JPS6196639A - Rotary anode x-ray tube - Google Patents

Rotary anode x-ray tube

Info

Publication number
JPS6196639A
JPS6196639A JP59216200A JP21620084A JPS6196639A JP S6196639 A JPS6196639 A JP S6196639A JP 59216200 A JP59216200 A JP 59216200A JP 21620084 A JP21620084 A JP 21620084A JP S6196639 A JPS6196639 A JP S6196639A
Authority
JP
Japan
Prior art keywords
cylindrical member
rotating
ray tube
anode
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59216200A
Other languages
Japanese (ja)
Inventor
Mototatsu Doi
元達 土肥
Kazuhiko Kawaike
川池 和彦
Mototsugu Omori
基次 大森
Keitaro Harada
原田 慶太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP59216200A priority Critical patent/JPS6196639A/en
Publication of JPS6196639A publication Critical patent/JPS6196639A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • H01J35/1017Bearings for rotating anodes
    • H01J35/1024Rolling bearings

Abstract

PURPOSE:To reduce change in clearance of ball bearing due to thermal expansion of X-ray tube in the axial direction, stabilize rotation and reduce noise level by using a material having a thermal expansion coefficient smaller than that of stationary side as the cylindrical material which specifies interval of bearing device in the rotating side material. CONSTITUTION:An anode target 1 is coupled to the one end of a drive motor rotor 3 and two ball bearings 4 are fixed in the specified interval with the cylindrical member 6 in the outer ring (rotating) side and the cylindrical member 7 in the inner ring (stationary) side. The compositions of cylindrical member 6 in the outer ring side is, for example, Fe-40Ni-0.45Mn, while the cylindrical member 7 in the inner ring side is SUS316. The cylindrical member 9 of the outer ring has the thermal expansion of about 1/4 the thermal expansion of the cylindrical member 78 in the inner ring side. Since the thermal expansion difference is generated even in the radius direction when the outer ring side becomes longer than the inner ring side, elongation in the axial direction can be eliminated sufficiently by the groove at the running surface of ball bearing and the clearance in the axial direction which is equal to the initial condition or more can be assured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は回転陽極X線管の改良に係シ、特に高速回転X
線管、大容量X線管の回転性能向上に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to the improvement of rotating anode X-ray tubes, and particularly to the improvement of rotating anode X-ray tubes.
Related to improving the rotational performance of ray tubes and large-capacity X-ray tubes.

〔発明の背景〕[Background of the invention]

従来から回転する重金属円板(タングステン。 Traditionally, rotating heavy metal disks (tungsten.

モリブデン等、以下ターゲットと称す)に熱電子を射突
させ、X線を発生する回転陽極X線管(以下X線曽と称
す)というものが知られている。X線管は主に、上記タ
ーゲットを含む回転陽極、熱電子を発生する陰極、及び
これらを収納配置するガラス容器とから成っておシ、容
器内部は1O−6torr以下の高真空に保たれている
。熱電子がターゲットに射突するとX線が発生するが、
熱電子エネルギーの99−以上が熱に変換するため、瞬
時に高温となり容易にターゲット金属の融点に達してし
まうため、これを防止する目的で回転させる。回転によ
り熱発生点は時々刻々移動し、電子線が射突した熱発生
点では伝導による熱の拡散が起こり、ターゲット金属の
許容温度以下に維持でき、連続的にX線を発生させられ
るのである。回転させるには軸受装置が必要であるが、
使用条件は上記の如く高真空(10−6torr以下)
、高温(最高500tl’)という苛酷さのため、固体
(銀。
A rotary anode X-ray tube (hereinafter referred to as an X-ray tube) is known that generates X-rays by bombarding a target such as molybdenum with thermoelectrons. The X-ray tube mainly consists of a rotating anode containing the above-mentioned target, a cathode that generates thermionic electrons, and a glass container in which these are housed. There is. When thermoelectrons hit a target, X-rays are generated.
Since 99 or more of thermionic energy is converted into heat, the temperature instantly becomes high and easily reaches the melting point of the target metal, so the target metal is rotated to prevent this. Due to the rotation, the heat generation point moves moment by moment, and at the heat generation point where the electron beam hits, heat is diffused by conduction, which allows the target metal to maintain its temperature below the allowable temperature and generate X-rays continuously. . A bearing device is required to rotate it, but
The usage conditions are high vacuum (10-6 torr or less) as above.
, solid (silver) due to the harshness of high temperatures (up to 500 tl').

Mo8K、鉛等)で潤滑した特殊な玉軸受が採用されて
いる。これらの軸受は通常の油潤滑で使用する機器では
全く問題とならない荷重、速度条件下にありきわめて長
寿命となるのであるが、上記の様な真空、高温条件下に
おいて固体で潤滑するため回転騒音、振動が大きいばか
りでなく、寿命が短かいという問題がついてまわる。特
に高度な診断に欠くことのできない高速高輝度X線管、
CT用大容量X線管等においては重要な問題となる。
A special ball bearing lubricated with Mo8K, lead, etc.) is used. These bearings have an extremely long lifespan under load and speed conditions that would not cause any problems with equipment used with normal oil lubrication. However, because they are lubricated with solid under the vacuum and high temperature conditions mentioned above, rotational noise may occur. However, not only do they produce large vibrations, but they also have short lifespans. In particular, high-speed, high-brightness X-ray tubes are indispensable for advanced diagnosis.
This becomes an important problem in large-capacity X-ray tubes for CT and the like.

