JPS6197983A - Gas laser oscillator - Google Patents

Gas laser oscillator

Info

Publication number
JPS6197983A
JPS6197983A JP21869684A JP21869684A JPS6197983A JP S6197983 A JPS6197983 A JP S6197983A JP 21869684 A JP21869684 A JP 21869684A JP 21869684 A JP21869684 A JP 21869684A JP S6197983 A JPS6197983 A JP S6197983A
Authority
JP
Japan
Prior art keywords
discharge
laser oscillator
gas
gas laser
oscillator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21869684A
Other languages
Japanese (ja)
Inventor
Akihiro Otani
昭博 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21869684A priority Critical patent/JPS6197983A/en
Publication of JPS6197983A publication Critical patent/JPS6197983A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • H01S3/073Gas lasers comprising separate discharge sections in one cavity, e.g. hybrid lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a gas laser oscillator with a generally excellent oscillation efficiency by a method wherein discharge tubes, each having the inside diameter different from one another, are arrayed in the same oscillator in a coaxial form to the central axis of the resonator mirror. CONSTITUTION:Discharge tubes 3a-3c, each having the inside diameter different from one another, are disposed to the respective resonance beam radiuses so that the respective inside diameters of the discharge tubes 3 are not too wider than the resonance beam radiuses. Accordingly, the difference between the sectional area of a discharge space 6 and that of a resonance beam 4 is small in the section of the discharge tube 3c having the smallest beam radius and the effective utilization factor of the discharge space becomes one near 1. The utilization factor in the part of the discharge tube 3b is also the same. By such a way, the oscillation efficiency of this gas laser oscillator can be made to generally improve.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はガスレーザ発振器に関し、特に励起効率を向
上した励起放電管の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas laser oscillator, and more particularly to the configuration of an excitation discharge tube with improved excitation efficiency.

〔従来の技術〕[Conventional technology]

従来、この種の装置の一例として第4図に示すものがあ
った。図において、共振器は出力ミラー(1)と高反射
ミ?(2)によって構成されており、し−ザ媒質ガスで
あるCO□ガス励起のための円筒形放電管は複数の同一
径の円筒形放電管(6a)によって構成され、共振器ミ
ラー中心軸にそって、前記軸と同軸状に配置されている
。前記放電管内に放電を生じさせることによりレーザ媒
質ガスの励起を行い、共振器中にレーザ共振をおこなわ
せる。
Conventionally, there has been one shown in FIG. 4 as an example of this type of device. In the figure, the resonator is connected to the output mirror (1) and the high-reflection mirror (1). (2), and the cylindrical discharge tube for excitation of CO□ gas, which is the laser medium gas, is composed of a plurality of cylindrical discharge tubes (6a) with the same diameter, and the central axis of the resonator mirror is Therefore, it is arranged coaxially with the aforementioned axis. The laser medium gas is excited by generating a discharge in the discharge tube, causing laser resonance in the resonator.

なお、円筒形放電管は直流放電方式や無声放電方式が用
いられる。
Note that a direct current discharge method or a silent discharge method is used for the cylindrical discharge tube.

第7図に直流放電方式の円筒形放電管を示す。Figure 7 shows a cylindrical discharge tube using a direct current discharge method.

第7図(a)は正面断面図、第7図(′b)は側面断面
図である。図において、(3)は放電管、(8)は針状
陰極、(9)はリング状陽極である。この構成において
、放電は陰極(8)と陽極(9)開、すなわち放電管と
平行におこり、放電空r#rJ(61を形成する。なお
、@極(8)と陽極(9)は周知の手段により放電管に
固定されている。
FIG. 7(a) is a front sectional view, and FIG. 7('b) is a side sectional view. In the figure, (3) is a discharge tube, (8) is a needle-shaped cathode, and (9) is a ring-shaped anode. In this configuration, the discharge occurs with the cathode (8) and anode (9) open, that is, parallel to the discharge tube, forming a discharge space r#rJ (61). It is fixed to the discharge tube by means of.

第8図に無声放電方式の円筒形放電管を示す。Figure 8 shows a silent discharge type cylindrical discharge tube.

