JPS619587A - Manufacture of 2,4,5-triamino-6-hydroxypyrimidine - Google Patents

Manufacture of 2,4,5-triamino-6-hydroxypyrimidine

Info

Publication number
JPS619587A
JPS619587A JP59129866A JP12986684A JPS619587A JP S619587 A JPS619587 A JP S619587A JP 59129866 A JP59129866 A JP 59129866A JP 12986684 A JP12986684 A JP 12986684A JP S619587 A JPS619587 A JP S619587A
Authority
JP
Japan
Prior art keywords
reaction
cathode
oxypyrimidine
isonitroso
triamino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59129866A
Other languages
Japanese (ja)
Other versions
JPH045758B2 (en
Inventor
Kokichi Yoshida
幸吉 吉田
Motoyuki Sueoka
末岡 征行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP59129866A priority Critical patent/JPS619587A/en
Publication of JPS619587A publication Critical patent/JPS619587A/en
Publication of JPH045758B2 publication Critical patent/JPH045758B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture 2,4,5-triamino-6-hydroxypyrimidine with superior current efficiency in a high yield by electrolytically reducing 2,4-diamino-5-isonitroso-6-oxypyrimidine in an aqueous KOH soln. as a catholyte using stainless steel as a cathode. CONSTITUTION:An acid-proof anode such as Ti plated with Pt and stainless steel as a cathode are placed in an electrolytic cell provided with a diaphragm. An aqueous sulfuric acid soln. asan anolyte and 1.5-5% aqueous soln. of KOH as a catholyte are fed to the cell, and 1.5-4% 2,4-diamino-5-isonitroso-6-oxypyrimidine is added to the catholyte. The oxypyrimidine is electrolytically reduced at 5-15 deg.C and 6-12A/dm<2> current density to manufacture 2,4,5-triamino-6- hydroxypyrimidine with superior current efficiency in a high yield.

Description

【発明の詳細な説明】 「発明の目的」 産業上の利用分野 本発明は工業的製法として有利な、電解還元に!る2、
4.5−トリアミノ−6−ハイドロオキシピリミジンの
製造法に関する。
[Detailed Description of the Invention] "Object of the Invention" Industrial Application Field The present invention is applicable to electrolytic reduction, which is advantageous as an industrial production method! 2,
The present invention relates to a method for producing 4.5-triamino-6-hydroxypyrimidine.

2.4.5−トリアミノ−6−ハイドロオキシピリミジ
ンは葉酸などの医薬品を合成するための中間原料として
有用な化合物である。
2.4.5-Triamino-6-hydroxypyrimidine is a compound useful as an intermediate raw material for synthesizing pharmaceuticals such as folic acid.

従来技術 2.4.5−)リアミノ−6−ハイドロオキシピリミジ
ン(I[)は、2,4−ジアミノ−5−イソニトロソ−
6−オキシピリミジン(I)を原料とし、これを還元す
ることによシ製造されている。
Prior Art 2.4.5-) Riamino-6-hydroxypyrimidine (I[) is 2,4-diamino-5-isonitroso-
It is produced by using 6-oxypyrimidine (I) as a raw material and reducing it.

(1)          (π) このような還元方法としては、まず化学的に鉗元する方
法あるいは接触的に水添する方法などが知られているが
、前者の方法においては収率が低い上に還元剤を理論量
よりも多量必要とし、また反応後の生成物の精製も容易
でない。後者の方法においては、水素加圧下の反応であ
ることから特殊な反応設備を要し、反応後には触媒回収
操作が必須である。また製造原価中に占める触媒費用の
割合が大きく、更には水素の使用に際し充分な安全対策
を施こす必要がある。
(1) (π) As such reduction methods, firstly, chemical mercury method or catalytic hydrogenation method are known, but the former method has a low yield and a high reduction rate. It requires a larger amount of agent than the theoretical amount, and it is not easy to purify the product after the reaction. In the latter method, special reaction equipment is required because the reaction is carried out under hydrogen pressure, and a catalyst recovery operation is essential after the reaction. Furthermore, the catalyst cost accounts for a large proportion of the manufacturing cost, and furthermore, sufficient safety measures must be taken when using hydrogen.