Xg管の回転機械としての特殊性は覧受部が5oocに
まで昇温する点にある。しかも、玉軸受の転動体(玉)
を境として回転体側と静止体側では過渡的には300 
deg以上、定常状態で100〜200 deg前後の
温度差が生じる。玉軸受の温度差は軸受すきまの変化を
招き、設計を誤るとすきまがなくなシ転動体を内輪と外
輪が締めつけ、過大な荷重が生じ回転不能におちいる。
The special feature of the Xg tube as a rotating machine is that the temperature of the viewing section rises to 5ooc. Moreover, the rolling elements (balls) of ball bearings
300 transiently on the rotating body side and stationary body side with
degree or more, a temperature difference of around 100 to 200 degrees occurs in a steady state. Temperature differences in ball bearings cause changes in the bearing clearance, and if the bearing is incorrectly designed, the clearance will disappear and the inner and outer rings will tighten on the rolling elements, creating an excessive load and making it impossible to rotate.

また、この事態を避けるため軸受すきまをはじめから4
0〜50μmと大きく設定する手法が採られることがあ
るが、大きな温度差がつかないうちは軸受すきまが大き
いために回転体全体がかつてに不規則な運動を起こし、
ターゲットの振れが大きくなるという欠点が生じる。タ
ーゲットの振れが大きいとX線画像が不鮮明となったシ
、回転体に動荷重が生じ、逼受の損傷、アンバランス盪
の増大等の不具合が生じる危険性が高くなる。
In addition, to avoid this situation, the bearing clearance should be increased to 4.
A method of setting the temperature to a large value of 0 to 50 μm is sometimes adopted, but until a large temperature difference occurs, the bearing clearance is large, causing the entire rotating body to move irregularly.
This has the disadvantage that the target deflection increases. If the target shakes too much, the X-ray image will become unclear, and dynamic loads will be generated on the rotating body, increasing the risk of problems such as damage to the bearing and increased imbalance.

一方、温度上昇により軸受すきまが変化する場合には例
えば特開昭52−55395号公報に示されるようにコ
イルバネ等により予圧をかけ常に軸受すきまをなくす構
造が推奨されている。第9図は一般的なコイルバネ予圧
構造を示すが、これまでの種々の実験検討により、この
構造ではどうしても安定な回転状態を長時間にわたって
維持することはできなかった。前述の如くX線管の軸受
は固体で潤滑せねばならず、油潤滑に比べ転勤面の表面
が荒損した状態で使用せざるを得ない。そのため、回転
に伴いころがシ振動が大きくなり玉と内外輪転走面間に
生じる振動荷重が大きく、しかも油による振動吸振作用
が無いため予圧バネで押しつけられている転走輪(図で
は内輪)が軸方向に微小振動し易い。そのため、予圧摺
動部がフレッティング摩耗を起こし、容易にかじシ状態
となり適正な予圧力が維持できず、しばしば予圧過大と
なり回転不能となる。また、転走輪が軸方向に微小振動
するため、玉の転走路が定まらず、玉と内外輪転走面の
損傷が急速に進展する。七の結果、損傷の進展→転走輪
の軸方向微小振動の増大→損傷の進展と連鎖反応的に軸
受を傷つけ回転不能に至らしめる。
On the other hand, when the bearing clearance changes due to a rise in temperature, a structure is recommended that always eliminates the bearing clearance by applying preload using a coil spring or the like, as shown in, for example, Japanese Patent Laid-Open No. 52-55395. FIG. 9 shows a general coil spring preload structure, but as a result of various experiments and studies to date, it has been found that this structure cannot maintain a stable rotational state for a long period of time. As mentioned above, the bearings of the X-ray tube must be lubricated with a solid material, and as compared to oil lubrication, the bearings of the X-ray tube must be used with roughened transfer surfaces. As a result, the rollers vibrate as they rotate, creating a large vibration load between the balls and the inner and outer ring raceway surfaces.Furthermore, since there is no vibration absorption effect due to oil, the rollers are pressed against each other by a preload spring (inner ring in the figure). is prone to slight vibration in the axial direction. As a result, the preloaded sliding portion suffers fretting wear, easily becoming locked, unable to maintain an appropriate preload force, and often resulting in excessive preload, making it impossible to rotate. Furthermore, since the rolling wheels vibrate minutely in the axial direction, the rolling path of the balls is not determined, and damage to the balls and the inner and outer ring raceway surfaces progresses rapidly. As a result of step 7, the damage progresses → the axial micro-vibration of the rolling wheels increases → the damage progresses, and the bearing is damaged in a chain reaction, making it unable to rotate.

予圧摺動部のフレッティング摩耗に起因するかじシを根
本的に解決する方策として米国特許第3634870号
がある。この構造においては予圧バネで押しつけられる
べき転走面をバネ作用を有す軸受支持体に装着するため
、予圧摺動部が存在せず、かじりに起因する不具合は完
全に解決できる。
US Pat. No. 3,634,870 is a measure to fundamentally solve the problem of steering caused by fretting wear of preloaded sliding parts. In this structure, since the rolling surface to be pressed by the preload spring is mounted on a bearing support having a spring action, there is no preload sliding part, and problems caused by galling can be completely solved.