第8図(a)は正面断面図、第8図(b)は側面断面図
である。無声放電方式においては、放電管αQが誘電体
層であり、放電管外周に密着し、かつ互に対向する位置
に設けられた金属電極(11)とともに無声放電電極を
構成している。無声放電では金属部の表面に誘電体層が
必ず必要であり、放電管00)は電6の役目も果してお
り、放電電極管になっている。
FIG. 8(a) is a front sectional view, and FIG. 8(b) is a side sectional view. In the silent discharge method, the discharge tube αQ is a dielectric layer, and forms a silent discharge electrode together with metal electrodes (11) provided in close contact with the outer periphery of the discharge tube and at positions facing each other. In silent discharge, a dielectric layer is always required on the surface of the metal part, and the discharge tube 00) also serves as the electrode 6, serving as a discharge electrode tube.

放電は放電電極には垂直におこり、放電空間(6)を形
成する。
The discharge occurs perpendicularly to the discharge electrode, forming a discharge space (6).

前記共振器において、レーザ共振をおこなうと共振器の
中に定在波(共振ビーム)(4)が発生する。
When laser resonance occurs in the resonator, a standing wave (resonant beam) (4) is generated within the resonator.

この共振ビーム(4)の外径は一般に共振器長方向に対
して変化する。
The outer diameter of this resonant beam (4) generally changes in the resonator length direction.

放電管内ではほぼ均一に放電がおこっており、放電エネ
ルギーは第5図、第6図に示す放電管内の放電空間(6
)にほぼ均一に分布していると考えられる。
Discharge occurs almost uniformly within the discharge tube, and the discharge energy is distributed in the discharge space (6) within the discharge tube shown in Figures 5 and 6.
) is considered to be almost uniformly distributed.

放電空間(6)中の入力エネルギーによってレーザ媒質
は励起状態となるが、この励起された媒質のうち(4)
の共振ビームの存在する空間からのみレーザ光が取り出
され、入力放電エネルギーがレーザ光エネルギーに変換
される。従って、ある点での放電空間(6)の断面積と
、その点におけるビーム断面積の比が放電エネルギーの
有効利用率であり、これを放電空間有効利用率とする。
The laser medium is brought into an excited state by the input energy in the discharge space (6), but among this excited medium (4)
Laser light is extracted only from the space where the resonant beam exists, and input discharge energy is converted into laser light energy. Therefore, the ratio of the cross-sectional area of the discharge space (6) at a certain point to the beam cross-sectional area at that point is the effective utilization rate of discharge energy, and this is taken as the effective utilization rate of the discharge space.

第5図に示した第4図のA−A断面ではビーム径が放電
管内径に近いので前記放電空間有効利用率はほぼ1に近
いと考えられるが第6図に示したようにB−B断面にお
いては、A−A断面よりビーム径が小さくなっており、
前記放電空間有効利用率はA−A断面に比べて小さくな
っている。
In the section A-A of FIG. 4 shown in FIG. 5, the beam diameter is close to the inner diameter of the discharge tube, so the discharge space effective utilization factor is considered to be close to 1, but as shown in FIG. In the cross section, the beam diameter is smaller than the A-A cross section,
The discharge space effective utilization rate is smaller than that in the AA cross section.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の装置は以上のように構成されているので、相対的
なビーム径の小さい部分での放電空間有効利用率が悪く
、有効なる放電人力エネルギーの利用ができないという
問題点があった。
Since the conventional device is configured as described above, there is a problem in that the effective utilization rate of the discharge space is poor in the portion where the relative beam diameter is small, and it is not possible to effectively utilize the discharge human power energy.

この発明は上記のような従来のものの問題点を解決する
ためになされたもので、共振器内で変化する共振ビーム
径に対して、共振ビーム径の小さい部分での放電空間有
効利用率を向上させて、有効なる放電入力エネルギーの
利用を行い、総括的な発振効率の向上を図ったガスレー
ザ発振器を得ることを目的としている。
This invention was made in order to solve the above-mentioned problems of the conventional method, and it improves the effective utilization rate of discharge space in the part where the resonant beam diameter is small as the resonant beam diameter changes within the resonator. The purpose of this invention is to obtain a gas laser oscillator that utilizes effective discharge input energy and improves overall oscillation efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るガスレーザ発振器は、共振器内で変化す
る共振ビーム径に対して、放電管内径が太くなりすぎな
いように内径の異なった放電管を同一発振器の中に、共
振器ミラー中心軸に同軸状に配列したものである。
In the gas laser oscillator according to the present invention, discharge tubes with different inner diameters are placed in the same oscillator and arranged on the center axis of the resonator mirror so that the inner diameter of the discharge tube does not become too thick in response to the resonant beam diameter changing within the resonator. They are arranged coaxially.

