by the partition wall 21 of the intake passage section 8, while the intake air is introduced into the primary side passage partitioned by the partition wall 21 of the intake passage section 8, while The passage is similarly introduced independently into the secondary side passage 23 of the intake passage section 8. Therefore, the liquid film flow of fuel that has flowed down along the intake flow hits the partition wall 21 and collects at the corners 22a and 23a formed by the partition wall 21 and the bottom surfaces of the primary and secondary side passages 22. It is guided along the lower part to the branching part 10.

一方、空気中に浮遊する燃料流れは吸気通路部8の下流
に行くに従って隔壁21の高さが低くなり、その上部に
相互連通する空間24を形成しているため、該隔壁21
の上部を通って混合気の混合を促進することができる。
On the other hand, as the fuel flow floating in the air goes downstream of the intake passage section 8, the height of the partition wall 21 decreases, and a mutually communicating space 24 is formed above the partition wall 21.
The mixture can be promoted through the upper part of the air-fuel mixture.

以上の現象から明らかなように隔壁21の両側下部に集
合して液膜燃料流が生じるため、プライマリ側通路22
及びセカンダリ側通路23内の吸気のフローパターンが
運転状態によって変化しても、燃料の前記液膜流は変化
せず、連通路7の略中央部分から分岐部10の中央部分
に対して略直角に流出する。これにより各分岐通路部9
a、9bへの燃料分配量は略均等となる。
As is clear from the above phenomenon, a liquid film fuel flow is generated that collects at the bottom of both sides of the partition wall 21, so that the primary side passage 22
Even if the flow pattern of the intake air in the secondary side passage 23 changes depending on the operating condition, the liquid film flow of the fuel does not change and flows from the approximate center of the communication passage 7 to the center of the branch portion 10 at a substantially right angle. leaks into As a result, each branch passage section 9
The amount of fuel distributed to a and 9b is approximately equal.

面前記隔壁21の長さは分岐部10に接続される連通路
7の下流端にまで延びるのが望ましいが、隔壁21の高
さは第2図に示すように吸気通路部8の底面7aから上
面7bに至るまで全域に亘って立設してもよく、また第
3図に示すように吸気通路部8の底面即ちライザ部底面
6a及び連通路底面7aから所定高さだけ隔壁21を立
設するようにしてもよい。
The length of the partition wall 21 is preferably such that it extends to the downstream end of the communication passage 7 connected to the branch portion 10, but the height of the partition wall 21 is determined from the bottom surface 7a of the intake passage portion 8 as shown in FIG. The partition wall 21 may be erected over the entire area up to the upper surface 7b, or, as shown in FIG. You may also do so.

第3図に示す実施例においては、隔壁21の高さは下流
側に至るにつれて徐々に低下するような構成となってい
て、第1図に示す実施例と略同様な効果を奏する。
In the embodiment shown in FIG. 3, the height of the partition wall 21 is configured to gradually decrease toward the downstream side, and substantially the same effect as in the embodiment shown in FIG. 1 is achieved.

第3図に示す実施例においては、当然、燃料供給手段の
プライマリ側通路とセカンダリ側通路及び吸気通路部8
側のプライマリ側通路22及びセカ −ンダリ側通路2
3との相互連通が、吸気通路部8の上流端に仕切壁がな
い分確実に独立させることはできないが、実質上この点
については問題がない。
In the embodiment shown in FIG. 3, the primary side passage and the secondary side passage of the fuel supply means and the intake passage section 8
Primary side passage 22 and secondary side passage 2
3 cannot be reliably independent because there is no partition wall at the upstream end of the intake passage section 8, but there is virtually no problem in this respect.