さらに電解還元による方法が、たとえば特公昭24−4
909号公報あるいは電気化学第21巻376〜379
頁によシ知られている。これら文献では、陰極として鉛
、亜鉛、銅、鉄、ニッケμを、また陰極電解質として苛
性アルカリ、具体的には水酸化ナトリウムを使用してイ
ソニトロソ体(I)を水懸濁液中で電解還元する方法が
提案されておシ、目的物であるトリアミノ体(II)が
86〜92%の収率で得られることが報告されている。
Furthermore, methods using electrolytic reduction, for example,
Publication No. 909 or Electrochemistry Vol. 21, 376-379
Known by page. In these documents, lead, zinc, copper, iron, or nickel μ is used as the cathode, and caustic alkali, specifically sodium hydroxide, is used as the cathode electrolyte to electrolytically reduce isonitroso compound (I) in an aqueous suspension. A method has been proposed, and it has been reported that the target triamino compound (II) can be obtained in a yield of 86 to 92%.

発明が解決しようとする問題点 上記公知の電解還元において効率よく流せる電流密度は
4〜5 A / (1111”程度が限度であシ、また
目的物の収率、電流効率などからみても、必らずしも工
業的に有利な方法とはいえない。本願発明者らは、工業
的に有利な電解還元による方法を確立すべく鋭意検討を
重ね本発明を完成するに至った。
Problems to be Solved by the Invention The current density that can be efficiently passed in the above-mentioned known electrolytic reduction is limited to about 4 to 5 A/(1111"), and from the viewpoint of the yield of the target product, current efficiency, etc., it is not necessary. It cannot necessarily be said that this is an industrially advantageous method.The inventors of the present application have completed the present invention after extensive studies in order to establish an industrially advantageous method using electrolytic reduction.

「発明の構成」 問題点を解決するための手段 本願発明者らは、アルカリ水溶液中での電解還元の場合
に目的物の収率がほぼ90%止まシであることの主な原
因は、原料であるイソニトロソ体(I)がアルカリ水溶
液中で不安定であることに注目した。そこでアルカリに
対して充分な耐蝕性を有し、しかもアルカリ水溶液中で
イソニトロソ体(I)を電解還元する際に、よシ高い限
界電流密度を示す陰極材質を探索した結果、ステンレス
鋼が好ましいことを見い出した。まだ本願発明者らは、
アルカリの中でも特に水酸化カリウムを用いた場合、原
料の溶解度が高い上に原料の分解が極めて少ないという
事実を見い出した。本願発明は、これらの知見に基づい
てなされたものでちゃ、これによシ高い電流密度での電
解還元が可能となシ、ひいては極板単位面積当シの処理
能力を飛躍的に向上させることに成功した。
"Structure of the Invention" Means for Solving Problems The inventors of the present application believe that the main reason why the yield of the target product stops at approximately 90% in the case of electrolytic reduction in an alkaline aqueous solution is that It was noted that the isonitroso compound (I) is unstable in an alkaline aqueous solution. Therefore, as a result of searching for a cathode material that has sufficient corrosion resistance against alkali and also exhibits a higher limiting current density when electrolytically reducing isonitroso compound (I) in an alkaline aqueous solution, it was found that stainless steel is preferable. I found out. Still, the inventors of the present application
It has been found that when potassium hydroxide is used among alkalis, the solubility of the raw material is high and the decomposition of the raw material is extremely small. The present invention has been made based on these findings, and thereby enables electrolytic reduction at high current density, and furthermore, dramatically improves the processing capacity per unit area of the electrode plate. succeeded in.

すなわち、本発明は陰極としてステンレス鋼を、陰極電
解質として水酸化カリウムを用いて水溶液中で2.4−
ジアミノ−5−イソニtロソー6−オキシピリミジンを
電解還元することを特徴とする2、4.5−)リアミノ
−6−ハイトロオえシビリミジンの製造法である。
That is, the present invention uses stainless steel as the cathode and potassium hydroxide as the cathode electrolyte in an aqueous solution.
This is a method for producing 2,4,5-)lyamino-6-hytrosibirimidine, which is characterized by electrolytically reducing diamino-5-iso-6-oxypyrimidine.