〔作 用〕[For production]

この発明においては、共振器内で変化する共振ビーム径
に対して、共振ビーム径の大きい部分でも、共振ビーム
径の小さい部分でも放電空195有効利用率をほぼ1に
近づけることができるから、総括的な発振効率を向上す
ることができる。
In this invention, as the resonant beam diameter changes within the resonator, the effective utilization factor of the discharge space 195 can be brought close to 1 in both the large resonant beam diameter part and the small resonant beam diameter part. oscillation efficiency can be improved.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す購成図、第2図は第
1図のC−C線断面図である。第1図において、放電管
(3)の内径は、共振ビーム径より太くなりすぎないよ
うに、前記ビニム径に合わせてその内径の違うもの(3
a) 、 (3b) 、 (3C)を配置シている。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line C--C in FIG. 1. In Fig. 1, the inner diameter of the discharge tube (3) is different from the diameter of the vinyl tube (3) so as not to be too thick than the resonant beam diameter.
a) , (3b) and (3C) are arranged.

従って、第2図に示したビーム径の小さいC−C線断面
についても放電空間(6)の断面積と共振ビーム(4)
の断面積の差は小さく、放電空間有効利用率は1に近い
ものとなる。放電管(6b)の部分についても同様であ
る。
Therefore, the cross-sectional area of the discharge space (6) and the resonant beam (4) are
The difference in cross-sectional area is small, and the discharge space effective utilization rate is close to 1. The same applies to the discharge tube (6b) portion.

第6図はこの発明の他の実施例を示す構成図である。こ
の実施例は、共振器内ビーム回路に折返し光路TJ1+
 ”2+ ”3 を有するものである。そして、折返し
光路毎に違った内径の放電管を配置し、同一折返し光路
内では放電管の内径が等しくなっている。即ち、ある本
数、ここでは2本を1つのユニットとして、ユニット毎
に内径の違う放電管(3a)、(3b)を配置している
FIG. 6 is a block diagram showing another embodiment of the present invention. In this embodiment, the optical path TJ1+ is returned to the intra-cavity beam circuit.
It has "2+"3. Discharge tubes with different inner diameters are arranged for each folded optical path, and the inner diameters of the discharge tubes are equal within the same folded optical path. That is, a certain number of discharge tubes (3a), (3b) having different inner diameters are arranged for each unit, with a certain number of discharge tubes (2 in this case) being considered as one unit.

上記実施例では、折返し光路L2には放電管を配置して
いないが、全折返し光路に配置してもよい。
In the above embodiment, the discharge tube is not arranged in the folded optical path L2, but it may be arranged in all the folded optical paths.

