JPS6196459A - Division type ultrasonic probe transmitting/receiving circuit - Google Patents

Division type ultrasonic probe transmitting/receiving circuit

Info

Publication number
JPS6196459A
JPS6196459A JP59218812A JP21881284A JPS6196459A JP S6196459 A JPS6196459 A JP S6196459A JP 59218812 A JP59218812 A JP 59218812A JP 21881284 A JP21881284 A JP 21881284A JP S6196459 A JPS6196459 A JP S6196459A
Authority
JP
Japan
Prior art keywords
circuit
ultrasonic probe
transmitting
receiving
type ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59218812A
Other languages
Japanese (ja)
Inventor
Takaharu Ogata
貴玄 緒方
Akihiro Maruyama
丸山 昭博
Yasushi Okamoto
康司 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kawatetsu Keiryoki KK
Original Assignee
Kawasaki Steel Corp
Kawatetsu Keiryoki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, Kawatetsu Keiryoki KK filed Critical Kawasaki Steel Corp
Priority to JP59218812A priority Critical patent/JPS6196459A/en
Publication of JPS6196459A publication Critical patent/JPS6196459A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect a flaw immediately under the surface of a material to be tested highly accurately by outputting pulses from a control circuit for a fixed period synchronously with timing for exciting a transmission side oscillator and turning on a switching means by pulses. CONSTITUTION:An one-shot circuit 32 is provided with an FF35, a capacitor 33 for setting up pulse width by changing a time constant and a resistor 34. The waveform of an output signal from the circuit 32 is set up to the high level during about 2-5muS synchronously with the timing for exciting the transmission side oscillator 5, and during the high level of the output signal, the collector and emitter of a transistor (TR) are shorted. Even if an induced electric pulse is excited on the side of a transmission side oscillation 6 during the short, the electric pulse applied to the oscillator 6 is less than about 0.1V which is the saturation voltage of the TR31. Therefore, a wave reflected from the front surface of a delay material 4 is prevented from being mixed with a wave reflected from a defect or the back of the material 21 to be tested, so that a flaw immediately under the surface of the material 21 and the thickness of an extremely thin plate can be measured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、超音波厚さ計や探傷装置に用いる分割型超
音波探触子送受信回路に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a split-type ultrasonic probe transmitting/receiving circuit used in ultrasonic thickness gauges and flaw detection devices.

く従来技術〉 型超音波探触子1は覆い音響遮へい材からなる隔壁2の
両側に遅延材3,4を貼り付け、さらにこの遅延材3と
4の上に横断面が半円形の送信側振動子5と受信側振動
子6を夫々貼り付けて構成している。
Conventional technology> The ultrasonic probe 1 has delay members 3 and 4 pasted on both sides of a partition wall 2 made of a covering acoustic shielding material, and a transmitting side having a semicircular cross section on top of the delay members 3 and 4. It is constructed by pasting a vibrator 5 and a receiving side vibrator 6, respectively.

