JPS6197165A - Beta' sialon bonding silicon carbide material and manufacture - Google Patents
Beta' sialon bonding silicon carbide material and manufactureInfo
- Publication number
- JPS6197165A JPS6197165A JP59218072A JP21807284A JPS6197165A JP S6197165 A JPS6197165 A JP S6197165A JP 59218072 A JP59218072 A JP 59218072A JP 21807284 A JP21807284 A JP 21807284A JP S6197165 A JPS6197165 A JP S6197165A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- sample
- sialon
- phase
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は高温強度、酸化抵抗性、耐食性、耐熱性および
耐摩耗性に優れ、これら性質が要求される各種用途に使
用するのに適したβ′サイアロン結合炭化珪素質材料お
よびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a β'sialon-bonded silicon carbide material that has excellent high-temperature strength, oxidation resistance, corrosion resistance, heat resistance, and wear resistance, and is suitable for use in various applications requiring these properties. Regarding materials and their manufacturing methods.
一般に、結合炭化珪素質材料は、高い耐熱性、熱伝導率
、硬度および低熱膨張性等の特長を有する炭化珪素粒子
の骨材相とそれを結合する結合相と気孔とから構成され
ている。これら結合炭化珪素質材料において、見掛気孔
率が適当な範囲、す々わち10数チ以下であれば、上記
材料の有する特長は結合相の材質に左右されることにな
る。従って結合相の材質は結合炭化珪素材料にとって極
めて重要な因子を有するものである。そのため、多種類
の結合相が開発され実用化されてきたことはよく知られ
ているところである。それら従来例の主なるものを以下
に示す。In general, a bonded silicon carbide-based material is composed of an aggregate phase of silicon carbide particles having features such as high heat resistance, thermal conductivity, hardness, and low thermal expansion, a binder phase that binds the aggregate phase, and pores. If the apparent porosity of these bonded silicon carbide materials is within a suitable range, that is, 10-odds of inch or less, the characteristics of the materials will depend on the material of the binder phase. Therefore, the material of the binder phase is an extremely important factor for the bonded silicon carbide material. Therefore, it is well known that many types of bonded phases have been developed and put into practical use. The main conventional examples are shown below.
珪酸塩を結合相とする結合炭化珪素質材料は、珪酸塩の
本来の性質に基づき、酸化抵抗性を示す温度範囲が狭く
、また熱間強度が急激に低下する温度が低い等の欠点を
有するものである。Bonded silicon carbide materials that use silicate as a binder phase have drawbacks, such as a narrow temperature range in which they exhibit oxidation resistance and a low temperature at which their hot strength rapidly decreases, due to the inherent properties of silicate. It is something.
また、酸窒化珪素、窒化珪素のいずれか1種または2種
を結合相とする結合炭化珪素質材料は、上記の珪酸塩を
結合相とするものく比較して酸化抵抗を示す温度の下限
が高温側に移り、比較的低温例えば1000℃近辺の酸
化抵抗性が低く、また1400℃の高温強度が室温強度
より大幅に低下する等の欠点を有するものである。In addition, bonded silicon carbide materials that use one or both of silicon oxynitride and silicon nitride as a binder phase have a lower temperature limit at which they exhibit oxidation resistance compared to those that use the above-mentioned silicate as a binder phase. Moving to the high temperature side, the oxidation resistance is low at relatively low temperatures, for example around 1000°C, and the high temperature strength at 1400°C is significantly lower than the room temperature strength.
さらにまた、サイアロン系結合炭化珪素質耐火物は特公
昭57−267号公報、特公昭57−268号公報に開
示されてはいるが、これら従来公知の耐火物は耐食性と
耐熱衝撃性の向上を目的とするものであり、耐熱材料と
してはその曲げ強さは十分満足し得るものとはいい難い
ものである。すなわち、炭素(炭化珪素粒子と共に生成
形体に含まれている)を珪化することにより製造される
反応炭化珪素質材料には、遊離珪素の含有が不可避のた
め、珪素の融点(1414℃)付近で曲げ強さが急激に
低下する欠点があシ、また珪素蒸気雰囲気が許容される
用途にしか使用できない欠点を有するものである。Furthermore, although sialon-based bonded silicon carbide refractories are disclosed in Japanese Patent Publication No. 57-267 and Japanese Patent Publication No. 57-268, these conventionally known refractories have improved corrosion resistance and thermal shock resistance. However, as a heat-resistant material, its bending strength cannot be said to be sufficiently satisfactory. In other words, since the reactive silicon carbide material produced by silicifying carbon (which is included in the formed body together with silicon carbide particles) inevitably contains free silicon, It has the disadvantage that its bending strength rapidly decreases, and it also has the disadvantage that it can only be used in applications where a silicon vapor atmosphere is permissible.