又、折返しの回数は2回としたが、1回であっても、3
回以上であっても同様に実施できる。さらに、上記何れ
の実施例も、レーザ媒質ガスはCO2ガスに限らず、他
のガスレーザについても同様に実施できる。
In addition, although the number of callbacks was set to 2, even if it was only 1 time, it would be 3 times.
It can be carried out in the same manner even if the number of times or more is exceeded. Furthermore, in any of the above-mentioned embodiments, the laser medium gas is not limited to CO2 gas, and can be similarly implemented with other gas lasers.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、共振器内で変化する共
振ビーム径に対して、放電管内径が太くなりすぎないよ
うに内径の異なった放電管を同一発振器中に、共振器ミ
ラー中心軸に同軸状に配列したから、放電空間有効利用
率を発振器全体にわたって、1に近づけることができ、
放電人力エネルギーの有効な利用が行なえ、総括的な琵
振効半の良いガスレーザ発振器を得ることができる。
As explained above, in order to prevent the inner diameter of the discharge tube from becoming too thick in response to the changing resonant beam diameter within the resonator, the present invention is designed to install discharge tubes with different inner diameters in the same oscillator, coaxially aligned with the center axis of the resonator mirror. Since they are arranged in a shape, the discharge space effective utilization factor can be brought close to 1 over the entire oscillator.
A gas laser oscillator with good overall oscillation efficiency can be obtained by making effective use of electric discharge energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成図、第2図は第
1図のC−C線断面図、第6図はこの発明の他の実施例
を示すi′台成図、第4図は従来のガスレーザ発振器の
構成を示す構成図、第5図は第4図のA −A線断面図
、第6図は第1図のB−B線断面図、第7図は直流放電
方式の円筒形数−管を示す図で、MZ図(a)は正面断
面図、@7因fb)は側面断面図、第8図は無声放電方
式の円層形by:電個゛を示す図で、第8図Ca)は正
面晶面図、第8iW(b)は側面断面図である。 図において、(1)は出力ミラー、(2)、は高反射ミ
ラー、(3) 、 (3a) 、 (3b) 、 (3
c)は放電管、(4)は共振ビーム、(5)は出力ビー
ム、(6)は放電空間、(力は折り返しミラーである。 なお、各図中同一符号は同一または相当部分を代理人 
弁理士  木 村 三 朗 第3図 第4図 第5図 第6図 第7図 第8図 手続抽正書(自発〕 昭和60年10月 7日
FIG. 1 is a configuration diagram showing one embodiment of the present invention, FIG. 2 is a sectional view taken along the line CC in FIG. 1, and FIG. Figure 4 is a block diagram showing the configuration of a conventional gas laser oscillator, Figure 5 is a sectional view taken along line A-A in Figure 4, Figure 6 is a sectional view taken along line B-B in Figure 1, and Figure 7 is a direct current discharge diagram. The figure shows the cylindrical number-tube of the method, where MZ diagram (a) is a front cross-sectional view, @7 factor fb) is a side cross-sectional view, and Figure 8 is a circular type of silent discharge method. In the figures, FIG. 8Ca) is a front crystal view, and FIG. 8iW(b) is a side sectional view. In the figure, (1) is the output mirror, (2) is the high reflection mirror, (3), (3a), (3b), (3
c) is the discharge tube, (4) is the resonant beam, (5) is the output beam, (6) is the discharge space, (the force is the folding mirror. Note that the same symbols in each figure represent the same or equivalent parts.
Patent Attorney Mitsuro Kimura Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Procedure abstract (voluntary) October 7, 1985

Claims (7)

【特許請求の範囲】[Claims] (1)少なくとも2枚の反射鏡と少なくとも2本のレー
ザ媒質ガス励起の為の円筒形放電管を有するガスレーザ
発振器において、共振器内に発生する共振ビームの径に
対応して少なくとも2種類の違つた内径を持つ前記円筒
形放電管を、共振器ミラー中心軸に同軸状に配列したこ
とを特徴とするガスレーザ発振器。
(1) In a gas laser oscillator having at least two reflecting mirrors and at least two cylindrical discharge tubes for excitation of the laser medium gas, at least two types of differences are available depending on the diameter of the resonant beam generated within the resonator. A gas laser oscillator characterized in that the cylindrical discharge tubes having a cylindrical inner diameter are arranged coaxially with a central axis of a resonator mirror.
(2)共振器内ビーム回路に少なくとも1回以上の折返
しを有し、折返し光路毎に違つた内径の前記円筒形放電
管を配置し、同一折返し光路内では前記円筒形放電管の
内径が等しいことを特徴とした特許請求の範囲第1項記
載のガスレーザ発振器。
(2) The intra-resonator beam circuit is folded back at least once, and the cylindrical discharge tubes are arranged with different inner diameters for each folded optical path, and the inner diameters of the cylindrical discharge tubes are equal within the same folded optical path. A gas laser oscillator according to claim 1, characterized in that:
(3)円筒形放電管を配置していない折返し光路を有す
ることを特徴とした特許請求の範囲第2項記載のガスレ
ーザ発振器。
(3) The gas laser oscillator according to claim 2, which has a folded optical path in which no cylindrical discharge tube is arranged.
(4)円筒形放電管が放電電極管であることを特徴とし
た特許請求の範囲第1項〜第3項の何れかに記載のガス
レーザ発振器。
(4) The gas laser oscillator according to any one of claims 1 to 3, wherein the cylindrical discharge tube is a discharge electrode tube.
(5)レーザ媒質ガスを無声放電で励起することを特徴
とした特許請求の範囲第1項〜第3項の何れかに記載の
ガスレーザ発振器。
(5) A gas laser oscillator according to any one of claims 1 to 3, characterized in that the laser medium gas is excited by silent discharge.
(6)レーザ媒質ガスを直流放電で励起することを特徴
とした特許請求の範囲第1項〜第3項の何れかに記載の
ガスレーザ発振器。
(6) A gas laser oscillator according to any one of claims 1 to 3, characterized in that the laser medium gas is excited by direct current discharge.
(7)レーザ媒質ガスがCO_2ガスであることを特徴
とした特許請求の範囲第1項〜第6項の何れかに記載の
ガスレーザ発振器。
(7) The gas laser oscillator according to any one of claims 1 to 6, wherein the laser medium gas is CO_2 gas.
JP21869684A 1984-10-19 1984-10-19 Gas laser oscillator Pending JPS6197983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21869684A JPS6197983A (en) 1984-10-19 1984-10-19 Gas laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21869684A JPS6197983A (en) 1984-10-19 1984-10-19 Gas laser oscillator