第4図(A)、  (B)に示す本発明の他の実施例は
分岐部10からフロント側及びリア側の分岐通路部9a
、’9b人ロ部に亘り、これらの底部中央に沿って分配
部材としての分配突壁31を立設したものである。該分
配突壁31は前記隔壁21に対して直角方向に延びてお
り、第1図に示す実施例に例をとると、隔壁21によっ
て案内されてきたプライマリ側通路及びセカンダリ側通
路22.23の液膜流は分配突壁31に略直角に衝突し
てエンジンフロント側及びリア側に分配される。このと
き分配突壁31は分岐部10及び分岐通路部9a、9b
の底壁中央部を延びているので、前記分流されだ液膜流
は分岐通路部9a、9bの略中央底部を流れてその下流
端の分岐部9aa、  9ab (リア側分岐通路部9
bについては省略しであるが同様である)に液膜燃料流
が良好に分配供給される。一方、液膜流とならない霧化
燃料と空気との混合気は隔壁21上方の空間24を流通
すると共に、分配突壁31をも乗り越えて分岐部10の
エンジン5より遠い側の内壁に当接し、ここでリア及び
エンジン側に分配供給される。このような混合気流はも
ともと分配性が良いものである。若し本実施例のように
分配突壁31を設けない場合には、隔壁21の下部を流
れてきた燃料液膜流は分岐部10のエンジン5より遠い
側の内壁10aに衝突し、これよりフロント及びリア側
に分流するのであるが、その分流した液膜流は分岐通路
部9a、9bの片側壁に沿って流れ易いために、図で9
abの分岐通路部に流れにくくなり、従って分配性が悪
くなるものである。本実施例の分配突壁31はこれを上
述のようにして防いでいる。
Another embodiment of the present invention shown in FIG.
, '9b A distribution projecting wall 31 as a distribution member is erected along the center of the bottom of these sections. The distribution projecting wall 31 extends perpendicularly to the partition wall 21, and in the embodiment shown in FIG. The liquid film flow collides with the distribution projecting wall 31 at a substantially right angle and is distributed to the front side and rear side of the engine. At this time, the distribution projecting wall 31 is connected to the branch portion 10 and the branch passage portions 9a and 9b.
Since the branched liquid film flow extends approximately at the center bottom of the branch passages 9a and 9b, it flows through the downstream ends of the branch parts 9aa and 9ab (rear side branch passage part 9).
Although b is omitted, the liquid film fuel flow is well distributed and supplied. On the other hand, the mixture of atomized fuel and air that does not form a liquid film flow flows through the space 24 above the partition wall 21 and also crosses over the distribution projection wall 31 to contact the inner wall of the branch portion 10 on the side farther from the engine 5. , where it is distributed and supplied to the rear and engine sides. Such a mixed air flow originally has good distribution properties. If the distribution projecting wall 31 is not provided as in this embodiment, the fuel liquid film flow flowing under the partition wall 21 collides with the inner wall 10a of the branch portion 10 on the side far from the engine 5, and from this The liquid film flow is divided into the front and rear sides, but since the divided liquid film flow tends to flow along one side wall of the branch passages 9a and 9b, it is shown as 9 in the figure.
This makes it difficult to flow into the ab branch passage, resulting in poor distribution. The distribution projecting wall 31 of this embodiment prevents this as described above.

尚分配突壁31の長さは各分岐通路部9a、9b並びに
9 aal  9 abの長さ、形状等により最良の値
に決定される。
The length of the distribution projecting wall 31 is determined to be the best value depending on the length, shape, etc. of each branch passage section 9a, 9b and 9aal9ab.

上記実施例における分配部材としての分配突壁31は必
ずしも突壁である必要はない。つまり隔壁21の底部に
沿って流れて(る燃料液膜流を捕捉し、これを各分岐通
路部9a、9bの底壁中央方向に導けばよいのであるか
ら、第5図に示すように分配部材としての分配溝32に
形成してもよいことは明らかである。該分配溝32は隔
壁21に沿って流れてくる燃料液膜流をここで捕捉し、
混合気流に案内されてエンジンのフロント側及びリア側
に分配し、分岐通路部9a、9bの底部中央方向に導い
て、前記分配突壁31の効果と同様になる。
The distribution projecting wall 31 as the distribution member in the above embodiment does not necessarily have to be a projecting wall. In other words, it is sufficient to capture the fuel liquid film flowing along the bottom of the partition wall 21 and guide it toward the center of the bottom wall of each branch passage section 9a, 9b, so that it can be distributed as shown in FIG. It is clear that the distribution groove 32 may be formed as a member.The distribution groove 32 captures the fuel liquid film flow flowing along the partition wall 21, and
The air is guided by the air mixture flow and distributed to the front and rear sides of the engine, and is guided toward the center of the bottom of the branch passages 9a and 9b, resulting in the same effect as that of the distribution projecting wall 31.