以上のように、従来技術による各種結合相を有する結合
炭化珪素材料はいずれもその結合相が炭化珪素のもつ優
れた特長を生かしきれず、これら材料の高温強度と酸化
抵抗性の両者が不十分であるために耐熱材料として満足
される寿命を示すことができないものであった。すなわ
ち、従来の結合炭化珪素質耐摩耗材料は炭化珪素粒をと
りまく結合相がより軟かいために硬い炭化珪素粒の相が
あるにも拘らず、結合相がまず損耗し、それにつれて炭
化珪素粒(骨材相)が剥離するという摩耗機構による粉
体摩耗に十分な耐久性を有しなかった。As described above, all of the bonded silicon carbide materials with various binder phases made by conventional technology cannot take full advantage of the excellent features of silicon carbide, and the high temperature strength and oxidation resistance of these materials are insufficient. Therefore, it was not possible to show a satisfactory lifespan as a heat-resistant material. In other words, in conventional bonded silicon carbide-based wear-resistant materials, the binder phase surrounding the silicon carbide grains is softer, so even though there is a phase of hard silicon carbide grains, the binder phase wears out first, and as time goes on, the silicon carbide grains It did not have sufficient durability against powder abrasion due to the abrasion mechanism in which the (aggregate phase) peels off.
本発明は上記の如き従来の結合炭化珪素質材料の有する
欠点を解消し、炭化珪素の有する利点を生かし得る結合
炭化珪素質材料全提供することを目的とするものである
。It is an object of the present invention to provide a bonded silicon carbide material that can overcome the drawbacks of the conventional bonded silicon carbide materials as described above and take advantage of the advantages of silicon carbide.
本発明者らは上記目的を達成するべく、種々検討を重ね
た結果、結合相として一般式Si、−、AI、O,N、
4で示されるβ′サイアロンを式中の2の値’i:0<
z≦3の範囲とし゛たものを使用することによシ、従来
例では見゛られなかった高い高温強度、酸化抵抗性、耐
食性、耐摩耗性rt−具備した材料が得られることおよ
びこれら材料が容易に得られる製造法を見い出した。本
発明はこれら知見に基づくものである。゛
すなわち、本発明材料の特徴とするところは、最大4〜
1mmの粒径を含む炭化珪素質粒子の骨材相と、一般式
Sl、、AI、O,N、、 (但し、0 <z≦3)で
示されるβ′サイアロンの結合相とからなり、前記′骨
材相と結合相の重量比が90 / 10〜7 o/a
Oであり、見掛気孔率が10チ以下であることにある。In order to achieve the above object, the present inventors conducted various studies and found that the binder phase has the general formula Si, -, AI, O, N,
The value of 2 in the formula 'i:0<
By using materials with z≦3, it is possible to obtain materials with high high temperature strength, oxidation resistance, corrosion resistance, and abrasion resistance rt-, which were not seen in conventional examples, and that these materials have We have discovered a manufacturing method that can be easily obtained. The present invention is based on these findings. In other words, the material of the present invention is characterized by a maximum of 4 to 4
Consisting of an aggregate phase of silicon carbide particles having a particle size of 1 mm, and a binder phase of β' sialon represented by the general formula Sl, AI, O, N, (where 0 < z ≤ 3), The weight ratio of the aggregate phase and binder phase is 90/10~7 o/a
O, and the apparent porosity is 10 cm or less.
また、これら材料の製造方法の特徴とするところは、最
大4〜ill!mの粒径を含む炭化珪素質粒子の骨材相
と、焼成後に一般式St、−、AI、O,N、−2(但
し、0〈z≦3)で示されるβ′サイアロンとなる割合
の金属珪素、アルミニウムおよび珪酸質の微粉末とを混
合、成形し、該成形体を乾燥後、温度1300〜160
0℃、常圧下、窒素を含む非酸化性雰囲気中で焼成し、
見掛気孔率10チ以下となすことにある。In addition, the manufacturing method of these materials is characterized by a maximum of 4~ill! The aggregate phase of silicon carbide particles having a particle size of of metal silicon, aluminum, and silicic acid fine powder are mixed and molded, and after drying the molded product, the temperature is 1300 to 160°C.
Calcined at 0°C under normal pressure in a non-oxidizing atmosphere containing nitrogen,
The purpose is to have an apparent porosity of 10 cm or less.
本発明材料において、骨材相の炭化珪素粒子(以下、単
にグレー7という)は最大4〜1間の粒子を含まなけれ
ばならない。というのはこれら粗粒を含まないものおよ
び最大4醋を超える粒子を含むものは低密度となり、強
度および酸化抵抗性が不十分となる。また、β′サイア
ロンの一般式の2の値t″O<z≦3とした理由は、2
の値がOでは本発明のβ′サイアロン結合相が得られず
、2が3を越えるとガラス相が増える傾向にあり、その
結果、強度、特に高温強度が劣り、また安定した結合相
が得られないからである。2の値の好ましい範囲は1〜
2である。In the material of the present invention, the silicon carbide particles of the aggregate phase (hereinafter simply referred to as Gray 7) must contain between 4 and 1 particle at most. This is because those containing no coarse particles and those containing more than 4 particles at most have low density and insufficient strength and oxidation resistance. In addition, the reason for setting the value of 2 in the general formula of β′sialon to t″O<z≦3 is that 2
When the value of is O, the β'sialon bonded phase of the present invention cannot be obtained, and when 2 exceeds 3, the glass phase tends to increase, resulting in poor strength, especially high-temperature strength, and a stable bonded phase. This is because it cannot be done. The preferred range of the value of 2 is 1 to
It is 2.