しかし、転走輪がバネ体で支持されるため、逆に自由度
が増すことになり、軸方向のみならず半径方向にも微小
振動し易くなシ、前述の如く玉と転走面の損傷を進展さ
せるという問題は解決できない。
However, since the rolling wheels are supported by spring bodies, their degree of freedom increases, making them susceptible to minute vibrations not only in the axial direction but also in the radial direction. The problem of making progress is unsolvable.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来技術の欠点に鑑みなされたもので、X
線管の軸方向の熱膨張による玉軸受のすきま変化量を低
減し、回転を安定にし低騒音でかつ長寿命な回転陽極X
線管を提供することを目的とする。
The present invention was made in view of the drawbacks of the above-mentioned prior art, and
Rotating anode
The purpose is to provide wire tubes.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは部材の熱膨張量は温度と熱
膨張係数の積によシ決まるという基本的物理現象に着目
し、X線管回転陽極の熱の伝わり方、す々わち陽極軸受
近房の各点の温度上昇を把握し、これらを総合的に見直
し、温度差がついても軸受すきまを実用上問題とならな
いレベルにまで減少した点にある。
A feature of the present invention is that the amount of thermal expansion of a member is determined by the product of temperature and coefficient of thermal expansion. By understanding the temperature rise at each point in the vicinity of the bearing, and reviewing these comprehensively, we were able to reduce the bearing clearance to a level that does not pose a practical problem even if there is a temperature difference.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図に従って説明する。回
転部材となる駆動モータロータ3の一端に陽極部材とな
る陽極ターゲット1が締結され、これらは間隔を設けて
配置した二個の玉軸受4で回転自在に支持されている。
An embodiment of the present invention will be described below with reference to FIG. An anode target 1, which is an anode member, is fastened to one end of a drive motor rotor 3, which is a rotating member, and is rotatably supported by two ball bearings 4 spaced apart from each other.

二個の玉軸受は外輪側(回転側)円筒部材6と内輪側(
静止側)円筒部材7とで規定の間隔に固定されている。
The two ball bearings are an outer ring side (rotating side) cylindrical member 6 and an inner ring side (rotating side) cylindrical member 6.
Stationary side) It is fixed at a prescribed interval with the cylindrical member 7.

外輪側円筒部材6の材質組成はFe−4ONi−0,4
5Mn 。
The material composition of the outer ring side cylindrical member 6 is Fe-4ONi-0,4
5Mn.

内輪側円筒部材7はSUS 316 (J’I S規格
)としており、室温から300Cまでの熱膨張係数はそ
れぞれ9 X 10”’/r、 2.3 X 10−’
/cで、外輪側円筒部材6は内輪側円筒部材7にくらべ
約1/4の熱膨張量となる。玉軸受4は軸受支持部材5
に固定され、この軸受支持部材5の一部と管球容器とな
るガラス管球8とで回転全体を真空状に覆い、かつ陽極
ターゲットの対向面には陰極部材となる陰極体2が設け
られ、この陰極体2はガラス管球8内に固定されている
。このような構造のガラス管球8を回転陽極X線管(以
下X線管と称す)と呼んでいる。ガラス管球8の外周に
は磁界発生装置となるモータステータ9が絶縁フレーム
10に設けられ、絶縁フレーム10は外囲容器(図示せ
ず)に固定されている。引回容器内はX線管、モータス
テータ9のコイル等の冷却、及び絶縁の目的で絶縁油(
図示せず)が封入されている。
The inner ring side cylindrical member 7 is made of SUS 316 (J'IS standard), and the thermal expansion coefficients from room temperature to 300C are 9 x 10''/r and 2.3 x 10-', respectively.
/c, the amount of thermal expansion of the outer ring side cylindrical member 6 is about 1/4 that of the inner ring side cylindrical member 7. The ball bearing 4 is a bearing support member 5
The entire rotation is covered in a vacuum by a part of this bearing support member 5 and a glass tube 8 which is a tube container, and a cathode body 2 which is a cathode member is provided on the opposite surface of the anode target. , this cathode body 2 is fixed within a glass tube 8. The glass tube 8 having such a structure is called a rotating anode X-ray tube (hereinafter referred to as an X-ray tube). A motor stator 9 serving as a magnetic field generating device is provided on an insulating frame 10 around the outer periphery of the glass bulb 8, and the insulating frame 10 is fixed to an envelope (not shown). The interior of the routing container is filled with insulating oil (
(not shown) is enclosed.

この構成において陰極体2において発生した熱電子が3
00〜10000 r−で高速回転する陽極ターゲット
1に射突すると、陽極ターゲット10表面から図中の矢
印方向にX線が発生するが、既述の如く陽極ターゲット
1は急速に加熱され、最高1400 Cに達することも
ある。ガラス管球8の内部は高真空に気密保持されてい
るので、大半の熱は外部に放射伝熱されるが、一部は伝
導によシ駆動モータロータ3、及び玉軸受4、軸受支持
部材5へと伝熱され、玉軸受4は最高550Cにまで加
熱される。
In this configuration, the number of thermoelectrons generated in the cathode body 2 is 3
When it hits the anode target 1 rotating at a high speed of 00 to 10,000 r-, X-rays are generated from the surface of the anode target 10 in the direction of the arrow in the figure, but as mentioned above, the anode target 1 is rapidly heated and It may even reach C. Since the inside of the glass tube 8 is kept airtight in a high vacuum, most of the heat is radiated to the outside, but some of it is transferred to the drive motor rotor 3, ball bearing 4, and bearing support member 5 by conduction. As a result, the ball bearing 4 is heated to a maximum of 550C.

第2図は陽極ターゲット1に熱電子が射突してX線を発
生させる際の陽極ターゲット1、及び玉軸受4の昇温特
性の一例を実測した結果である。
FIG. 2 shows the results of actual measurement of an example of the temperature rise characteristics of the anode target 1 and the ball bearing 4 when thermoelectrons impinge on the anode target 1 to generate X-rays.