本発明で陰極として用いるステンレス鋼としては、高C
r鋼あるいは高Cr−Ni鋼があシ、このようなものと
して13Crm、18Cr鋼および18Cr−81ii
鋼、さらにはこれらを基本とした改良型を挙げることが
できる。具体的には、たとえば5US416,5US4
20,5US430.5US304,5US316,5
U8316Lなどを用いることができる。特に、たとえ
ば5U3304.5US316,5US316Lなどの
オーステナイト系のステンレス鋼を用いるのが好ましい
。これら電極の形状は、たとえば板状、m状、棒状、筒
状などいずれの形状であってもよい。
The stainless steel used as the cathode in the present invention has a high carbon content.
r steel or high Cr-Ni steel, such as 13Cr, 18Cr steel and 18Cr-81ii
Examples include steel, and improved types based on these. Specifically, for example, 5US416, 5US4
20,5US430.5US304,5US316,5
U8316L or the like can be used. In particular, it is preferable to use austenitic stainless steel such as 5U3304.5US316 and 5US316L. The shape of these electrodes may be any shape, such as a plate shape, an m shape, a rod shape, or a cylindrical shape.

陰極電解質として用いる水酸化カリウムは、水に溶解し
て一般に0.5〜10重景%重量ましくは1.5〜5重
量%の濃度の水溶液となし、このような濃度の水溶液を
陰極液として用いる。陰極液には電解質のほかに補助電
解質を加えてもよく、このようなものとして、たとえば
塩化カリウムなどのように解離度の高いカリウム塩を挙
げることができる。
Potassium hydroxide used as the catholyte is dissolved in water to form an aqueous solution with a concentration of generally 0.5 to 10% by weight or 1.5 to 5% by weight, and an aqueous solution with such a concentration is used as the catholyte. used as In addition to the electrolyte, an auxiliary electrolyte may be added to the catholyte, such as a highly dissociated potassium salt such as potassium chloride.

陰極液中でのイソニトロソ体原料(I)の濃度は、反応
温度にも左右されるが、一般に0.5〜5重量%、好ま
しくは1.5〜4瓜量%に維持する。原料が一部懸濁し
た状態で反応を進行させてもよい。
The concentration of the isonitroso compound raw material (I) in the catholyte depends on the reaction temperature, but is generally maintained at 0.5 to 5% by weight, preferably 1.5 to 4% by weight. The reaction may proceed in a state where the raw materials are partially suspended.

反応は、陰極液の温度を0〜30℃、好ましくは5〜1
5℃に維持しながら行なう。
The reaction is carried out at a temperature of the catholyte of 0 to 30°C, preferably 5 to 1°C.
The temperature is maintained at 5°C.

陽極としては、耐酸性を有する材料、たとえば白金メッ
キを施こしたチタン、タンタル、ニオブなどを使用する
ことができる。陽極液としては、たとえば硫酸などの鉱
酸の水溶液を用いればよい。
As the anode, an acid-resistant material such as platinum-plated titanium, tantalum, or niobium can be used. As the anolyte, for example, an aqueous solution of a mineral acid such as sulfuric acid may be used.

これら鉱酸の濃度は、通常はぼ1〜10重景%重量のが
用いられる。
The concentration of these mineral acids used is usually about 1 to 10% by weight.

本発明の還元反応は、隔膜で陰陽両極が分割された2室
を有する電解セル中で行なわれる。隔膜としては、陽イ
オン交換嘆(たとえばCMV■膜:旭硝子工業(+:?
[Si! ; Nafion■膜: Du Pont社
製など)を用いることができる。このような電解上μと
しては種型、フィルタープレス型あるいはプレートアン
ドフレーム型など各種のものが知られている。工業的に
はフィルタープレス型あるいはプレートアンドフレーム
型を用いるのが好ましく、反応中、一般に陰陽両極液は
、それぞれの中継槽を介して循環させる。電流効率の低
下を防止するためには、七y中の両液の流速を10cm
/sec以上に保つ必要がある。反応が進むにつれて原
料濃度が低下するため、原料を絶えず追加しながら反応
を進行させる。
The reduction reaction of the present invention is carried out in an electrolytic cell having two chambers with negative and positive electrodes separated by a diaphragm. As a diaphragm, cation exchange membranes (for example, CMV membranes: Asahi Glass Industries (+:?
[Si! ; Nafion membrane (manufactured by Du Pont, etc.) can be used. Various types of electrolytic μ such as seed type, filter press type and plate and frame type are known. Industrially, it is preferable to use a filter press type or a plate and frame type, and during the reaction, the anode and anode liquids are generally circulated through their respective relay tanks. In order to prevent a decrease in current efficiency, the flow rate of both liquids during the
/sec or higher. As the reaction progresses, the raw material concentration decreases, so the reaction progresses while constantly adding raw materials.

