JPS6195785A - Silicon nitride fiber reinforced copper compound material for electrode - Google Patents

Silicon nitride fiber reinforced copper compound material for electrode

Info

Publication number
JPS6195785A
JPS6195785A JP21909284A JP21909284A JPS6195785A JP S6195785 A JPS6195785 A JP S6195785A JP 21909284 A JP21909284 A JP 21909284A JP 21909284 A JP21909284 A JP 21909284A JP S6195785 A JPS6195785 A JP S6195785A
Authority
JP
Japan
Prior art keywords
silicon nitride
fiber
electrode
composite material
compound material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21909284A
Other languages
Japanese (ja)
Inventor
Shuntaro Sudo
俊太郎 須藤
Akira Manabe
明 真鍋
Yoshitaka Takahashi
義孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21909284A priority Critical patent/JPS6195785A/en
Publication of JPS6195785A publication Critical patent/JPS6195785A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/222Non-consumable electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide the titled compound material excellent in both mechanism property of wear resistance, strength, etc. and electrical and thermal properties of conductivity, thermal conductivity, etc. by consisting of the silicon nitride fiber in the range of the specified volume factor specified respectively a mean fiber diameter and aspect ratio as a reinforcing material and a pure copper as a matrix. CONSTITUTION:The silicon nitride reinforcing copper compound material for electrode is composed of the silicon nitride fiber of under 1.0mu, especially 0.1-1.0mu mean fiber diameter and 10-300, especially 20-2500 aspect ratio as a reinforcing material and a pure copper of more than 99.5%, especially more than 99.7% purity as a matrix. It is an essential conditions that the volume factor of the silicon nitride fiber in this compound material is to be 2.0-25%, especially 5.0-20%. The density ratio of this compound material is more than 0.90, especially more than 0.92. This compound material is suitable for the formation of electrode for lap resistance welding.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、繊維強化金属複合材料に係り、更に詳細には
電極用の窒化ケイ素繊維強化f!4複合材籾に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to fiber-reinforced metal composite materials, and more particularly to silicon nitride fiber-reinforced f! for electrodes. 4 Concerning composite paddy.

従来の技術 スポット溶接、シーム溶接等の重ね抵抗溶接に於ける電
極は被溶接材に対し大電流密度の通電及び強加圧を行う
ものであり、従って導電性に優れ且耐摩耗性及び強度に
優れていることが必要である。また溶接部に於て多大の
抵抗熱が発生するため、電極は高温強度及び熱伝導性に
優れていることが必要とされる。そのため重ね抵抗溶接
用の電極は従来より一般に純銅に数%のクロムやベリリ
ウムを添加した銅合金にて形成されている。
Conventional technology Electrodes used in lap resistance welding such as spot welding and seam welding apply a large current density and strong pressure to the material to be welded, and therefore have excellent electrical conductivity, wear resistance, and strength. It is necessary that the Furthermore, since a large amount of resistance heat is generated at the welding part, the electrode is required to have excellent high-temperature strength and thermal conductivity. Therefore, electrodes for lap resistance welding have conventionally been generally made of a copper alloy made by adding several percent of chromium or beryllium to pure copper.

発明が解決しようする問題点 しかし耐摩耗性等の向上を図るべく純銅に対する合金元
素の添加量を増大すると、導電性が低下し、通電性能の
低下や電極自身の発熱量の増大等の問題が生じ、逆に合
金元素の添加量を低減すると耐摩耗性や強度の低下を来
たし耐久性が不十分になる。従って合金元素の添加によ
り耐摩耗性や強度の如き機械的性質と導電性や熱伝導性
の如き電気的熱的性質とを共に向上させることは非常に
困難である。
Problems to be Solved by the Invention However, when increasing the amount of alloying elements added to pure copper in order to improve wear resistance, etc., the conductivity decreases, leading to problems such as a decrease in current carrying performance and an increase in the amount of heat generated by the electrode itself. Conversely, if the amount of alloying elements added is reduced, wear resistance and strength will decrease, resulting in insufficient durability. Therefore, it is very difficult to improve both mechanical properties such as wear resistance and strength, and electrical and thermal properties such as electrical conductivity and thermal conductivity by adding alloying elements.

また電極等に使用される銅合金の耐摩耗性や強度などを
向上させるべく、銅合金中に硬質粒子を分散させた粒子
分散強化銅合金や析出時効型銅合金などが既に知られて
いる。しかしこれらの銅合金に於ては、製造が困難であ
り、被剛性が悪く、高温強度が不十分であるなど種々の
問題がある。
Furthermore, in order to improve the wear resistance and strength of copper alloys used for electrodes and the like, particle dispersion-strengthened copper alloys and precipitation-aged copper alloys, in which hard particles are dispersed in copper alloys, are already known. However, these copper alloys have various problems such as being difficult to manufacture, having poor rigidity, and insufficient high-temperature strength.