そして、このような分割型超音波探触子1を用いた超音
波Jlyさ計や探傷装置は、従来、第・を図に示すよう
な送受信回路を備えている。この送受信回路は発振回路
11とパルス発生回路12と増幅回路13をIfi+え
る。F記パルス発生回路12はサイリスタ15.コンデ
ンサ1G、抵抗器17,18.19を備えて、発振回路
11からのパルスに同期して、上記サイリスタ15がト
リ、Iyされ、高圧(50〜I U l) l) V 
)のインパルスを分割型超音波探触子1の送信側振動子
5に入力するようになっている。上記送信側振動子5か
ら発信された超音波は、遅延月3す;よび被検材21中
を伝搬し、さらに反射部で反射してきた超音波エコーは
遅延材4を通って送(;’t (lt11振動子6に受
信され、増幅回路そして、探傷を行なう場合は、第4図
に示す径路I、すなわち送信側振動子5→送信側の遅延
材3→被検材21の表面→被検材21の裏面→被検材2
1の表面→受信側の遅延材4→受信側振動子6の径路I
で生じた超音波エコーを観察し、上記被検材21の通過
期間中に発生する超音波エコーにより欠陥の有無を調べ
る。また、厚さ測定の場合は、被検材21の裏面からの
超音波エコーを受信側振動子6で受信し、送信時点から
受信時点までの時間から遅延材3.4中を超音波が伝搬
する時間を差し引いて求めた被検材21中の伝搬時間を
計測し、この伝搬時間の1/2と被検材21の固有の伝
搬速度(音速)とを掛算して厚さを求める。
Conventionally, an ultrasonic probe or flaw detector using such a split-type ultrasonic probe 1 is equipped with a transmitting/receiving circuit as shown in FIG. This transmitter/receiver circuit includes an oscillation circuit 11, a pulse generation circuit 12, and an amplifier circuit 13. The F pulse generation circuit 12 includes a thyristor 15. Equipped with a capacitor 1G and resistors 17, 18, and 19, the thyristor 15 is activated in synchronization with the pulse from the oscillation circuit 11, and a high voltage (50 to I U l) V is generated.
) is input to the transmitting side transducer 5 of the split-type ultrasonic probe 1. The ultrasonic waves emitted from the transmitter side transducer 5 propagate through the delay element 3 and the test material 21, and the ultrasonic echoes reflected by the reflection section are transmitted through the delay element 4 (;' t (It is received by the lt11 transducer 6, and then the amplification circuit. When performing flaw detection, the path I shown in FIG. Back side of inspection material 21 → inspection material 2
1 surface→receiving side delay material 4→receiving side transducer 6 path I
The ultrasonic echoes generated during the passage of the test material 21 are observed to check for defects. In addition, in the case of thickness measurement, the ultrasonic echo from the back side of the material to be inspected 21 is received by the receiving side transducer 6, and the ultrasonic wave propagates through the delay material 3.4 from the time from the time of transmission to the time of reception. The propagation time in the test material 21 obtained by subtracting the time is measured, and the thickness is determined by multiplying 1/2 of this propagation time by the propagation speed (velocity of sound) specific to the test material 21.

〈発明が解決しようとする問題点〉 ところで、実験によれば、上記分割型超音波探触子1に
おいてケーブル23.24及び送信側振動子5ならびに
受信側振動子6の相互の浮遊容量等による効果により、
送信側振動子5に印加された電気パルスの一34dB程
度の誘nt%パルスが受信側振動子6側に励起されるこ
とが判った。
<Problems to be Solved by the Invention> By the way, according to experiments, in the above-mentioned split-type ultrasonic probe 1, due to the mutual stray capacitance of the cable 23, 24, the transmitting side transducer 5, and the receiving side transducer 6, etc. Due to the effect,
It was found that an induced nt% pulse of about 34 dB of the electric pulse applied to the transmitting side vibrator 5 was excited to the receiving side vibrator 6 side.