本願発明の電解還元を効率よく行なわせるには、5〜1
5A/dm2、好ましくは6〜12A/dm2の電流を
流すように設定する。反応終了近くになれば、電流密度
を下げることによシミ流動率を上げることができる。
In order to efficiently carry out the electrolytic reduction of the present invention, 5 to 1
The current is set to flow at 5 A/dm2, preferably from 6 to 12 A/dm2. Near the end of the reaction, the stain flow rate can be increased by lowering the current density.

反応終了後、反応液から生成した2、4.5−トリアミ
ノ−6−ハイドロオキシピリミジンを回収するには、反
応液に硫酸を加えて硫酸協の結晶として取シ出すなど従
来から用いられている慣用の回収精製手段を用いること
ができる。また、本発明の方法で生成したトリアミノ化
合物をそのまま葉酸の中間体として使用する場合は、反
応液を塩酸で中和し、そのまt葉酸の製造に供すること
ができる。
After the reaction is complete, the 2,4,5-triamino-6-hydroxypyrimidine produced from the reaction solution can be recovered by conventional methods such as adding sulfuric acid to the reaction solution and extracting it as crystals of sulfuric acid. Conventional recovery and purification means can be used. Further, when the triamino compound produced by the method of the present invention is used as it is as an intermediate for folic acid, the reaction solution can be neutralized with hydrochloric acid and used as it is for the production of folic acid.

「発明の効果」 本発明の方法によれば、高い電流密度で電解反応を進行
させることができるため、単位電極面積当シの処理能力
が大きいという利点があり、このため装置効率を上げる
ことができる。また、はぼ95〜98%の収率で目的物
を製造できるため工業上極めて有用な方法である。
"Effects of the Invention" According to the method of the present invention, since the electrolytic reaction can proceed at a high current density, there is an advantage that the processing capacity per unit electrode area is large, and therefore the device efficiency can be increased. can. Furthermore, it is an extremely useful method industrially because the desired product can be produced with a yield of approximately 95 to 98%.

以下、実施例を挙げて本発明を更に具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 2.4−ジアミノ−5−イソニトロソ−6−オキシピリ
ミジンの電解還元をフィルタープレス型の電解上μを用
いて行なった。
Example 1 Electrolytic reduction of 2.4-diamino-5-isonitroso-6-oxypyrimidine was carried out using a filter press type electrolytic μ.

(1)フィルタープレス型電解セルの構造陰極:ステン
レススチーμ板(J工S  SUS響l、厚み2III
rrl) 有効面@  ldm2(8cmX12.5fi)陽極:
白金メッキチタン板(メッキ厚み2μm。
(1) Structure of filter press type electrolytic cell Cathode: Stainless steel μ plate (J Engineering SUS Hibiki 1, thickness 2III
rrl) Effective surface @ ldm2 (8cmX12.5fi) anode:
Platinum-plated titanium plate (plating thickness 2 μm.

チタン厚み2闘) 有効血清 1d1112(8側X12.5個)イオン交
換膜: 1anorP−31s (デュポン社製)イオ
ン交換膜と極板との距離=1.5師(2)電解反応の条
件 電解反応開始時点の陰極液=2.4−ジアミノー5−イ
ソニトロソ−6−オキシピリミジン1α09.水酸化カ
リウム109を含有した水溶液350wt 反応開始後陰極側に供給した原料:2.4−ジアミノ−
5−イソニトロソ−6−オキシピリミジン239を含有
するスラリー状の水溶液80胛1 反応開始後陰極側に供給した電解質溶液:40重量%の
水酸化カリウム水溶液36m1陽極液:2重量%の硫酸
水溶液250評/電解七ル中の液流速:陰陽極共にl 
5 m / sec反応時の陰極液の設定温度:13±
1℃反応時の通電値二下記のように段階的に#、下させ
だ。
Titanium thickness 2) Effective serum 1d1112 (8 sides x 12.5 pieces) Ion exchange membrane: 1anorP-31s (manufactured by DuPont) Distance between ion exchange membrane and electrode plate = 1.5 meters (2) Electrolytic reaction conditions Electrolysis Catholyte at the start of the reaction = 2.4-diamino-5-isonitroso-6-oxypyrimidine 1α09. 350 wt of aqueous solution containing 109 potassium hydroxide Raw material supplied to the cathode side after the start of the reaction: 2,4-diamino-
80 pieces of slurry aqueous solution containing 239 5-isonitroso-6-oxypyrimidine 1 Electrolyte solution supplied to the cathode side after the start of the reaction: 36 ml of 40% by weight potassium hydroxide aqueous solution Anolyte: 250 pieces of 2% by weight sulfuric acid aqueous solution /Liquid flow rate during electrolysis: both cathode and anode l
Setting temperature of catholyte during 5 m/sec reaction: 13±
The energization value at 1°C reaction was lowered step by step as shown below.