更に特開昭55−144386号に量水されている如く
、電極棒の少なくとも先端部が銅又は銅を主成分とする
金属と炭素繊維との複合材料にて構成されたスポット溶
接機用電極棒が既に知られている。しかしかかる電極棒
に於ては、炭素繊維の高温での性能が不十分であるため
、炭素繊維を強化材とし純銅又は銅合金をマトリックス
とする複合材料は高温での硬さが低く高温での耐摩耗性
が悪く、従ってかかる複合材料製の電極にて多数回の溶
接を行うと良好な溶接部が得られなくなるという問題が
ある。
Furthermore, as disclosed in JP-A No. 55-144386, there is an electrode rod for a spot welder in which at least the tip of the electrode rod is made of copper or a composite material of a metal containing copper as a main component and carbon fiber. is already known. However, in such electrode rods, the performance of carbon fiber at high temperatures is insufficient, so composite materials made of carbon fiber as a reinforcement and pure copper or copper alloy as a matrix have low hardness at high temperatures. There is a problem in that the wear resistance is poor, and therefore, if welding is performed many times using such a composite material electrode, a good weld cannot be obtained.

本願発明者等は、従来の電極材料に於ける上述の如き問
題に鑑み、種々の実験的研究を行った結果、高純度の純
銅をマトリックスとし、所定の要件を満たす窒化ケイ素
!11Mを強化材とする複合材料によれば、二律背反の
関係にある耐摩耗性や強度の如ぎ機械的性質と導電性や
熱伝導性の如き電気的熱的性質の両方に優れた電極を製
造し得ることを見出した。
In view of the above-mentioned problems with conventional electrode materials, the inventors of the present application have conducted various experimental studies and have developed silicon nitride that uses high-purity pure copper as a matrix and satisfies the predetermined requirements! Composite materials that use 11M as a reinforcing material make it possible to produce electrodes that have both mechanical properties, such as wear resistance and strength, and electrical and thermal properties, such as electrical conductivity and thermal conductivity, which are in a trade-off relationship. I found out what can be done.

本発明は、本願発明者等が行った種々の実験的研究の結
果得られた知見に基づき、耐摩耗性、強度の如き機械的
性質に優れ、しかも導電性、熱伝導性、高温強度の如き
電気的熱的性質にも優れ、従って重ね抵抗溶接用の電極
の如き電極の形成に使用されるに適した電極用窒化ケイ
素繊維強化銅複合材料を提供することを目的としている
The present invention is based on the knowledge obtained as a result of various experimental studies conducted by the inventors of the present invention, and has been developed based on the knowledge obtained as a result of various experimental studies conducted by the inventors of the present invention. It is an object of the present invention to provide a silicon nitride fiber-reinforced copper composite material for electrodes which has excellent electrical and thermal properties and is therefore suitable for use in forming electrodes such as electrodes for lap resistance welding.

問題点を解決するための手段 上述の如き目的は、本発明によれば、平均[lff1径
が1.0μ以下であり、アスペクト比が10〜3000
である窒化ケイ素繊維を強化材とし、純度99.5%以
上の純銅をマトリックスとし、前記窒化ケイ素繊維の体
積率が2.0〜25%である電極用窒化ケイ素繊維強化
銅複合材料によって達成される。
Means for Solving the Problems According to the present invention, the above-mentioned objects are such that the average [lff1 diameter is 1.0μ or less and the aspect ratio is 10 to 3000].
This is achieved by a silicon nitride fiber-reinforced copper composite material for electrodes, in which silicon nitride fiber is used as a reinforcing material, pure copper with a purity of 99.5% or more is used as a matrix, and the volume percentage of the silicon nitride fiber is 2.0 to 25%. Ru.