これは送信のパルス電圧が100vの時、4’l 2 
Vのパルス電圧が受信側振動子6に励起され、本来電気
−振動の可逆性を持つ受信側振動子6は超音波を発生す
ることになる。発生された超音波は受信側の遅延JfA
n中を伝搬し、この遅延材4の前表面で反射し、再び同
径路を伝搬して、受信側振動子6に到達・受(11され
る。これを第4図に示すように径路IIと呼ぶ。また別
の実験によればこのようにして、遅延材4中を往復した
時得られる受信電圧は送信電圧の約−35clB、即ち
上記条件の場合、約5 mVの、受信電圧が得られるこ
とが判った。一方、このような分割型超音波探触子]は
被検材つまり被測定材の厚さによって受信電圧が変化す
る。即ち、厚さ/受信電圧特性を持つことが良く知られ
ている。即ち、送・受信側の振動子5゜6および遅延材
3.4に介在する音響遮へい材2のために、極薄い被測
定材からの受信反射信号は小さく、また、極部厚い被測
定材においては材料中の音の減衰および拡散のため厚さ
が増すに従って受信信号が減少するという山なりの特性
を示すことが一般的である。このような特性を持つ分割
型超I″f波探触子1にて得られる、例えば厚さ1mn
+−程度の鋼の被測定材21の裏面からの受信信号、即
ち径路■を伝搬して受信される受信電圧の大きさはせい
ぜい10mVであり径路11により得られる受信信号と
大差がないことが判る。
This is 4'l 2 when the transmission pulse voltage is 100v.
A pulse voltage of V is excited in the receiving side vibrator 6, and the receiving side vibrator 6, which originally has electro-vibration reversibility, generates an ultrasonic wave. The generated ultrasonic wave has a delay JfA on the receiving side
n, is reflected by the front surface of this delay material 4, propagates again along the same path, and reaches and is received by the receiving side oscillator 6 (11). According to another experiment, the received voltage obtained when traveling back and forth through the delay material 4 is approximately -35 clB of the transmitted voltage, that is, under the above conditions, the received voltage is approximately 5 mV. On the other hand, with such split-type ultrasonic probes, the received voltage changes depending on the thickness of the material being tested, that is, the material to be measured.In other words, it is best to have a thickness/received voltage characteristic. That is, because of the acoustic shielding material 2 interposed between the transducer 5°6 and the delay material 3.4 on the transmitting and receiving sides, the received reflected signal from the extremely thin material to be measured is small, and It is common for thick materials to be measured to exhibit a slope characteristic in which the received signal decreases as the thickness increases due to sound attenuation and diffusion within the material. For example, a thickness of 1 mm obtained with the I″f wave probe 1
The magnitude of the received signal from the back side of the material to be measured 21 made of steel of +- grade, that is, the received voltage propagated through path 2, is at most 10 mV, and is not significantly different from the received signal obtained through path 11. I understand.

第5図はこれらの現象を具体的に示したものである。第
5図中の波形(、)は送信側振動子3の波形であり、T
は送信側振動子5に印加される電気パルスによる波形で
あり、Sは送信側の遅延材3の前面からの反射波の波形
である。一方、第5図中の波形(b)は受信側振動子6
の波形であり、T゛は前述の誘導による電気パルスによ
り受信側振動子6から発振される波形であり、S゛はこ
の波形T゛の受信側の遅延材4の前面からの反射波であ
り、Rは前述の径路Iで被検材21中の欠陥または裏面
からの反射波である。
FIG. 5 specifically shows these phenomena. The waveform (,) in FIG. 5 is the waveform of the transmitting side vibrator 3, and T
is the waveform of the electric pulse applied to the transmitting side vibrator 5, and S is the waveform of the reflected wave from the front surface of the transmitting side delay material 3. On the other hand, the waveform (b) in FIG.
, T' is the waveform oscillated from the receiving side vibrator 6 by the electric pulse induced by the above-mentioned induction, and S' is the reflected wave of this waveform T' from the front surface of the receiving side delay material 4. , R are reflected waves from a defect or the back surface of the test material 21 in the above-mentioned path I.

したがって被検材21の表面直下を高い感度で探傷する
場合や極薄い被検材21の板厚を測定す同が生じるため
、粘度の高い探傷乃至厚さ測定ができないという問題が
ある。
Therefore, there is a problem that flaw detection with high viscosity or thickness measurement cannot be performed because there is a case where flaw detection is performed directly under the surface of the test material 21 with high sensitivity or when the thickness of the extremely thin test material 21 is measured.

そこで、この発明の目的は、被検材の表面直下の探傷や
極薄い被検材の厚さの精度の高い検出や測定を可能にす
ることにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to enable flaw detection directly below the surface of a test material and highly accurate detection and measurement of the thickness of an extremely thin test material.

く問題点を解決するための手段〉 上記目的を達成するため、この発明の構成は、受信側振
動子の両端を電気的に短絡するスイッチング手段と、送
信側振動子を励起するタイミングに同期して、一定時間
の間上記スイッチング手段をオンにする信号を出力する
制御回路を備えることを特徴とする。
Means for Solving the Problems> In order to achieve the above object, the configuration of the present invention includes a switching means that electrically shorts both ends of the receiving side vibrator, and a switching means that is synchronized with the timing of exciting the transmitting side vibrator. The device is characterized in that it includes a control circuit that outputs a signal that turns on the switching means for a certain period of time.