なお、原料溶液および電解質溶液は、反応開始後、2時
間で陰極側に均等に供給した。
Note that the raw material solution and the electrolyte solution were evenly supplied to the cathode side 2 hours after the start of the reaction.

反応後、陰極液を系外に洗浄水と共に抜き出し塩酸水溶
液によってpH0,5に調整した反応液について高速液
体クロマトグラフィー〔分析カラム:ユニシー/L’C
IB  10μm (ガスクロ工業■販売)、カラム長
さ4 mm ”φx3Qz、移動相:水溶液中の濃度、
リン酸−アンモニウム(N1(4H2PO4)0.09
w/v%、 Pic−B−7(Water8A8aoc
iatea製) 0.71 V/V%、メタノールi、
sv/v%、プセトニトリル1.6V/V%、移動相p
H3,0、測定波長:tyv254nm)にて定員分析
した結果、目的物である2、4.5−)リアミノ−6−
ハイドロオキシピリミジンとしての収量は29.Ofで
あった。
After the reaction, the catholyte was extracted from the system along with washing water, and the reaction solution was adjusted to pH 0.5 with an aqueous hydrochloric acid solution and subjected to high performance liquid chromatography [Analytical column: Unisea/L'C
IB 10 μm (sold by Gas Kuro Kogyo ■), column length 4 mm ”φx3Qz, mobile phase: concentration in aqueous solution,
Ammonium phosphate (N1(4H2PO4)0.09
w/v%, Pic-B-7 (Water8A8aoc
manufactured by Iatea) 0.71 V/V%, methanol i,
sv/v%, psetonitrile 1.6V/V%, mobile phase p
As a result of capacity analysis at H3,0, measurement wavelength: TYV254 nm), the target product 2,4.5-)riamino-6-
The yield as hydroxypyrimidine is 29. It was Of.

(理論収率96.6%、W:流動率93.8%)実施例
2 陰極として下記のものを使用した以外は、実施例1と同
様にして2.4−ジアミノ−5−イソニトロソ−6−オ
キシピリミジンの電解還元を行なった。
(Theoretical yield 96.6%, W: fluidity 93.8%) Example 2 2.4-diamino-5-isonitroso-6 - Electrolytic reduction of oxypyrimidine was carried out.

陰極ニステンレススチール板(SUS304;厚み2關
) 有効面積 1 dm2(8elRx 12.5a )反
応後、反応液を実施例1と同様に処理し、高速流体クロ
マトグツフィーで定量分析の結果、目的物であるトリア
ミノ化合物の収量は28.89であった。(理論収量9
5.9%、電流効率93.1%)比較例1 下記以外は実施例1と同様にして2.4−ジアミノ−5
−インニトロソ−6−オキシピリミジンの電解還元を行
なった。
Cathode Ni stainless steel plate (SUS304; thickness 2mm) Effective area 1 dm2 (8elRx 12.5a) After the reaction, the reaction solution was treated in the same manner as in Example 1, and as a result of quantitative analysis using high-speed fluid chromatography, the target product was detected. The yield of the triamino compound was 28.89. (Theoretical yield 9
5.9%, current efficiency 93.1%) Comparative Example 1 2.4-diamino-5 was prepared in the same manner as in Example 1 except for the following.
-Innitroso-6-oxypyrimidine was electrolytically reduced.