温度測定は陽極ターゲット1の中心に近い裏面、ターゲ
ットに近い玉軸受(高温側)の外輪と内輪及び反ターゲ
ット側(低温側)の外輪に熱電対を貼り付けて行った。
Temperature measurements were carried out by attaching thermocouples to the back surface near the center of the anode target 1, the outer ring and inner ring of the ball bearing (high temperature side) near the target, and the outer ring on the side opposite to the target (low temperature side).

なお、測定は回転させないで加熱できるように工夫して
いる。第2図から1)陽極ターゲット、軸受の回転側、
軸受の停止側の順に熱が伝導して行き、温度上昇にはか
なシの時間遅れがある。11)そのため軸受の外輪(回
転側)と内輪(静止側)の間には過渡時で最高350d
eg、定常時で約100 degの温度差がつく。
In addition, we have devised a way to heat the measurement without rotating it. From Figure 2, 1) Anode target, rotating side of the bearing,
Heat is conducted from the stopped side of the bearing, and there is a short time delay in temperature rise. 11) Therefore, there is a maximum distance of 350 d between the outer ring (rotating side) and inner ring (stationary side) of the bearing during transient periods.
eg, there is a temperature difference of about 100 deg at steady state.

iii )二つの軸受(高温側と低温側)の外輪の温度
差は約50 degでほぼ一定している。なお、これは
内輪側についても確認済みである。等が判る。
iii) The temperature difference between the outer rings of the two bearings (high temperature side and low temperature side) is approximately constant at approximately 50 degrees. This has also been confirmed for the inner ring side. etc. can be seen.

このように玉軸受を境として回転側と静止側との間には
大きな温度差が生じ、しかも時々刻々変化するのは玉と
内外輪転走面との接触面積が小さく、熱が伝導しにくい
ためである。
In this way, there is a large temperature difference between the rotating side and the stationary side of the ball bearing, and the reason why it changes from moment to moment is because the contact area between the balls and the inner and outer ring raceway surfaces is small, making it difficult for heat to conduct. It is.

第3図は本発明によるX線管の外輪側円筒部材と内輪側
円筒部材の熱膨張差を両部材の温度差をパラメータとし
て算出した結果である。比較のため第4図に従来例、す
なわち両部材ともSUS316で構成した場合の熱膨張
差を示している。第4図から明らかなように350 d
egの温度差がつくと熱膨張量は250μm異なり、外
輪側が内輪側より長くなる。玉軸受の内外ttS=走面
は玉の径よりわずかに大きい曲率で溝が形成されておシ
、軸方向の自由度(軸方向すきま)は半径方向すきまと
深く関係する。すなわち、駆動モータロータが先に昇温
し、二つの■受の外輪間隔が長くなっても同時に半径方
向にも温度差分だけの熱膨張差が生じるため、その結果
、軸方向の自由度は増大する。
FIG. 3 shows the results of calculating the difference in thermal expansion between the outer ring side cylindrical member and the inner ring side cylindrical member of the X-ray tube according to the present invention using the temperature difference between the two members as a parameter. For comparison, FIG. 4 shows the difference in thermal expansion in a conventional example, in which both members are made of SUS316. As is clear from Figure 4, 350 d
When there is a temperature difference in eg, the amount of thermal expansion differs by 250 μm, and the outer ring side becomes longer than the inner ring side. The inner and outer ttS = running surfaces of a ball bearing have grooves formed with a curvature slightly larger than the diameter of the balls, and the degree of freedom in the axial direction (axial clearance) is closely related to the radial clearance. In other words, even if the drive motor rotor heats up first and the distance between the outer rings of the two bearings becomes longer, a thermal expansion difference equal to the temperature difference will also occur in the radial direction, resulting in an increase in the degree of freedom in the axial direction. .

しかし、前述の熱膨張差全部を軸受転走面の溝形状のみ
で解消することは不可能であり、そのため従来は軸方向
すきまの初期値をはじめから100μm以上余分く付与
する必要があった。既述の如くX線管の玉軸受は内外輪
転走輪を両側からきつく剛に固定し、その状態で玉にわ
ずかな自由度、すなわち軸方向すきまが確保されるのが
望ましい。
However, it is impossible to eliminate the entire difference in thermal expansion described above only by the groove shape of the bearing raceway surface, and for this reason, conventionally, it has been necessary to provide an extra 100 μm or more in the initial value of the axial clearance. As mentioned above, it is desirable for the ball bearing of the X-ray tube to firmly and rigidly fix the inner and outer rolling wheels from both sides, and in this state, ensure a slight degree of freedom for the balls, that is, a clearance in the axial direction.

本発明では高温の回転側円筒部材を熱膨張係数の小さい
材料で構成したため350 degの温度差がついても
熱膨張量の差は90μmと従来にくらべて1/3に減少
でき、この程度の軸方向の伸びは転走面の屑形状で十分
に解消できる。すなわち半径方向の熱膨張による軸受す
きi(半径方向)の拡大により軸方向すきまが増加し、
これにより初期と同等以上の軸方向すきまが保たれるの
である。
In the present invention, since the high-temperature rotating side cylindrical member is made of a material with a small coefficient of thermal expansion, even if there is a temperature difference of 350 degrees, the difference in thermal expansion amount can be reduced to 90 μm, 1/3 compared to the conventional one. The elongation in this direction can be sufficiently eliminated by the shape of scrap on the raceway surface. In other words, the axial clearance increases due to the expansion of the bearing clearance i (radial direction) due to thermal expansion in the radial direction.
This maintains an axial clearance equal to or greater than the initial one.