骨材相と結合相の重量比は90/1・0〜70/30の
範囲とする。すなわち、結合相成分の含有率が10重量
−未満では骨材相成分の含有率が90重量%を超えて多
くなりすぎ所望の高強度を確保することができず、一方
、結合相成分が30重量%を超えると相対的に骨材相成
分の含有率が70重量%未満と少なくなりすぎて所望の
耐摩耗性が得られず、また結合相成分が多いにも拘らず
所望の強度を確保することができない。The weight ratio of the aggregate phase to the binder phase is in the range of 90/1.0 to 70/30. That is, if the content of the binder phase component is less than 10% by weight, the content of the aggregate phase component will exceed 90% by weight, making it impossible to secure the desired high strength. If the content exceeds 70% by weight, the content of the aggregate phase component will be relatively too low, less than 70% by weight, and the desired wear resistance will not be obtained, and the desired strength will not be achieved despite the large amount of binder phase component. Can not do it.
好ましくは比率は85 / 15〜75 / 25であ
る。Preferably the ratio is between 85/15 and 75/25.
さらに、見掛気孔率が10%を越えると、強度、−酸化
抵抗性、耐摩耗性が不十分となる。好ましくは見掛気孔
率は8チ以下とする。Furthermore, if the apparent porosity exceeds 10%, the strength, oxidation resistance, and abrasion resistance will be insufficient. Preferably, the apparent porosity is 8 inches or less.
次に上記の如きβ′サイアロン結合炭化珪素質材料の製
造方法について説明する。Next, a method for manufacturing the β' sialon bonded silicon carbide material as described above will be explained.
骨材相に使用するブレーンはアチソン法による最大粒径
4鵡以下に調整した市販1級品(SiC974以上)α
・SiCであり、さらにブレーンの粗粒子は好ましくは
その結晶発達度、密度および充填性状の良好な焼結法に
よる緻密質焼結α・StCから調整されたブレーンが挙
げられる。これにはいうまでもなく焼結α・SIC材料
のスクラップ(但し、品質はアチソン法のそれよりも高
品質に確保されたもの)から調整されたブレーンが含ま
れる。The brain used for the aggregate phase is a commercially available first grade product (SiC974 or higher) α that has been adjusted to a maximum particle size of 4 mm or less by the Acheson method.
・SiC, and the coarse particles of the brane are preferably prepared from dense sintered α・StC using a sintering method that has good crystal development, density, and filling properties. Needless to say, this includes branes prepared from scraps of sintered α-SIC material (although the quality is ensured to be higher than that of the Acheson method).
使用する珪素およびアルミニウムの粉末は、その粒径が
20μ島以下、好ましくは10μ扉以下のものとする。The silicon and aluminum powders used have a particle size of 20 μm or less, preferably 10 μm or less.
焼成過程前のこれら粉末の取扱い中における粉末表面の
変質を防止し得る被覆粉末、例えば直鎖飽和脂肪酸ある
いはその塩を被覆した珪素およびアルミニウム粉末を使
用することが好ましい。これら被覆剤は焼成過程の比較
的低温度(窒化反応開始温度よりかなり低温度)で分解
消失するものから選ばれる。It is preferable to use coated powders that can prevent deterioration of the powder surface during handling of these powders before the firing process, such as silicon and aluminum powders coated with linear saturated fatty acids or salts thereof. These coating materials are selected from those that decompose and disappear at a relatively low temperature during the firing process (much lower than the nitriding reaction initiation temperature).
使用する珪酸質粉末としては、化学的高純度の石英粉末
、石英ガラス粉末、蒸発クリ力、気相法シリカ、湿式沈
殿法シリカなどがあるが蒸発シリカが最も適している。Examples of the silicic acid powder used include chemically high-purity quartz powder, quartz glass powder, evaporated silica, vapor phase silica, and wet precipitation silica, and evaporated silica is most suitable.
その理由は、蒸発シリカを使用した場合、本発明の構成
成分からなる成形体の生密度が最も高く、焼成後、結合
相と々るβ′サイアロンの生成が最も効率よく、かくし
て得られた材料は本発明の特徴を高度に発揮するからで
ある。The reason for this is that when evaporated silica is used, the green density of the molded product made of the constituent components of the present invention is the highest, and after firing, the formation of the binder phase and β'sialon is the most efficient, and the thus obtained material This is because the characteristics of the present invention are exhibited to a high degree.
骨材相とな−るブレーンと配合され、最終的(焼成後)
に結合相となるβ′サイアロンの出発原料である珪素粉
末、アルミニウム粉末および珪酸質粉末の屋素を含む非
酸化性雰囲気下、1600℃以下焼成中に起きる化学反
応の詳細は不明であるが総括的反応として次の反応が考
えられる。Combined with brane, which becomes the aggregate phase, and the final (after firing)
The details of the chemical reactions that occur during firing at temperatures below 1600°C in a non-oxidizing atmosphere containing silicon powder, aluminum powder, and silicate powder, which are the starting materials for β'sialon, which is the binder phase, are unknown, but a general overview is available. The following reactions can be considered.