陰極:鉄板(88−41、厚み2闘) 有効面積 1 dm2(8aX 12.51?l”)反
応開始時の陰極液:原料イソニトロソ体5g、水酸化す
11クム8gを含有する水溶液50nl 陰極側に供給した原料溶液:原料イソニトロソ体28Q
を含有するスラリー状の水溶液5wl 陰極側に供給した電解質溶液:40重量%の水酸化ナト
リウムの水溶液36a1 反応時の通電値二下記のように低下させた。
Cathode: Iron plate (88-41, thickness 2cm) Effective area 1 dm2 (8aX 12.51?l”) Cathode fluid at the start of reaction: 50nl of aqueous solution containing 5g of raw material isonitroso and 8g of 11 cum hydroxide Cathode side Raw material solution supplied to: Raw material isonitroso compound 28Q
Electrolyte solution supplied to the cathode side: 40% by weight aqueous solution of sodium hydroxide 36a1 The current flow value during the reaction was lowered as shown below.

なお、原料溶液および電解質溶液は反応開始後4時冊か
けて均等に供給した。
The raw material solution and the electrolyte solution were evenly supplied over 4 hours after the start of the reaction.

実施例1と同様に反応液を定量分析した結果、目的物の
収量は26.59であった。(理論収率g8.4%、[
流動率87.5%) 実施例1,2および比較例1の結果をまとめて比較する
と下記表Iのようになる。
As a result of quantitative analysis of the reaction solution in the same manner as in Example 1, the yield of the target product was 26.59. (Theoretical yield g8.4%, [
(Fluidity: 87.5%) A comparison of the results of Examples 1 and 2 and Comparative Example 1 is shown in Table I below.

−」 上表から明らかなようにステンレススチールと水酸化カ
リウムとの組合わせでは、極板単位面積当シの目的物収
量が鉄と水酸化ナトリウムとの組合わせに比べ、はぼ2
倍向上した。
-'' As is clear from the table above, the combination of stainless steel and potassium hydroxide has a yield of target material per unit area of the electrode plate that is approximately 2 times higher than that of the combination of iron and sodium hydroxide.
Improved twice.

参考例1 種型電解セ〃〔陰陽両極液はイオン交換膜(C。Reference example 1 Seed-type electrolysis cell [Yin-yang bipolar liquid is an ion exchange membrane (C.

M、V、■ 旭硝子工業■製)で仕切られており、両極
側ともそれぞれ150ぎlの容積を有し、陰極側は攪拌
機を備えている〕を用い、陰極材質と陰極電解質として
は下記のように組合わせたものを用いて原料のインニト
ロソ体の電解還元をイソニトロソ体が懸濁した水溶液中
で行なった。
The cathode material and cathode electrolyte were as follows: Using the above combination, electrolytic reduction of the raw material innitroso compound was carried out in an aqueous solution in which the isonitroso compound was suspended.

1)陰極材質および陰極電解質 2)電解条件 陰極液:原料イソニトロソ体69.電解質2.4すを含
有するスラリー水溶液12Or/陽極液:2W/V%の
希硫酸120ガl陰極寸法:厚み1 mm 、有効面積
Q、3 dm” (6c*×5備) 陽極:白金メッキのチタン板(メッキ厚み2μ汎、チタ
ン板厚みl mm ) 有効面@0.3 dm2(6etrr x 5eIX)
反応温度:15±1℃ 上記条件下、水素ガスが発生することなく流すことので
きる電流密度の最大値を測定し、次の結果を得た。
1) Cathode material and cathode electrolyte 2) Electrolytic conditions Cathode fluid: Raw material isonitrosomer 69. Slurry aqueous solution containing 2.4 ml of electrolyte 12 Or/Anolyte: 2 W/V% dilute sulfuric acid 120 gal Cathode dimensions: Thickness 1 mm, effective area Q, 3 dm” (6cm*×5 units) Anode: Platinum plating Titanium plate (plating thickness 2 μ general, titanium plate thickness 1 mm) Effective surface @ 0.3 dm2 (6etrr x 5eIX)
Reaction temperature: 15±1° C. Under the above conditions, the maximum current density that could be passed without generating hydrogen gas was measured, and the following results were obtained.

上表から明らかなように、2.4−ジアミノ−5−イソ
ニトロソ−6−オキシピリミジンの電解還元には、ステ
ンレススチールと水酸化カリウムとの組合わせがすぐれ
ている。
As is clear from the above table, the combination of stainless steel and potassium hydroxide is excellent for the electrolytic reduction of 2,4-diamino-5-isonitroso-6-oxypyrimidine.