転走面の溝曲率は土掻との比で表わされ、土掻に近いほ
ど負荷容量は増すが、摩擦トルクの増大を招き、しかも
軸受の傾き、及び半径方向すきまに対する軸方向すきま
の比が小さくなる。すなわち自由度が減少する。土掻に
くらべ溝曲率が大きくなると負荷容量は減るが、摩擦ト
ルクが小さくなシ、シかも半径すきまに対する軸方向す
きまの割合が増加する。これまでの研究検討、解析、及
び実験によればX線管の固体潤滑玉軸受では通常の油潤
滑で使用する玉軸受の溝曲率では摩擦トルクが大きすぎ
、逆に負荷容量は若干小さくても良いことが明らかとな
っている。そこで、少なくとも一方の転走輪の溝曲率を
大きくしているのが普通である。この場合、半径方向す
きまの増大に対する軸方向すきまの増加分は通常の玉軸
受のそれより大きくなり、溝形状が解消できる熱膨張に
よる軸方向の伸びの量は多くなる。このような玉軸受4
を用いたX線管では回転側円筒部材6を二分割とし、一
方は従来の5US316、他方をFe−4ONi−0,
45μm  とするとさらに良好な特性が得られる。
The groove curvature of the raceway surface is expressed as a ratio to the soil spacing, and the closer it is to the soil spacing, the higher the load capacity, but it also causes an increase in friction torque, and also increases the bearing inclination and the ratio of the axial clearance to the radial clearance. becomes smaller. In other words, the degree of freedom decreases. When the groove curvature is larger than that of a soil shovel, the load capacity decreases, but the ratio of the axial clearance to the radial clearance also increases in cases where the friction torque is small. According to research, analysis, and experiments to date, the friction torque of solid-lubricated ball bearings for X-ray tubes is too large due to the groove curvature of ball bearings used in normal oil lubrication, and conversely, even if the load capacity is slightly small, Good things are clear. Therefore, it is common practice to increase the groove curvature of at least one of the rolling wheels. In this case, the amount of increase in the axial clearance relative to the increase in the radial clearance is greater than that of a normal ball bearing, and the amount of axial elongation due to thermal expansion that can eliminate the groove shape increases. Such a ball bearing 4
In the X-ray tube that uses
Even better characteristics can be obtained if the thickness is set to 45 μm.

第5図は回転側円筒部材6を二等分し、それぞれの材質
を5US316とpe−4ON i −0,45μmと
した場合の熱膨張差を示している。温度差が350de
gの時の熱膨張差は20μmとやや大きくなるが、この
量は溝形状で十分に解消できる。
FIG. 5 shows the difference in thermal expansion when the rotating cylindrical member 6 is divided into two halves and the respective materials are 5US316 and pe-4ON i -0.45 μm. The temperature difference is 350 de
Although the difference in thermal expansion at g is slightly large at 20 μm, this amount can be sufficiently eliminated by the groove shape.

また、定常状態に移行して己度差が100 degとな
ると熱膨張量はほぼゼロとなり初期の状態にもどること
が判る。
Furthermore, it can be seen that when the steady state is reached and the degree difference becomes 100 degrees, the amount of thermal expansion becomes almost zero and returns to the initial state.

なお、外輪側円筒部材6の分割のしかた、及び材質の選
定は、駆動モータロータ3の形状、熱設計、玉軸受4の
溝形状等によシ決めるべきで、実施例にとられれること
はない。また、分割し異種材質を組合わせる円筒部材は
外輪側に限定せず、内輪側を分割、組合わせても良い。
The method of dividing the outer ring side cylindrical member 6 and the selection of the material should be determined based on the shape of the drive motor rotor 3, thermal design, groove shape of the ball bearing 4, etc., and are not limited to the embodiments. . Furthermore, the cylindrical member that is divided and combined with different materials is not limited to the outer ring side, but may be divided and combined on the inner ring side.

以上の実施例は軸受4の外輪が駆動モータロータ3に取
シ付けられ、外輪が回転し内輪が静止する構造であり、
外輪側の温度が高くなる。
In the above embodiment, the outer ring of the bearing 4 is attached to the drive motor rotor 3, and the outer ring rotates while the inner ring remains stationary.
The temperature on the outer ring side increases.

第6図は内輪が回転するX線管への本発明の適用実施例
で概略構成は第1図と同じである。回転側円筒部材6は
駆動モータロータ3の他端に取り付けられた軸3aに静
止側円筒部材7は軸受支持部材5に接して在シ、玉軸受
4の間隔を規定している。本実施例では陽極ターゲット
1に熱電子を射突させたときの陽極各部の温度上昇特性
は第1図の実施例に示したX線管のそれとは異なり、最
高温度差は300 deg、定常状態で150 deg
となった。しかし、本発明の適用法は原則的には変わり
なく、回転側円筒部材6はl;”e−4ONi −0,
45μm  、静止側円筒部材7は5US316で構成
している。その効果の説明は外輪が回転するX線管のそ
れと重複するので避ける。内輪、あるいは外輪転走面の
溝曲率、及び陽極設計に応じて回転側円筒部材6、ある
いは静止側円筒部材7を分割、異種材質を組合わせても
良い。
FIG. 6 shows an embodiment in which the present invention is applied to an X-ray tube with a rotating inner ring, and the general structure is the same as that in FIG. 1. The rotating cylindrical member 6 is attached to the shaft 3 a attached to the other end of the drive motor rotor 3 , and the stationary cylindrical member 7 is in contact with the bearing support member 5 to define the spacing between the ball bearings 4 . In this example, the temperature rise characteristics of each part of the anode when thermionic electrons are bombarded with the anode target 1 are different from those of the X-ray tube shown in the example of Fig. 1, and the maximum temperature difference is 300 degrees, steady state. at 150 degrees
It became. However, the application method of the present invention remains unchanged in principle, and the rotating side cylindrical member 6 is l;"e-4ONi -0,
45 μm, and the stationary side cylindrical member 7 is made of 5US316. I will avoid explaining the effect as it overlaps with that of an X-ray tube with a rotating outer ring. Depending on the groove curvature of the inner ring or outer ring raceway surface and the anode design, the rotating cylindrical member 6 or the stationary cylindrical member 7 may be divided and different materials may be combined.