〈作用〉 上記構成により、送信側振動子を励起するタイミングに
同期して、制御回路から信号が出力される。この信号を
受けて、スイッチング手段は送信側振動子を励起するタ
イミングに同期して一定時間の間オンとなり、受信側振
動子の両端が電気的に短絡される。このため、受信側振
動子は、送信ih蛇雷乍丁土ル都゛−の(fゲ歯二唇道
JHr本−ft、 属動励起されることはない。
<Operation> With the above configuration, a signal is output from the control circuit in synchronization with the timing of exciting the transmitting side vibrator. Upon receiving this signal, the switching means is turned on for a certain period of time in synchronization with the timing of exciting the transmitting side vibrator, and both ends of the receiving side vibrator are electrically short-circuited. For this reason, the receiving side transducer is not excited by the transmitting signal.

〈実施例〉 以下、この発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図において、1は発信側振動子5.受信側振動子6
および遅延材3.4等を有する分割型超音波探触子、1
1は発振回路、12はパルス発生回路、13は増幅回路
、21は被検材であって、これらは第4図に示す従来例
と同一構成をしてい” る。
In FIG. 1, 1 is a transmitting side vibrator 5. Receiving side transducer 6
and a split-type ultrasonic probe with delay material 3.4 etc., 1
Reference numeral 1 is an oscillation circuit, 12 is a pulse generation circuit, 13 is an amplifier circuit, and 21 is a test material, which have the same configuration as the conventional example shown in FIG.

また、31は受信側振動子6の両端を短絡するスイッチ
ング手段としてのスイッチング用のトランジスタ、32
は上記発振回路11からのトリ〃信号を受けて2〜5μ
sのパルス中のパルスを上記トランジスタ31のベース
に入力する制御回路の一例としてのワンショット回路で
ある。上記ワンショット回路32は7リツプ70ツブ3
5と時定数を変えてパルス中を設定するためのコンデン
サ34および抵抗器34を備えている。上記ワンショッ
ト回路32の出力信号の波形は第2図中(b)に示す如
く、送信側振動子5を励起するタイミングに同期して2
−5μsの間ハイレベルになっており、この出力信号の
ハイレベルの間、トランジスタ31のフレフタ、エミッ
タ間は短絡される。
Further, 31 is a switching transistor as a switching means for short-circuiting both ends of the receiving side vibrator 6;
receives the tri signal from the oscillation circuit 11 and generates a signal of 2 to 5μ.
This is a one-shot circuit as an example of a control circuit that inputs one of the pulses of s to the base of the transistor 31. The above one-shot circuit 32 has 7 lip 70 lip 3
5 and a capacitor 34 and a resistor 34 for setting the pulse by changing the time constant. As shown in FIG. 2(b), the waveform of the output signal of the one-shot circuit 32 is synchronized with the timing at which the transmitting side vibrator 5 is excited.
The output signal remains at a high level for -5 μs, and while the output signal is at a high level, the left and emitter of the transistor 31 are short-circuited.

したがっ′乙この短絡されている間に、受信側振動子6
の側に誘導電気パルスが励起されても、受信側振動子6
に印加される電気パルスはトランジスタ31の飽和電圧
であるo、iv以下となる。
Therefore, while this is short-circuited, the receiving side transducer 6
Even if the induced electric pulse is excited on the receiving side transducer 6
The electric pulse applied to the transistor 31 is equal to or less than the saturation voltage o, iv of the transistor 31.