尚前記分配突壁31及び分配溝32等からなる分配手段
は、隔壁21に対して略直角に形成されることが望まし
い。若し傾斜した形状になっていれば、液膜燃料流及び
吸気流の速度の影響を受けて液状の燃料は分配手段を介
し、より流れ易い方向に偏って流れてしまうからである
。(但し、分配手段を設けない状態のマニホルドが元々
慣性や位置等によって、どちらかに偏る性質を有する場
合には、その逆方向に分配手段の角度を調整することに
よって、全体として分配の均一化を図ることができる。
It is preferable that the distribution means including the distribution protruding wall 31, the distribution groove 32, etc. be formed approximately at right angles to the partition wall 21. If the shape is slanted, the liquid fuel will flow through the distribution means in a direction that is easier to flow under the influence of the velocity of the liquid film fuel flow and the intake air flow. (However, if the manifold without the distribution means has a tendency to deviate in one direction due to inertia or position, the distribution can be made uniform as a whole by adjusting the angle of the distribution means in the opposite direction.) can be achieved.

) また上記各実施例に判いて、燃料供給手段側のプライマ
リ側通路及びセカンダリ側通路と、本発明に係る吸気通
路装置としての吸気マニホルド20のプライマリ側通路
22.セカンダリ側通路23の夫々の中心線を一致して
構成した。これにより燃料の供給手段から吸気マニホル
ド20に至る吸気流は、プライマリ側及びセカンダリ側
通路が互いに干渉することなく、夫々の通路中心線に略
沿って流れるからこの吸気流にひきずられて内壁を流れ
る液膜流燃料も確実に隔壁21の立設部分、即ち隔壁底
部の角部22a、23aに集められて吸気通路部8の底
部略中心を平行に流す作用を助長するものである。
) Further, as seen in each of the above embodiments, the primary side passage and the secondary side passage on the fuel supply means side, and the primary side passage 22 . The center lines of the secondary passages 23 are made to coincide with each other. As a result, the intake air flow from the fuel supply means to the intake manifold 20 flows approximately along the center line of each passage without interfering with each other in the primary side passage and the secondary side passage, so that it flows along the inner wall being dragged by this intake air flow. The liquid film flow fuel is also reliably collected at the upright portions of the partition wall 21, that is, at the corner portions 22a and 23a at the bottom of the partition wall, thereby promoting the effect of flowing the fuel substantially parallel to the bottom center of the intake passage portion 8.

尚、第5図に示す実施“例において、分配′a32はそ
の中央部が深く、かつ上端に行くに従って分岐通路部9
a、9bの底壁に滑らかに接続されるようになっている
。このため分配溝32の中央部には確実に液膜状燃料が
溜め込まれ、これより円滑に各分岐通路部9a、9bに
導かれる効果がある。
Incidentally, in the embodiment shown in FIG.
It is designed to be smoothly connected to the bottom walls of parts a and 9b. Therefore, the liquid film fuel is reliably stored in the center of the distribution groove 32, and is more smoothly guided to the branch passages 9a and 9b.

向上記実施例では燃料供給手段として本発明に係る吸気
通路装置の上流に気化器を接続したが、燃料噴射弁を設
けた形式、例えばシングルポイントインジェクションシ
ステムで氾同効を奏するものである。またエンジンの向
き、プライマリ、セカンダリ側通路の配設位置及び分岐
通路部の形状を問うものでもない。分岐通路部は異なっ
た方向に分岐部から分岐するUターン式のものであれば
良い。また従来例として吸気マニホルドの上流端にプラ
イマリ側ポート及びセカンダリ側ボートを有する形式の
ものを例示したが、このようにプライマリ側及びセカン
ダリ側に吸気通路部が分岐されていない吸気マニホルド
も存在するので、本発明はかかる吸気マニホルドについ
ても十分に適応可能なものである。更に上記実施例にお
いては、吸気通路部を隔壁によって2分し、プライマリ
側通路とセカンダリ側通路との2つの通路に分岐したが
、3つ以上の複数の通路に分岐することも可能である。
In the embodiment described above, a carburetor is connected upstream of the intake passage device according to the present invention as a fuel supply means, but a type provided with a fuel injection valve, for example, a single point injection system, can have the same effect. Further, the orientation of the engine, the arrangement positions of the primary and secondary side passages, and the shape of the branch passage portion are not critical. The branch passage section may be of a U-turn type that branches from the branch section in different directions. In addition, as a conventional example, a type having a primary side port and a secondary side boat at the upstream end of the intake manifold is shown as an example, but there are also intake manifolds in which the intake passage section is not branched into the primary side and the secondary side like this. , the present invention is fully applicable to such an intake manifold. Further, in the above embodiment, the intake passage is divided into two by the partition wall and branched into two passages, the primary side passage and the secondary side passage, but it is also possible to branch into three or more plural passages.