第7図は本発明の他の実施例を示し、外輪側円筒部材6
にスリット6aを入れている。スリット6aを図の如く
加工することにより、軸方向バネ定数は204/ltr
mに低下させることができ、スリット6aの深さ、数、
ピンチにより希望する任意のバネ定数に設定することが
可能である。既述の如く、X線管固体潤滑玉軸受では玉
、及び内外輪転走面に1μm前後の凹凸が生じて荒損し
た状態で回転させるため、玉と内外輪間には高周波の立
ち上がシが鋭い動荷重が生じ易い。スリット付円筒部材
はバネ作用によりこの高周波動荷重を吸収する効果を発
揮し、そのため騒音を低減すると共に軸受寿命を延長す
る。
FIG. 7 shows another embodiment of the present invention, in which the outer ring side cylindrical member 6
A slit 6a is made in the. By processing the slit 6a as shown in the figure, the axial spring constant is 204/ltr.
The depth, number, and depth of the slits 6a can be reduced to m.
It is possible to set any desired spring constant by pinching. As mentioned above, in X-ray tube solid lubricated ball bearings, the balls and inner and outer rings are rotated in a rough state with unevenness of around 1 μm on the raceway surfaces, so a high-frequency riser is generated between the balls and the inner and outer rings. sharp dynamic loads are likely to occur. The slitted cylindrical member exhibits the effect of absorbing this high frequency dynamic load through spring action, thereby reducing noise and extending the life of the bearing.

なお、本発明によるスリット付円筒部材のバネ作用と〔
発明の背景〕の項で記述したバネ予圧構造は次の点で異
なり、前述の不具合は生じない。
Note that the spring action of the slitted cylindrical member according to the present invention and [
The spring preload structure described in the section ``Background of the Invention'' differs in the following points, and the above-mentioned problem does not occur.

すなわち、コイルバネ等を用いた予圧構造ではそのバネ
定数は高々2 Ky / wと低く、そのためバネによ
り押し付けられている転走輪が軸方向に容易に移動でき
る。そのため、摺動部に7レノテイ/グ摩耗が発生し、
かじシを起こすと共に玉の転走路が不安定になるという
欠点があった。本発明でのバネ定数はその数10倍から
数100倍に設定し、スリット付円筒部材によシ固定さ
れている転走輪の軸方向移動量は数μmと無視できる程
に抑制する。そのため、フレツテイング摩耗の発生は無
く、かつ玉の転走に悪影響を及ぼさず、高周波動荷重の
み吸収する。
That is, in a preload structure using a coil spring or the like, the spring constant is as low as 2 Ky/w at most, and therefore the rolling wheel pressed by the spring can easily move in the axial direction. As a result, 7renote/g wear occurs on the sliding parts,
This had the drawback that it caused the ball to spin and the rolling path of the ball became unstable. In the present invention, the spring constant is set to several tens to hundreds of times the spring constant, and the amount of axial movement of the rolling wheel fixed to the slitted cylindrical member is suppressed to a negligible several μm. Therefore, there is no occurrence of fretting wear, and there is no adverse effect on ball rolling, and only high frequency dynamic loads are absorbed.

第8図はスリット付円筒部材を組込んだX線管とスリッ
ト無し円筒部材を組込んだものの振動加速度を軸受支持
部材5の端部において実測比較した結果の一例を示す。
FIG. 8 shows an example of the result of actually measuring and comparing the vibration acceleration of an X-ray tube incorporating a cylindrical member with slits and a cylindrical member without slits at the end of the bearing support member 5.

振動加速度は高周波動荷重の強さを簡便に、かつ有効に
測定する手法として多用され、騒音の強さの目安にもな
る。高周波動荷重の強さは玉軸受の表面状態に強く影響
されるため、同じ玉軸受を供試しても完全に同じ表面状
態を維持することは困難モあるが、スリット付きと無し
をくり返し4回組み換えて測定し、結果を平均したとこ
ろ第8図の様になった。
Vibration acceleration is often used as a simple and effective method of measuring the strength of high-frequency dynamic loads, and can also be used as a measure of the strength of noise. The strength of the high-frequency dynamic load is strongly influenced by the surface condition of the ball bearing, so even if you test the same ball bearing, it is difficult to maintain the same surface condition, but we repeated it four times with and without slits. When the samples were recombined and measured and the results were averaged, the results were as shown in Figure 8.