3(4−Z ) St +2ZAl +ZSIO,+
(8−Z)N、 −+2 (5la−zAlzOzNs
−z )出発原料の配合比は、炭化珪素骨材成分/結合
相成分の重量比(結合相成分;β′サイアロン0 <z
≦3)および上記反応式に基づくβ1サイアロン、の2
の値に従って決定される。3(4-Z) St +2ZAl +ZSIO,+
(8-Z)N, -+2 (5la-zAlzOzNs
-z) The blending ratio of the starting materials is the weight ratio of silicon carbide aggregate component/bond phase component (bond phase component; β′sialon0<z
≦3) and β1 sialon based on the above reaction formula.
determined according to the value of
所定配合比の結合相成分出発原料3柚と骨材相成分のブ
レーンを混合機、例えばアイリッヒ凰混合機でよく混合
する。この混合に先だち、予め所定の結合相成分出発原
料3種のみ粉末混合機、例えばV型゛ミキサーで混合し
、該混合物を準備して上記のようにブレーンと該混合物
とを混合する方法が好ましい。ついでこの混合物に一般
的な一次バインダー、例えばPVA、デキストリン、リ
グニン、メチルセルローズなどと水を加え十分混練して
混線物を得る。混練後、一般的成形方法、例えば金型−
軸加圧成形法、ラミング成形法、振動加圧成形法、冷間
静水圧成形法、押出成形法、鋳込成形法などによって成
形体が得られる。ただし、成形方法によって適切な一次
バインダーおよび水の螢は一般的に異なり、また独特の
添加剤、例えば可塑剤、分散剤、解膠剤、潤滑剤などが
使用される。得られた成形体を乾燥後、雰囲気炉内に入
れ、常圧下、窒素を含む非酸化性雰囲気、例えば窒素ガ
ス単独、あるいは窒素ガスとアルゴン、ネオンなどの不
活性ガス族との混合ガス、窒素ガスと水素ガス、アンモ
ニアガスなどとの混合ガス雰囲気f、taoo〜160
0℃で加熱・反応を行うことによりβ′サイアロン結合
炭化珪素質材料が得られる。本発明において、焼成温度
を上記温度範囲に限定した理由は、1300℃未満の温
度ではβ′サイアロンの生成反応速度が遅く、保持時間
が長時間必要となシ、一方1600′Cを越え1800
℃以下の温度にしてもβ′サイアロンの生成(速度と率
)K寄与するところが皆無に近く、焼成コストの増大を
招くに過ぎないので1600℃を越える温度の焼成は不
経済である。好ましい焼成の実施態様では、200℃/
hの昇温速度で1450℃に加熱し、この温度に8時間
以上保持する。The binder phase component starting materials 3 yuzu and the aggregate phase component Blaine are thoroughly mixed in a predetermined mixing ratio in a mixer, for example, an Eirich mixer. Prior to this mixing, it is preferable to mix three predetermined starting materials for the binder phase components in advance using a powder mixer, for example, a V-type mixer, prepare the mixture, and then mix Blaine and the mixture as described above. . Next, a general primary binder such as PVA, dextrin, lignin, methyl cellulose, etc. and water are added to this mixture and thoroughly kneaded to obtain a mixed wire product. After kneading, a general molding method such as a mold is used.
A molded body can be obtained by axial pressing, ramming, vibration pressing, cold isostatic pressing, extrusion, casting, or the like. However, depending on the molding method, suitable primary binders and water bodies generally vary, and unique additives such as plasticizers, dispersants, peptizers, lubricants, etc. are used. After drying the obtained compact, it is placed in an atmospheric furnace and heated under normal pressure in a non-oxidizing atmosphere containing nitrogen, such as nitrogen gas alone, or a mixture of nitrogen gas and an inert gas such as argon or neon, or nitrogen gas. Mixed gas atmosphere of gas, hydrogen gas, ammonia gas, etc. f, taoo ~ 160
By heating and reacting at 0° C., a β′-sialon bonded silicon carbide material can be obtained. In the present invention, the reason why the firing temperature is limited to the above-mentioned temperature range is that at temperatures below 1300°C, the formation reaction rate of β'sialon is slow and a long holding time is required;
Even if the temperature is lower than 1600°C, there is almost no contribution to the formation (speed and rate) of β'sialon, and this only increases the firing cost, so firing at a temperature higher than 1600°C is uneconomical. In a preferred firing embodiment, 200°C/
The sample is heated to 1450° C. at a heating rate of h and maintained at this temperature for 8 hours or more.