Claims (1)

【特許請求の範囲】[Claims] 陰極としてステンレス鋼を、陰極電解質として水酸化カ
リウムを用いて水溶液中で2,4−ジアミノ−5−イソ
ニトロソ−6−オキシピリミジンを電解還元することを
特徴とする2,4,5−トリアミノ−6−ハイドロオキ
シピリミジンの製造法。
2,4,5-triamino-6, characterized in that 2,4-diamino-5-isonitroso-6-oxypyrimidine is electrolytically reduced in an aqueous solution using stainless steel as a cathode and potassium hydroxide as a cathode electrolyte. - A method for producing hydroxypyrimidine.
JP59129866A 1984-06-22 1984-06-22 Manufacture of 2,4,5-triamino-6-hydroxypyrimidine Granted JPS619587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59129866A JPS619587A (en) 1984-06-22 1984-06-22 Manufacture of 2,4,5-triamino-6-hydroxypyrimidine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59129866A JPS619587A (en) 1984-06-22 1984-06-22 Manufacture of 2,4,5-triamino-6-hydroxypyrimidine

Publications (2)

Publication Number Publication Date
JPS619587A true JPS619587A (en) 1986-01-17
JPH045758B2 JPH045758B2 (en) 1992-02-03

Family

ID=15020220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59129866A Granted JPS619587A (en) 1984-06-22 1984-06-22 Manufacture of 2,4,5-triamino-6-hydroxypyrimidine

Country Status (1)

Country Link
JP (1) JPS619587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003941A (en) * 2014-06-13 2014-08-27 石药集团新诺威制药股份有限公司 Preparation method of caffeine intermediate N,N-1,3-dimethyl-4,5-diamido urazine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003941A (en) * 2014-06-13 2014-08-27 石药集团新诺威制药股份有限公司 Preparation method of caffeine intermediate N,N-1,3-dimethyl-4,5-diamido urazine

Also Published As

Publication number Publication date
JPH045758B2 (en) 1992-02-03

Similar Documents

Publication Publication Date Title
US3720591A (en) Preparation of oxalic acid
US4435256A (en) Process for making potassium ferrate [Fe(VI)] by the electrochemical formation of sodium ferrate
US4312722A (en) Process for preparing nitrites
US4521285A (en) Electrolytic process for the preparation of organic compounds
AU653049B2 (en) Electrochemical process and cell for the production of sulphuric acid and sodium hydroxide
AU2002365547C1 (en) Electrochemical process for producing ionic liquids
US4435257A (en) Process for the electrochemical production of sodium ferrate [Fe(VI)]
CN101492826B (en) Method for synthesis of aniline and alkali-chloride with electrochemical conjugate synthesis
US4451338A (en) Process for making a calcium/sodium ferrate adduct by the electrochemical formation of sodium ferrate
CN102839389B (en) Novel production method of electro-depositing and refining metal chloride by membrane process
US4589963A (en) Process for the conversion of salts of carboxylic acid to their corresponding free acids
CA1087546A (en) Low voltage chlor-alkali ion exchange process for the production of chlorine
US4647351A (en) Process for generating chlorine and caustic soda using a membrane electrolysis cell coupled to a membrane alkaline fuel cell
US4454012A (en) Process for the preparation of methionine
US2830941A (en) mehltretter
JPH0730475B2 (en) Method for producing 1-aminoanthraquinones
JPS619587A (en) Manufacture of 2,4,5-triamino-6-hydroxypyrimidine
US5266173A (en) Process for preparing aromatic amine compounds and reducing agent therefor
US4666570A (en) Process for producing aromatic compound with functional groups
GB1313441A (en) Process for preparing chlorine and alkali phosphate solution by electrolysis and electrolytic cell for carrying out the process
JPS61231189A (en) Production of amino alcohol
JPS619586A (en) Manufacture of 2,4,5-triamino-6-hydroxypyrimidine
EP0184381B1 (en) Electrochemical process and cell
US4505788A (en) Production of p-aminobenzoylglutamic acid by electrochemical reduction
EP0122775A1 (en) Method for making a cathode, and method for lowering hydrogen overvoltage in a chloralkali cell