スリット付き円筒部材には上記の主たる効果があるが、
熱膨張差が予想に反して過大になり、玉が内外輪転走面
間に押し付けられる事態に至った時、該円筒部材が軸方
向にたわむことによシ、押し付けられることにより生じ
るスラスト荷重を低減する効果を有する。
The slitted cylindrical member has the above main effects, but
When the difference in thermal expansion becomes unexpectedly large and the balls are pressed between the inner and outer raceway surfaces, the cylindrical member deflects in the axial direction, reducing the thrust load caused by the pressing. It has the effect of

スリット付円筒部材に作用する応力はきわめて弱いため
、許容応力が低い部材、例えば5US316、あるいは
Fe−4ONi−0,45Mn合金持でも問題はなく、
材質による性能の差異は無い。熱間工具鋼は500Cま
で焼きが戻らず、精密加工も容易であるため、回転精度
を要求したシ、高性能なX線管には好適である。なお、
スリン)6aを加工する方法としては高速カッタ、放電
加工等、いくつかあるが、高速カッタが迅速で精度も良
好であ 。
Since the stress acting on the slitted cylindrical member is extremely weak, there is no problem with a member with low allowable stress, such as 5US316 or Fe-4ONi-0,45Mn alloy.
There is no difference in performance depending on the material. Hot work tool steel does not reheat up to 500C and can be easily processed precisely, so it is suitable for high-performance X-ray tubes that require rotational precision. In addition,
There are several methods for machining Surin) 6a, such as high-speed cutters and electrical discharge machining, but high-speed cutters are faster and have better accuracy.

る。Ru.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、部材の熱膨張量は温度と熱膨張係数の
積によシ決まるという基本的物理現象に着目し、X線管
回転陽極における熱の伝わり方、すなわち陽極軸受近傍
の各点の温に上昇を実測、解析により把握し、これらを
総合的に見直し、温度差がついても軸受すきまを実用上
問題とならない量にまで減少するので、回転が安定で低
騒音、しかも長寿命な回転陽極X線管を提供できる。
According to the present invention, focusing on the fundamental physical phenomenon that the amount of thermal expansion of a member is determined by the product of temperature and coefficient of thermal expansion, the present invention focuses on the fundamental physical phenomenon that the amount of thermal expansion of a member is determined by the product of temperature and coefficient of thermal expansion. By actually measuring and analyzing the temperature rise of A rotating anode X-ray tube can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による回転陽極X線管の実施例の部分断
面図、第2図は陽極各部の温度上昇の実測結果の一例を
示す説明図、第3図及び第5図は本発明による熱膨張量
の低減効果を示す説明図、第4図は従来のX線管におけ
る円筒部材の熱膨張量を示す説明図、第6図は本発明に
よる回転陽極X線管の他の実施例の部分断面図、第7図
は本発明による円筒部材の拡大図、第8図は゛本発明に
よる回転陽極X線管の振動低減効果を示す説明図、第9
図は一般的な定圧予圧構造を示す概略図。 1・・・陽極ターゲット、2・・・陰極体、3・・・駆
動モータロータ、4・・・玉軸受、5・・・軸受支持部
材、6・・・回転側円筒部材、7・・・静止側円筒部材
、8・・・ガラス管球、9・・・モータステータ、10
・・・絶縁フV −ム、3a・・・咄、6a・・・スリ
ット。
FIG. 1 is a partial cross-sectional view of an embodiment of the rotating anode X-ray tube according to the present invention, FIG. 2 is an explanatory diagram showing an example of the actual measurement results of the temperature rise of each part of the anode, and FIGS. 3 and 5 are according to the present invention. An explanatory diagram showing the effect of reducing the amount of thermal expansion. FIG. 4 is an explanatory diagram showing the amount of thermal expansion of a cylindrical member in a conventional X-ray tube. FIG. 6 is an explanatory diagram showing the amount of thermal expansion of a cylindrical member in a conventional X-ray tube. 7 is an enlarged view of the cylindrical member according to the present invention; FIG. 8 is an explanatory diagram showing the vibration reduction effect of the rotating anode X-ray tube according to the present invention; FIG.
The figure is a schematic diagram showing a general constant pressure preload structure. DESCRIPTION OF SYMBOLS 1... Anode target, 2... Cathode body, 3... Drive motor rotor, 4... Ball bearing, 5... Bearing support member, 6... Rotating side cylindrical member, 7... Stationary Side cylindrical member, 8...Glass tube, 9...Motor stator, 10
・・・Insulating film V-frame, 3a... 咄, 6a... slit.

Claims (1)