このようKして得られた本発明品の粉末Xfi1回折に
よる鉱物の同定では、α・81Cおよびβ′サイアロン
が検出され、同定困難な極めて弱い不明ピークが若干認
められた。また、本発明成形体の焼成前後の重量変化率
(焼成前型量く焼成後型量)は前記反応式に基づく理論
計算値の少なくとも約90−以上であった。100%に
ならぬ理由は明らかでないが使用原料中の不純物の影響
、焼成過程における珪素およびアルミニウムの揮発損失
および同定不可の物質生成などが考えられる。以上の鉱
物同定と重量変化率から本発明品は、本質的に骨材相が
αΦStCで結合相がβ′サイアロンからなることが確
認された。When the minerals of the product of the present invention thus obtained were identified by powder Xfi1 diffraction, α·81C and β′sialon were detected, and some extremely weak unknown peaks that were difficult to identify were observed. Furthermore, the rate of weight change before and after firing (the mold weight before firing and the mold weight after firing) of the molded article of the present invention was at least about 90 or more of the theoretically calculated value based on the above reaction formula. The reason why it is not 100% is not clear, but possible causes include the influence of impurities in the raw materials used, the volatilization loss of silicon and aluminum during the firing process, and the formation of unidentifiable substances. From the above mineral identification and weight change rate, it was confirmed that the product of the present invention essentially consists of an aggregate phase of αΦStC and a binder phase of β′sialon.
以下、本発明の特長を列挙すると次の如くなる。The features of the present invention are listed below.
(1) 材料として
ア、室温および高温(1400℃ンの機械的強度が極め
て大きい。(1) As a material, a. It has extremely high mechanical strength at room temperature and high temperature (1400°C).
イ、 1400℃の強度が室温のそれより大きい、即
ち1400℃の高温度になっても強度が低下することな
く、むしろ高い強度を維持できる。(b) The strength at 1400°C is greater than that at room temperature, that is, even at a high temperature of 1400°C, the strength does not decrease, but rather maintains a high strength.
つ、広い温度範囲に亘って極めて良好な酸化抵抗性を有
する。It also has extremely good oxidation resistance over a wide temperature range.
:r−,l)体摩耗(アブレージヨンとエロージョン)
Kすこぶる優秀な耐摩耗性を示す。:r-,l) Body wear (ablation and erosion)
K: Shows excellent abrasion resistance.
尤 溶融非鉄金属、特に銅および銅合金のエロージョン
およびコロ−ジョンにすばらしい抵抗性を示す。It exhibits excellent resistance to erosion and corrosion of molten non-ferrous metals, especially copper and copper alloys.
(2) 製造方法において ア、使用する原料はすべて入手容易な市販品である。(2) In the manufacturing method A. All raw materials used are easily available commercially available products.
イ、使用するブレーンの最大粒径を規定することにより
高密度化が達成できる。B. High density can be achieved by specifying the maximum grain size of the branes used.
つ、成形体の焼成前後の寸法変化(膨張または収縮)お
よび変形は無視できるほど小さい。従って焼成後の機械
加工は#1とんどの場合不必要である。First, the dimensional changes (expansion or contraction) and deformation of the molded body before and after firing are negligibly small. Therefore, post-firing machining is unnecessary in most cases #1.
鳳 焼成は容易に得られる低温度で満足できる。Otori firing is satisfactory at low temperatures that are easily obtained.
尤 前記の如き傑出した特長を有する材料を前記製造方
法の特長からかかる通シ安価な方法により製造できる。In particular, materials having the above-mentioned outstanding features can be produced by such an inexpensive method due to the features of the above-mentioned production method.
本発明の゛β′サイア四ン結合炭化珪素質材料は、既述
した通り種々の優れた特長を有するため、下記の如き広
範な産業分野で顕著な効果を発揮できる。The ``β' siatetrabond silicon carbide material of the present invention has various excellent features as described above, and therefore can exhibit remarkable effects in a wide range of industrial fields such as those described below.
(1)鉄鋼業
熱処理炉用スキッドレール、同スキッド−タン、輻射伝
熱管、浸漬型燃焼管、各種保獲管、高炉内張耐火物等。(1) Skid rails for steel industry heat treatment furnaces, skid tongues, radiant heat transfer tubes, immersed combustion tubes, various storage tubes, blast furnace lining refractories, etc.
(2) 非鉄全域工業
溶解炉内張耐火物、樋材、攪拌インペラ、ストークス等
。(2) Nonferrous industrial melting furnace lining refractories, gutter materials, stirring impellers, Stokes, etc.
(3) セラミックス工業
焼成炉用棚板、支柱、匣鉢、吊棒、台板などの窯道具類
、a−5p−ハース炉用ローラー、炉床盤等。(3) Kiln tools such as shelves, supports, saggers, hanging rods, and base plates for ceramic industrial firing furnaces, rollers for a-5p hearth furnaces, hearth plates, etc.
(4)諸工業
原料、製品および廃棄物の搬送路および貯蔵槽の滑り面
ライニング材、スプレーノズル、換熱材、スラリーポン
プ部材等。(4) Sliding surface lining materials for transportation routes and storage tanks for various industrial raw materials, products, and waste, spray nozzles, heat exchange materials, slurry pump components, etc.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
実施例1
最大′粒径4鑓以下に調整し九市販1級炭化珪素粒(s
ic分97重量−以上)、金属珪素粉末(平均粒径8μ
島)、アルミニウム粉末(平均粒径8μm)および蒸発
シリカ(SIO,分98重量−以上、比表面積30m”
/f)t−用いて表−1の配合に従って混合し、これに
適量のパルプ廃液(約3〜5重蓋部)を加えてさらに混
練し、混線物から外径150a1、内径80閤、高さ1
00aの円筒型ホットプレス用臼を振動加圧成形した。Example 1 Nine commercially available first grade silicon carbide particles (s
IC content: 97% by weight or more), metallic silicon powder (average particle size: 8μ)
aluminum powder (average particle size 8 μm) and evaporated silica (SIO, min. 98 wt.), specific surface area 30 m”
/f) Mix according to the formulation in Table 1 using T-T, add an appropriate amount of pulp waste liquid (approximately 3 to 5 layers) and knead further, and mix the mixed wire with an outer diameter of 150 a1, an inner diameter of 80 g, and a high Sa1
A cylindrical hot press die of 00a was molded by vibration pressure.