Publications (1)

Publication Number Publication Date
JPS6197983A true JPS6197983A (en) 1986-05-16

Family

ID=16723977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21869684A Pending JPS6197983A (en) 1984-10-19 1984-10-19 Gas laser oscillator

Country Status (1)

Country Link
JP (1) JPS6197983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1012408A3 (en) * 1997-07-30 2000-10-03 Matsushita Electric Ind Co Ltd GAS LASER OSCILLATOR.
JP2015173220A (en) * 2014-03-12 2015-10-01 ファナック株式会社 Laser oscillator equipped with discharge tube, and laser processing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1012408A3 (en) * 1997-07-30 2000-10-03 Matsushita Electric Ind Co Ltd GAS LASER OSCILLATOR.
BE1012409A3 (en) * 1997-07-30 2000-10-03 Matsushita Electric Ind Co Ltd GAS LASER OSCILLATOR.
US6249535B1 (en) 1997-07-30 2001-06-19 Matsushita Electric Industrial Co., Ltd. Gas laser oscillator
BE1013002A5 (en) * 1997-07-30 2001-07-03 Matsushita Electric Ind Co Ltd GAS LASER OSCILLATOR.
US6331995B2 (en) 1997-07-30 2001-12-18 Matsushita Electric Industrial Co., Ltd. Gas laser oscillator
US6434181B2 (en) 1997-07-30 2002-08-13 Matsushita Electric Industrial Co., Ltd. Gas laser oscillator
JP2015173220A (en) * 2014-03-12 2015-10-01 ファナック株式会社 Laser oscillator equipped with discharge tube, and laser processing device
US10128629B2 (en) 2014-03-12 2018-11-13 Fanuc Corporation Laser oscillator provided with discharge tube and laser processing machine

Similar Documents

Publication Publication Date Title
JPS6197983A (en) Gas laser oscillator
JPS6329987A (en) Multiple folded laser
US4551843A (en) Gas wave-guide laser generator
JPS60157277A (en) Axial-flow type noiseless discharge excitation gas laser device
US3790899A (en) Discharge tube
JPS5847878B2 (en) Lateral continuous wave gas laser tube
JPS6052070A (en) Coaxial type laser oscillator
JP2606412B2 (en) Gas laser oscillator
JPS622678A (en) Gas laser oscillator
JPH01274483A (en) Waveguide type laser array
JP2792312B2 (en) Gas laser tube
JPS6358884A (en) Silent discharge type gas laser device
JPS61112389A (en) High speed axial flow type gas laser device
JPH0437174A (en) Laser oscillator
JPS61269387A (en) Electrode structure for laser oscillator
JPH0193186A (en) Ion laser device
JPH02130973A (en) Laser oscillator
JPS61189683A (en) Discharge-excited short pulse laser device
JPH0225267B2 (en)
JPS59159579A (en) Hollow cathode discharge type gas laser oscillating device
JPH0240980A (en) Gas laser oscillator
JPS631086A (en) Gas laser oscillator
JPH07235713A (en) Gas laser apparatus
JPS63227070A (en) Gas laser device
JPS63175486A (en) Solid-state laser oscillator