【特許請求の範囲】 1、陰極部材と対向配置した陽極部材と、この陽極部材
と一体構成の回転部材と、回転部材を回転自在に支持す
る軸受装置と、軸受装置の静止体側を固定する軸受支持
部材と、軸受支持部材の一部と容器とで上記部材を覆い
、真空状に構成した回転陽極X線管において、前記軸受
装置の間隔を規定する円筒部材を、回転側と静止側で異
種部材としたことを特徴とする回転陽極X線管。 2、前記回転陽極X線管において、回転側の円筒部材は
静止側の円筒部材より熱膨張係数が小さい部材としたこ
とを特徴とする特許請求の範囲第1項記載の回転陽極X
線管。 3、前記回転陽極X線管において、回転側、又は静止側
の円筒部材を二つ以上に分割し、それらの部材の熱膨張
係数を異ならせたことを特徴とする特許請求の範囲第1
項記載の回転陽極X線管。 4、前記回転陽極X線管において、静止側の円筒部材を
ステンレス鋼等の鉄鋼材料とし、回転側の円筒部材をF
e−Ni合金、又はMo合金等の前記静止側の円筒部材
の熱膨張係数より小さい値を持つ材料としたことを特徴
とする特許請求の範囲第1項記載の回転陽極X線管。 5、前記回転陽極X線管において、回転側の円筒部材の
1/2以上をFe−Ni合金、Mo合金等の低熱膨張係
数部材とし、他を鉄鋼材料としたことを特徴とする特許
請求の範囲第4項記載の回転陽極X線管。 6、前記回転陽極X線管において、前記円筒部材に複数
個のスリットを入れ、軸方向バネ定数を20〜200K
g/mmとしたことを特徴とする特許請求の範囲第1項
記載の回転陽極X線管。 7、前記回転陽極X線管において、複数個のスリットを
入れた前記円筒部材は熱間工具鋼としたことを特徴とす
る特許請求の範囲第6項記載の回転陽極X線管。
[Scope of Claims] 1. An anode member arranged to face the cathode member, a rotating member integrally formed with the anode member, a bearing device that rotatably supports the rotating member, and a bearing that fixes the stationary body side of the bearing device. In a rotary anode X-ray tube configured in a vacuum state by covering the above member with a support member, a part of the bearing support member, and a container, the cylindrical member defining the spacing between the bearing devices is different on the rotating side and the stationary side. A rotating anode X-ray tube characterized in that it is a member. 2. In the rotating anode X-ray tube, the cylindrical member on the rotating side is a member having a smaller coefficient of thermal expansion than the cylindrical member on the stationary side.
wire tube. 3. In the rotating anode X-ray tube, the cylindrical member on the rotating side or the stationary side is divided into two or more parts, and the coefficients of thermal expansion of these members are made different.
Rotating anode X-ray tube as described in . 4. In the rotating anode X-ray tube, the cylindrical member on the stationary side is made of a steel material such as stainless steel, and the cylindrical member on the rotating side is made of F.
The rotating anode X-ray tube according to claim 1, characterized in that the material has a coefficient of thermal expansion smaller than that of the stationary cylindrical member, such as an e-Ni alloy or a Mo alloy. 5. In the rotating anode X-ray tube, 1/2 or more of the cylindrical member on the rotating side is made of a low thermal expansion coefficient material such as Fe-Ni alloy or Mo alloy, and the rest is made of steel material. A rotating anode X-ray tube according to scope 4. 6. In the rotating anode X-ray tube, a plurality of slits are made in the cylindrical member, and the axial spring constant is set to 20 to 200K.
The rotary anode X-ray tube according to claim 1, characterized in that the rotary anode X-ray tube has a diameter of 100 g/mm. 7. The rotating anode X-ray tube according to claim 6, wherein the cylindrical member having a plurality of slits is made of hot work tool steel.
JP59216200A 1984-10-17 1984-10-17 Rotary anode x-ray tube Pending JPS6196639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59216200A JPS6196639A (en) 1984-10-17 1984-10-17 Rotary anode x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59216200A JPS6196639A (en) 1984-10-17 1984-10-17 Rotary anode x-ray tube

Publications (1)

Publication Number Publication Date
JPS6196639A true JPS6196639A (en) 1986-05-15

Family

ID=16684841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59216200A Pending JPS6196639A (en) 1984-10-17 1984-10-17 Rotary anode x-ray tube

Country Status (1)

Country Link
JP (1) JPS6196639A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399746U (en) * 1986-12-18 1988-06-28
US5155232A (en) * 1988-08-01 1992-10-13 Alcatel N.V. Organic material for non-linear optics
CN104979149A (en) * 2015-06-16 2015-10-14 赛诺威盛科技(北京)有限公司 X-ray tube with capability of compensating movement of anode by using negative heat and compensating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399746U (en) * 1986-12-18 1988-06-28
US5155232A (en) * 1988-08-01 1992-10-13 Alcatel N.V. Organic material for non-linear optics
CN104979149A (en) * 2015-06-16 2015-10-14 赛诺威盛科技(北京)有限公司 X-ray tube with capability of compensating movement of anode by using negative heat and compensating method

Similar Documents

Publication Publication Date Title
US7995708B2 (en) X-ray tube bearing shaft and hub
US4569070A (en) Thermally compensated x-ray tube bearings
EP1292964B1 (en) Drive assembly for an x-ray tube having a rotating anode
US7324629B2 (en) Rotary anode type X-ray tube
CN104051207A (en) Hybrid design of an anode disk structure for high power X-ray tube configurations of the rotary-anode type
JPH0787082B2 (en) Rotating anode target for X-ray tube
US11017976B2 (en) Spiral groove bearing assembly with minimized deflection
US4519093A (en) Rotary anode X-ray tube
US7184520B1 (en) Component mounting system with stress compensation
JPS6196639A (en) Rotary anode x-ray tube
US6888923B2 (en) Assembly for mounting a radiation emitting device, radiation emitting device having such an assembly, and a radiological apparatus having such an assembly and emitting device
JPH07282721A (en) Manufacture for rotary anode x-ray tube
US6693990B1 (en) Low thermal resistance bearing assembly for x-ray device
EP2264736B1 (en) Frequency tuned anode bearing assembly
JP2002134047A (en) X-ray tube bearing
US5349626A (en) X-ray tube anode target
US2625664A (en) Electron tube
JP2689561B2 (en) X-ray tube rotating anode
JPH0414742A (en) Bearing device and x-ray tube therewith
JPS6182643A (en) Rotating anode type x-ray
JPH1050243A (en) Rotary anode type x-ray tube
JPS5971241A (en) Rotary anode x-ray tube
JPS6229048A (en) Rotary anode x-ray tube
JP2002157967A (en) Rotary anode type x-ray tube and manufacturing method therefor
JPH02126543A (en) Rotary positive electrode x-ray tube