成形体を乾燥後、常圧下、窒素ガス雰囲気中、1450
℃、8時間焼成した。焼成体の嵩比重および見掛気孔率
測定後、焼成体から曲げ強さ試験片(15X10X10
0g)′Ik切出し、室温および1400℃の曲げ強さ
を測定した。それらの結果を表−IK示す。After drying the molded body, under normal pressure and nitrogen gas atmosphere, 1450
C. for 8 hours. After measuring the bulk specific gravity and apparent porosity of the fired body, bending strength test pieces (15X10X10
0g)'Ik was cut out, and the bending strength at room temperature and 1400°C was measured. The results are shown in Table IK.
(以下余白)
表−1の成分くおいて、比較例である試料6および7は
骨材相成分/結合相成分重量比が、また試料8は2値が
、試料9は骨材相成分の炭化珪素粒の最大粒径がそれぞ
れ本発明範囲外のものであり、従来例の試料lOは市販
窒化珪素結合炭化珪素質並型れんがである。(Left below) Regarding the components in Table 1, samples 6 and 7, which are comparative examples, have a weight ratio of aggregate phase component/binder phase component, sample 8 has a binary value, and sample 9 has a weight ratio of aggregate phase component. The maximum grain size of each silicon carbide grain is outside the range of the present invention, and the conventional sample IO is a commercially available silicon nitride bonded silicon carbide normal brick.
表−1より明らかなように1本発明例である試料1〜5
は比較例および従来例試料に比べて曲げ強さが室温、1
400℃ともに大きく、%に1400Cの強さが著しく
高い。また本発明例では1400℃の曲げ強さが室温の
それを上回る例(試料1,2および5)すらあり、試料
3および4の場合、1400℃で室温より極めてわずか
強度が低下傾向にあるが、比較例や従来例に比べるとな
お強度は高水準にある。As is clear from Table 1, Samples 1 to 5 which are examples of the present invention
The bending strength is lower than that of the comparative and conventional samples at room temperature and 1
Both 400℃ and 1400C strength are extremely high. In addition, in the examples of the present invention, there are even examples (Samples 1, 2 and 5) whose bending strength at 1400°C exceeds that at room temperature, and in the case of samples 3 and 4, the strength at 1400°C tends to decrease very slightly compared to room temperature. The strength is still at a high level compared to comparative examples and conventional examples.
試料2(本発明例)および試料10(従来例)と同様の
ホットプレス用臼について実用比較した結果、試料2は
試料10に比べて2.0〜2.1倍の寿命を示した。ま
た実用上の要請からホットプレス圧を従来より20チア
ツゾした同テストにおいて試料2は試料10の3倍の寿
命を示した。これは本発明林料の高温高強度が寿命を大
きく延ばした要因の一つと考えられる。As a result of practical comparison of hot press dies similar to Sample 2 (example of the present invention) and Sample 10 (conventional example), Sample 2 exhibited a lifespan 2.0 to 2.1 times longer than Sample 10. In addition, in the same test in which the hot press pressure was 20 times higher than before due to practical requirements, Sample 2 showed three times the lifespan of Sample 10. This is considered to be one of the reasons why the high temperature and high strength of the forest material of the present invention greatly extended its life.
実施例2
実施例1の試料2と同じ配合で成形法のみを油圧成形法
に変えて試料2′の皿型れんが(230XI 14X6
5mgK)を得た。この試料2′のれんがを溶解銅の樋
において最も損耗の速い部位に試料10のれんがと貼合
わせ実用試験全行った。1ケ月稼動後、試料10のれん
がはメタルライン近傍に一部溶損(コロ−ジョンとキャ
ビチーエロージョンによる〕が認められ次が試料2′の
れんがは全く損傷が認められなかった。Example 2 Sample 2' dish-shaped bricks (230XI 14X6
5 mg K) was obtained. This brick of Sample 2' was laminated with the brick of Sample 10 at the part of the molten copper gutter where wear is the fastest, and all practical tests were carried out. After one month of operation, the brick of sample 10 showed some corrosion damage (due to corrosion and cavity erosion) near the metal line, and the brick of sample 2' showed no damage at all.
実施例3
実施例1の試料2と同一配合に、ノソルプ廃液4重量部
および水1重量部を添加、混合し、ラミング成形法によ
り板状晶(400X350X10M)を成形し、実施例
1と同条件にて焼成し試料2〃を得た。Example 3 4 parts by weight of Nosolp waste liquid and 1 part by weight of water were added and mixed to the same formulation as Sample 2 of Example 1, and plate crystals (400 x 350 x 10 M) were formed by ramming molding method under the same conditions as Example 1. Sample 2 was obtained by firing.