〈発明の効果〉 以上述べたように本発明によると、Uターン式の吸気マ
ニホルド等からなる吸気通路装置において、燃料供給手
段側の通路数に応じてエンジンから遠退く方向に混合気
を導く吸気通路部の底面に、隔壁を立設して複数の通路
に分割形成したので、吸気通路部を流れる燃料液膜流は
吸気通路全体の内周壁を流れることなく、隔壁下部に集
められて分岐部に導入されるため、分岐部における燃料
液膜流は所定の位置に集合させられ、これより各分岐通
路部に分配性良く案内供給されることができる。このた
めUターン式の吸気通路装置の燃料分配性特性を更に向
上せしめ、これにより気筒間の混合比バラツキをなくし
均一の混合比に制御することが可能となって燃焼が改善
される。従って排気性状、燃費が向上すると共に加速特
性、サージ減少等の運転性が向上する。
<Effects of the Invention> As described above, according to the present invention, in an intake passage device consisting of a U-turn type intake manifold, etc., the air-fuel mixture is guided in a direction away from the engine according to the number of passages on the fuel supply means side. Since a partition wall is installed on the bottom of the passage to divide it into a plurality of passages, the fuel liquid film flow flowing through the intake passage does not flow along the inner circumferential wall of the entire intake passage, but is collected at the bottom of the partition and is divided into a plurality of passages. Since the fuel liquid film flow at the branch section is collected at a predetermined position, it can be guided and supplied to each branch passage section with good distribution. Therefore, the fuel distribution characteristics of the U-turn type intake passage device are further improved, thereby making it possible to eliminate variations in the mixture ratio between cylinders and control the mixture ratio to be uniform, thereby improving combustion. Therefore, exhaust properties and fuel efficiency are improved, and drivability such as acceleration characteristics and surge reduction is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示し、 第1図(A)は
平面図、第1図(B)は第1図(A)のIB−IB断面
図、第1図(C)は第1図(B)のIC−IC断面図で
ある、第2図は本発明の他の実施例を示す第1図(B)
相当図、第3図は本発明の更に他の実施例を示す第1図
(B)相当図、第4図は本発明の他の実施例を示し、第
4図(A)は平面図、第4図(B)は同上のIVB−I
VB断面図、第5図は本発明の更に他の実施例を示し、
第5図(A)は一部切欠平面図、第5図(B)は同上の
VB−VB断面図である、第6図は従来の吸5・・・エ
ンジン  6・・・ライザ部  7・・・連通路8・・
・吸−気通路部  9 a 、  9 b、  9aa
、  9ab−・・分岐通路部  10・・・分岐部 
 20・・・吸気マニホルド21・・・隔壁  22・
・・プライマリ側通路  23・・・セカンダリ側通路
  22a、23a・・・角部  31・・・分配突壁
  32・・・分配溝 特許出願人  日産自動車株式会社 代理人 弁理士 笹 島  冨二雄 第2図 第4図 j (B) (A’) i’=VB 第6図
FIG. 1 shows a first embodiment of the present invention, FIG. 1(A) is a plan view, FIG. 1(B) is a sectional view taken along line IB-IB in FIG. 1(A), and FIG. 1(C) is a plan view. is an IC-IC sectional view of FIG. 1(B), and FIG. 2 is a cross-sectional view of FIG. 1(B) showing another embodiment of the present invention.
FIG. 3 is a diagram corresponding to FIG. 1 (B) showing still another embodiment of the present invention, FIG. 4 is a diagram showing another embodiment of the present invention, and FIG. 4 (A) is a plan view; Figure 4(B) is IVB-I as above.
VB sectional view, FIG. 5 shows still another embodiment of the present invention,
FIG. 5(A) is a partially cutaway plan view, FIG. 5(B) is a VB-VB sectional view of the same as above, and FIG. 6 is a conventional suction 5... engine 6... riser portion 7.・Communication path 8・・
・Intake passage section 9a, 9b, 9aa
, 9ab-... Branch passage section 10... Branch section
20... Intake manifold 21... Bulkhead 22.
...Primary side passage 23...Secondary side passage 22a, 23a...Corner portion 31...Distribution projecting wall 32...Distribution groove Patent applicant Nissan Motor Co., Ltd. Representative Patent attorney Fujio Sasashima No. Figure 2 Figure 4 j (B) (A') i'=VB Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)複数の通路を有する燃料供給手段に上流端が連通
しかつ下流端がエンジンから離れる方向に延びる吸気通
路部と、該吸気通路部の下流端に接続された分岐部と、
該分岐部から夫々異なる方向にUターンする複数の分岐
通路と、少なくとも前記吸気通路部の底面上に起立して
前記複数の通路を仕切る隔壁と、を備えたことを特徴と
する多気筒エンジンの吸気通路装置。
(1) an intake passage portion whose upstream end communicates with a fuel supply means having a plurality of passages and whose downstream end extends in a direction away from the engine; and a branch portion connected to the downstream end of the intake passage portion;
A multi-cylinder engine comprising: a plurality of branch passages that make U-turns in different directions from the branch part; and a partition wall that stands up at least on the bottom surface of the intake passage part and partitions the plurality of passages. Intake passage device.
(2)前記分岐部は、前記吸気通路から導入される混合
気を各分岐通路部に分配する分配部材を有する分岐部で
あることを特徴とする特許請求の範囲第1項に記載の多
気筒エンジンの吸気通路装置。
(2) The multi-cylinder according to claim 1, wherein the branch part is a branch part having a distribution member that distributes the air-fuel mixture introduced from the intake passage to each branch passage part. Engine intake passage device.
JP59220395A 1984-10-22 1984-10-22 Intake passage device of multi-cylinder engine Pending JPS6198958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59220395A JPS6198958A (en) 1984-10-22 1984-10-22 Intake passage device of multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220395A JPS6198958A (en) 1984-10-22 1984-10-22 Intake passage device of multi-cylinder engine