したがって、この実施例の受信側振動子6の側への誘導
パルスl’s2図中の波形T゛参照の大きさは、第4図
に示す従来の送受信回路の受信側振動子6の側への電気
的誘導パルス(第5図中の波形T゛参照の大きさに比ら
べて、1/10以下となる。したがって、第2図の波形
(c)に示すように、誘導パルスT゛の遅延材4の前面
からの反射波S’(殆んど無視できる。)と被検材21
中の欠陥または裏面からの反射波Rとは混同を生しるこ
とがなく、被検材21の表面直下の高感度な探傷および
極めて薄い板の厚さを計測することができる。
Therefore, the magnitude of the induced pulse l's2 to the side of the receiving side transducer 6 in this embodiment, as shown in the waveform T' in the diagram, is as follows: Electrical induction pulse (1/10 or less compared to the size of the waveform T in FIG. 5). Therefore, as shown in the waveform (c) in FIG. The reflected wave S' from the front surface of the delay material 4 (almost negligible) and the test material 21
There is no confusion with internal defects or reflected waves R from the back surface, and it is possible to perform highly sensitive flaw detection just below the surface of the test material 21 and measure the thickness of an extremely thin plate.

上記実施例では制御回路としてワンショット回路を用い
たが、これに限らず、送信側振動子を励起するタイミン
グに同期して、一定時間中のパルスを出力するものなら
ばどのような回路であってもよい。
In the above embodiment, a one-shot circuit is used as the control circuit, but the circuit is not limited to this, and any type of circuit can be used as long as it outputs pulses for a certain period of time in synchronization with the timing of excitation of the transmitting side vibrator. It's okay.

〈発明の効果〉 以上の説明で明らかなように、この発明の分割型超音波
探触子送受信回路は、送信側振動子を励起するタイミン
グに同期して、制御回路が一定時間の間パルスを出力し
、このパルスによってスイッチング手段をオンにして、
受信側振動子の両端を短絡して電気的誘導の影響を極め
て軽減しているので、被検材の表面直下の傷を精度高く
探傷でき、また、たとえば厚さ1mmあるいはそれ以下
の鋼板等の薄い測定材の厚さを精度高く測定することが
できる。
<Effects of the Invention> As is clear from the above description, in the split-type ultrasonic probe transmitting/receiving circuit of the present invention, the control circuit emits pulses for a certain period of time in synchronization with the timing of exciting the transmitting side transducer. output and this pulse turns on the switching means,
Since both ends of the receiving transducer are short-circuited to greatly reduce the influence of electrical induction, it is possible to detect flaws just below the surface of the test material with high accuracy. The thickness of thin measuring materials can be measured with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の分割型超音波探触子送受
信回路の回路図、第2図は上記実施例の波形U−ff5
3 図(a) 、 ffs 3 ti(1(b)は分割
型超音波探触子の平面図と正面図、第4図は従来の分割
型超音波探触子送受信回路の回路図、第5図は上記従来
の分割型超音波探触子送受信回路の波形図である。 1・・・分割型超音波探触子、5・・・発信側振動子、
6・・・受信側振動子、11・・・発振回路、12・・
・パルス発生回路、13・・・増幅回路、21・・・被
検材、32・・・ワンショット回H8,31・)ランジ
スタ。 特 許 出 願 人  川崎製鉄株式会社外1名
Fig. 1 is a circuit diagram of a split type ultrasonic probe transmitting/receiving circuit according to an embodiment of the present invention, and Fig. 2 is a waveform U-ff5 of the above embodiment.
3 (a), ffs 3 ti (1 (b) is a plan view and front view of a split-type ultrasonic probe, FIG. 4 is a circuit diagram of a conventional split-type ultrasonic probe transmitting/receiving circuit, and The figure is a waveform diagram of the conventional split-type ultrasonic probe transmitting/receiving circuit. 1... split-type ultrasonic probe, 5... transmitting side transducer,
6... Receiving side vibrator, 11... Oscillation circuit, 12...
- Pulse generation circuit, 13... Amplification circuit, 21... Test material, 32... One-shot times H8, 31.) transistor. Patent applicant: 1 person other than Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)送信側振動子と受信側振動子を有する分割型超音
波探触子を用いた超音波厚さ計や探傷装置において、上
記受信側振動子の両端を電気的に短絡するスイッチング
手段と、上記送信側振動子を励起するタイミングに同期
して、一定時間の間上記スイッチング手段をオンにする
信号を出力する制御回路を備えて、送信励起電気エネル
ギーの電気的誘導により受信側振動子が振動励起される
ことを防止するようにしたことを特徴とする分割型超音
波探触子送受信回路。
(1) In an ultrasonic thickness gauge or flaw detection device using a split-type ultrasonic probe having a transmitting-side transducer and a receiving-side transducer, a switching means for electrically shorting both ends of the receiving-side transducer; , a control circuit that outputs a signal to turn on the switching means for a certain period of time in synchronization with the timing of exciting the transmitting side vibrator, and the receiving side vibrator is activated by electrical induction of the transmitted excitation electric energy. A split-type ultrasonic probe transmitting/receiving circuit characterized in that it is configured to prevent vibration excitation.
JP59218812A 1984-10-17 1984-10-17 Division type ultrasonic probe transmitting/receiving circuit Pending JPS6196459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59218812A JPS6196459A (en) 1984-10-17 1984-10-17 Division type ultrasonic probe transmitting/receiving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59218812A JPS6196459A (en) 1984-10-17 1984-10-17 Division type ultrasonic probe transmitting/receiving circuit