この試料2〃と従来例の試料として試料11゜12およ
び13の市販品について酸化試験を行った。試料11,
12および13はそれぞれ珪酸塩結合、窒化珪素結合お
よび再結晶の炭化珪素質板状晶(400X350XI
Oa+)である。酸化試験は1000℃および1200
℃で各500時間、空気と水蒸気の共存雰囲気中で行っ
た。各試料の物理的性質測定結果と酸化試験結果を表−
2に示す。An oxidation test was conducted on this sample 2 and commercially available samples 11, 12, and 13 as conventional samples. Sample 11,
12 and 13 are silicon carbide plate crystals (400X350XI) with silicate bonds, silicon nitride bonds, and recrystallization, respectively.
Oa+). Oxidation test is 1000℃ and 1200℃
The test was carried out at ℃ for 500 hours each in an atmosphere of coexistence of air and water vapor. Table showing the physical property measurement results and oxidation test results for each sample.
Shown in 2.
(以下余白)
表−2より明らかなように、本発明例の試料2〃は従来
例の各試料に比べて曲げ強さが室温および1400℃の
場合ともに遥かに大きく、また酸化抵抗性も1000℃
、1200’Cともに優れたものであった。試料13に
比べて試料2〃は1400℃の曲げ強さが小さいものの
酸化抵抗性、特に1200℃において両者の間に決定的
な差があり、試料13は高温酸化に極めて弱いことが明
らかである。以上のことから、本発明材料は酸化抵抗性
および高温強度に優れ、高温酸化雰囲気かつ高荷重下で
使われる熱処理用窯道具類、治具等の用途に極めて好適
であることがわかる。(Left below) As is clear from Table 2, Sample 2 of the present invention has a much higher bending strength at both room temperature and 1400°C than the conventional samples, and also has an oxidation resistance of 1000°C. ℃
, 1200'C were both excellent. Compared to sample 13, sample 2 has a lower bending strength at 1400°C, but there is a decisive difference in oxidation resistance, especially at 1200°C, and it is clear that sample 13 is extremely susceptible to high-temperature oxidation. . From the above, it can be seen that the material of the present invention has excellent oxidation resistance and high-temperature strength, and is extremely suitable for use in heat treatment kiln tools, jigs, etc. that are used in high-temperature oxidizing atmospheres and under heavy loads.
実施例4
実施例2で得られた試料2′、実施例1で示した試料1
0(窒化珪素結合)および実施例3の従来例試料11の
いずれも皿型れんかについてサンドブラスト摩耗試験を
行った。試験はいずれも皿型れんがの焼成面とれんが中
央部の切断面(いずれも65X114m)を照射面とし
て各試料をアトランダムに回転台径方向に固定し、回転
台を一定速度で回転しながらアランダム砥粒+36を照
射面に僑直にプラストして行った。Example 4 Sample 2' obtained in Example 2, Sample 1 shown in Example 1
0 (silicon nitride bond) and Conventional Example Sample 11 of Example 3, both of which were subjected to a sandblasting abrasion test on dish-shaped bricks. In both tests, each sample was randomly fixed in the radial direction of the rotary table with the fired surface of a dish-shaped brick and the cut surface of the central part of the brick (both 65 x 114 m) as the irradiation surface, and the rotary table was rotated at a constant speed. Random abrasive grains +36 were directly applied to the irradiated surface.
その結果を表−3に示す。The results are shown in Table-3.
(以下余白)
表−3の結果より゛明らかなように、本発明例の試料2
′は従来例の各試料に比べて摩耗体積が著しく小さく、
また焼成面と切断面の摩耗体積の間に従来例(試料10
ンの如き大きな差は全くなく、このことは本発明の試料
2′のれんがの組織の均質性を裏付けるものである。こ
のように本発明材料によれば、石炭、鉄鉱石等の天然鉱
産物、セメントクリンカ−1鉱滓等の人工鉱産物の搬送
路および貯蔵槽の耐摩耗性ライニング材料として有益で
ある。(The following is a blank space) As is clear from the results of Table 3, Sample 2 of the present invention example
′ has a significantly smaller wear volume than each conventional sample.
In addition, there is a gap between the wear volume of the fired surface and the cut surface in the conventional example (sample 10).
There is no such large difference as in the sample 2', which confirms the homogeneity of the structure of the brick of sample 2' of the present invention. As described above, the material of the present invention is useful as a wear-resistant lining material for transportation routes and storage tanks for natural mineral products such as coal and iron ore, and artificial mineral products such as cement clinker-1 slag.