Publications (1)

Publication Number Publication Date
JPS6198958A true JPS6198958A (en) 1986-05-17

Family

ID=16750441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220395A Pending JPS6198958A (en) 1984-10-22 1984-10-22 Intake passage device of multi-cylinder engine

Country Status (1)

Country Link
JP (1) JPS6198958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035966U (en) * 1989-05-31 1991-01-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035966U (en) * 1989-05-31 1991-01-21

Similar Documents

Publication Publication Date Title
EP0675274A1 (en) Internal combustion engine
US4441464A (en) Intake system of a multi-cylinder internal combustion engine
JP3329935B2 (en) Intake device for internal combustion engine
JPS6314062Y2 (en)
JPS6198958A (en) Intake passage device of multi-cylinder engine
JP3433851B2 (en) Engine intake control device
US4856464A (en) Air distribution apparatus for use with an internal combustion engine
US4467760A (en) Internal combustion engine
JPH0234459Y2 (en)
JPH0452465Y2 (en)
JPH0599088A (en) Intake system for engine
JPS6019966Y2 (en) Intake system for multi-cylinder engines
JP3535949B2 (en) Multi-cylinder internal combustion engine with multi-directional fuel injection valve
JPS6034770Y2 (en) Internal combustion engine intake manifold
JPS6129958Y2 (en)
JPS633400Y2 (en)
JPH0235854B2 (en)
JPS633403Y2 (en)
JPS59147867A (en) Fuel injection type internal-combustion engine
JPS6129962Y2 (en)
JP3786050B2 (en) Intake device for internal combustion engine
JPS633398Y2 (en)
JP3138130B2 (en) Intake manifold
JPS5840655B2 (en) Multi-cylinder engine fuel distribution system
JPH0526290Y2 (en)