Publications (1)

Publication Number Publication Date
JPS6196459A true JPS6196459A (en) 1986-05-15

Family

ID=16725725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59218812A Pending JPS6196459A (en) 1984-10-17 1984-10-17 Division type ultrasonic probe transmitting/receiving circuit

Country Status (1)

Country Link
JP (1) JPS6196459A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367512A (en) * 1986-09-10 1988-03-26 Kubota Ltd Reflected wave processing method for ultrasonic wall thickness meter
JP2019015634A (en) * 2017-07-07 2019-01-31 東京電力ホールディングス株式会社 Double crystal probe, measurement detection system, and method for measurement and detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367512A (en) * 1986-09-10 1988-03-26 Kubota Ltd Reflected wave processing method for ultrasonic wall thickness meter
JPH0433371B2 (en) * 1986-09-10 1992-06-02 Kubota Kk
JP2019015634A (en) * 2017-07-07 2019-01-31 東京電力ホールディングス株式会社 Double crystal probe, measurement detection system, and method for measurement and detection

Similar Documents

Publication Publication Date Title
US4446735A (en) Method of testing the weight per unit area of thin material
US2612772A (en) Supersonic test device
US3228232A (en) Ultrasonic inspection device
JPH0525045B2 (en)
GB2298277A (en) Delay line for an ultrasonic probe with an interface allowing inbuilt calibration
Goujon et al. Behaviour of acoustic emission sensors using broadband calibration techniques
GB1262380A (en) Flaw detection in laminated structures using vibration response
JPS6156450B2 (en)
JPS6314762B2 (en)
Williamson et al. Coherent Detection Technique for Variable‐Path‐Length Measurements of Ultrasonic Pulses
JPS6196459A (en) Division type ultrasonic probe transmitting/receiving circuit
US3624712A (en) Ultrasonic pulse echo thickness-measuring device
US3832887A (en) Ultrasonic inspection apparatus
US3604250A (en) Coupling network for an ultrasonic testing system
JPS63247608A (en) Method for measuring thickness and internal cracking position of concrete
JPH0149899B2 (en)
RU2034236C1 (en) Ultrasound echo thickness gage
US4033176A (en) Pocket-sized, direct-reading ultrasonic thickness gauge
RU2569039C2 (en) Method for non-destructive inspection of defects using surface acoustic waves
US3538752A (en) Ultrasonic thickness measuring apparatus
SU1633292A1 (en) Device for measuring ultrasound speed
SU1755170A1 (en) Method and device for determining radiation impedance of piezoceramic transducer
JPH0627089A (en) Velocity measuring apparatus for surface acoustic wave
SU1196751A1 (en) Method of measuring occluded gas in liquid
SU868563A1 (en) Method of non-destructive testing of ferromagnetic articles