Claims (1)
相と、一般式Si_6_−_zAl_zO_2N_8_
−_z(但し、0<z≦3)で示されるβ′サイアロン
の結合相からなり、前記骨材相と結合相の重量比が 90/10〜70/30であり、見掛気孔率が10%以
下であることを特徴とするβ′サイアロン結合炭化珪素
質材料。 2、最大4〜1mmの粒径を含む炭化珪素質粒子の骨材
相と、焼成後に一般式Si_6_−_zAl_zO_z
N_8_−_z(但し、0<z≦3)で示されるβ′サ
イアロンとなる割合の金属珪素、アルミニウムおよび珪
酸質の微粉末とを混合、成形し、該成形体を乾燥後、温
度1300〜1600℃、常圧下、窒素を含む非酸化性
雰囲気中で焼成し、見掛気孔率10%以下となすことを
特徴とする、β′サイアロン結合炭化珪素質材料の製造
方法。[Claims] 1. An aggregate phase of silicon carbide particles having a maximum grain size of 4 to 1 mm and having the general formula Si_6_-_zAl_zO_2N_8_
−_z (however, 0<z≦3), the weight ratio of the aggregate phase and the binder phase is 90/10 to 70/30, and the apparent porosity is 10. % or less of β′sialon bonded silicon carbide material. 2. An aggregate phase of silicon carbide particles with a particle size of up to 4-1 mm and a general formula Si_6_-_zAl_zO_z after calcination.
Metallic silicon, aluminum, and silicic acid fine powder are mixed and molded in proportions to form β' sialon represented by N_8_-_z (0<z≦3), and the molded body is dried and then heated to a temperature of 1300 to 1600. 1. A method for producing a β'-sialon bonded silicon carbide material, which comprises firing the material at 10° C. under normal pressure in a non-oxidizing atmosphere containing nitrogen to obtain an apparent porosity of 10% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59218072A JPS6197165A (en) | 1984-10-17 | 1984-10-17 | Beta' sialon bonding silicon carbide material and manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59218072A JPS6197165A (en) | 1984-10-17 | 1984-10-17 | Beta' sialon bonding silicon carbide material and manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6197165A true JPS6197165A (en) | 1986-05-15 |
Family
ID=16714202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59218072A Pending JPS6197165A (en) | 1984-10-17 | 1984-10-17 | Beta' sialon bonding silicon carbide material and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6197165A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6764742B2 (en) | 2001-02-02 | 2004-07-20 | Ngk Insulators, Ltd. | Honeycomb structure body and production method thereof |
WO2024038720A1 (en) * | 2022-08-19 | 2024-02-22 | 日本碍子株式会社 | Refractory material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5450014A (en) * | 1977-09-28 | 1979-04-19 | Toshiba Ceramics Co | Refractory using betaasialon as binding matrix and method of making same |
JPS5450015A (en) * | 1977-09-28 | 1979-04-19 | Toshiba Ceramics Co | Method of making refractory using betaasialon as binding matrix |
-
1984
- 1984-10-17 JP JP59218072A patent/JPS6197165A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5450014A (en) * | 1977-09-28 | 1979-04-19 | Toshiba Ceramics Co | Refractory using betaasialon as binding matrix and method of making same |
JPS5450015A (en) * | 1977-09-28 | 1979-04-19 | Toshiba Ceramics Co | Method of making refractory using betaasialon as binding matrix |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6764742B2 (en) | 2001-02-02 | 2004-07-20 | Ngk Insulators, Ltd. | Honeycomb structure body and production method thereof |
WO2024038720A1 (en) * | 2022-08-19 | 2024-02-22 | 日本碍子株式会社 | Refractory material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3212600B2 (en) | Refractory material bound by sialon substrate and method of preparation | |
EP0153000B1 (en) | Refractories of silicon carbide and related materials having a modified silicon nitride bonding phase | |
US4690790A (en) | Silicon nitride/silicon carbide composition and articles thereof | |
US2636828A (en) | Silicon nitride-bonded refractory oxide bodies and method of making | |
JPH10509686A (en) | Novel substance consisting of refractory particles bound in an aluminum nitride matrix or a titanium nitride containing sialon matrix | |
JP3311755B2 (en) | Reaction-bonded silicon carbide refractory products | |
JPS61178469A (en) | Manufacture of silicon carbide base sintered body | |
WO2019077318A1 (en) | Refractory material | |
PL190654B1 (en) | Self-castable basic concrete mix and moulded products made thereof | |
JPS6197165A (en) | Beta' sialon bonding silicon carbide material and manufacture | |
JP2016502486A (en) | Method for producing magnesia or magnesia spinel refractory material, and magnesia or magnesia spinel refractory material | |
JPS6335593B2 (en) | ||
JPS6210954B2 (en) | ||
JPS5891065A (en) | Manufacture of silicon carbide ceramic sintered body | |
Velappan et al. | Influence of ferrosilicon sintering aid on microstructure and mechanical properties of silicon nitride bonded SiC refractories | |
JPH01502426A (en) | Method for preparing aluminum oxide ceramics with increased wear resistance | |
JPS6247834B2 (en) | ||
JP3012260B2 (en) | High purity, coarse crystal sintered magnesia clinker and method for producing the same | |
JPS6343344B2 (en) | ||
EP2695868A1 (en) | Refractory | |
JPS60246267A (en) | Silicon carbide base sintered body | |
US2670301A (en) | Refractory bodies and compositions and methods for making the same | |
JPS5915113B2 (en) | Method for manufacturing dense β′-sialon sintered body | |
Ault | Raw materials for refractories: SiC and Si3N4 | |
JPS5943436B2 (en) | Method for manufacturing dense β′-sialon sintered body |