発明の作用及び効果 窒化ケイ素繊維は炭素繊維等に比して強度、剛性、高温
に於ける安定性などに優れており、従ってマトリックス
金属の劃り剛性、耐摩耗性を向上させる効果の高い繊維
である。本願発明者等が行った実験的研究の結果によれ
ば、窒化ケイ素繊維の体積率が非常に小さい場合には強
度向上効果等の機能が十分には発揮されないが、特に複
合材料の耐摩耗性は窒化ケイ素繊維の体積率が数%程度
であっても大幅に向上する。従って窒化ケイ素繊維の体
積率は2.0%以上、特に5.0%以上であることが好
ましい。また複合材料の強度等は窒化ケイ素!lHの体
積率が高くなればなるほど向上するので、複合材料の機
械的性質を向上させる点からは窒化ケイ素繊維の体積率
ができるだけ高い値であることが好ましい。しかし本願
発明者等が行った実験的研究の結果によれば、窒化ケイ
素繊維の体積率が高くなりすぎると、複合材料の導電性
や熱伝導性が茗しく低下するだけでな(、粉末冶金法に
て複合材料を製造する場合に於ては、窒化ケイ素繊維と
銅粉末等を均一に混合することが困難になり、従って窒
化ケイ素mHが均一に分散された複合材料を製造するこ
とが困難であり、銅粉末の焼結が良好に行われなくなる
という問題があり、加圧鋳造法にて複合材料を製造する
場合には、高体積率の’IAH成形体中に銅溶湯を良好
に浸透させることが困難になるので、窒化ケイ素繊維の
体積率は25%以下、特に2o%以下であることが好ま
しい。従って電極用窒化ケイ素繊維強化銅複合材料に於
ては、窒化ケイ素繊維の体積率は2.0〜25%、特に
5.0〜20%、更には8.0〜15%であることが好
ましい。
Functions and Effects of the Invention Silicon nitride fibers are superior in strength, rigidity, and stability at high temperatures compared to carbon fibers, etc., and are therefore highly effective fibers for improving the cutting stiffness and abrasion resistance of matrix metals. It is. According to the results of experimental research conducted by the inventors of the present application, when the volume fraction of silicon nitride fibers is very small, functions such as strength improvement effects are not fully exhibited, but especially the wear resistance of composite materials. is significantly improved even if the volume fraction of silicon nitride fibers is only a few percent. Therefore, the volume fraction of silicon nitride fibers is preferably 2.0% or more, particularly 5.0% or more. Also, the strength of composite materials is silicon nitride! The higher the volume fraction of lH, the higher the improvement, so from the viewpoint of improving the mechanical properties of the composite material, it is preferable that the volume fraction of the silicon nitride fibers is as high as possible. However, according to the results of experimental research conducted by the inventors of the present invention, if the volume fraction of silicon nitride fibers becomes too high, not only will the electrical conductivity and thermal conductivity of the composite material deteriorate significantly (but also the powder metallurgy When manufacturing composite materials by the method, it is difficult to mix silicon nitride fibers, copper powder, etc. uniformly, and therefore it is difficult to manufacture composite materials in which silicon nitride mH is uniformly dispersed. However, there is a problem that sintering of the copper powder is not performed well, and when manufacturing composite materials by pressure casting, it is difficult to properly infiltrate the molten copper into the IAH molded body with a high volume fraction. Therefore, it is preferable that the volume fraction of silicon nitride fiber is 25% or less, especially 20% or less. Therefore, in the silicon nitride fiber reinforced copper composite material for electrodes, the volume fraction of silicon nitride fiber is is preferably 2.0 to 25%, particularly 5.0 to 20%, and even more preferably 8.0 to 15%.

窒化ケイ素m維は現在種々の平均111雑径及びアスペ
クト比のものが市販されているが、窒化ケイ素altl
f1の繊維径が小さい場合には、繊維集合体より個々の
窒化ケイ素繊維を番よぐすごとが困難であるため複合材
料製造に際しての作業性が悪く、窒化ケイ素m維自身の
強度も低く、粉末冶金法の場合に於ては窒化ケイ素繊維
と銅粉末とを混合する場合に窒化ケイ素繊維が破断し易
く、加圧鋳造法の場合には窒化ケイ素繊維の体積率の小
さい繊維成形体を形成することが困難である。逆にm帷
径が大きい場合には、粉末冶金法に於ては窒化ケイ素繊
維と銅粉末との混合物に於けるこれら相互の接触が不十
分になり、従って焼結後に於ても窒化ケイ素繊維とマト
リックス金属との間の密着が不十分になり易く、加圧鋳
造法の場合には均質な繊維成形体を形成することが困難
である。また窒化ケイ素繊維の繊維長が短い場合には、
窒化ケイ素繊維が繊維として十分に作用せず、従って強
度向上効果等が不十分になり易−く、逆に繊維長が大き
い場合には粉末冶金法に於ては窒化ケイ素繊維と銅粉末
とを混合する過程に於て窒化ケイ素w4r41同士が絡
み合って窒化ケイ素繊維の偏析が生じやすく、加圧鋳造
法に於ては均質な繊維成形体を形成することが困難にな
る。従って本願発明者等が行った実験的研究の結果によ
れば、窒化ケイ素繊維の平均II維径は1.0μ以下、
特に0.1〜1゜0μであることが好ましく、アスペク
ト比は10〜3000.特に20〜2500、更には5
0〜2000であることが好ましい。
Silicon nitride m-fibers are currently commercially available with various average diameters and aspect ratios of 111, but silicon nitride altl
When the fiber diameter of f1 is small, it is difficult to separate the individual silicon nitride fibers from the fiber aggregate, resulting in poor workability when manufacturing composite materials, and the strength of the silicon nitride fiber itself is low, resulting in powder In the metallurgical method, when silicon nitride fibers and copper powder are mixed, the silicon nitride fibers are easily broken, and in the pressure casting method, a fiber molded body with a small volume percentage of silicon nitride fibers is formed. It is difficult to do so. On the other hand, if the diameter is large, the contact between silicon nitride fibers and copper powder in the mixture becomes insufficient in the powder metallurgy method, and therefore even after sintering, the silicon nitride fibers do not remain in contact with each other. The adhesion between the fiber material and the matrix metal tends to be insufficient, and in the case of pressure casting, it is difficult to form a homogeneous fiber molded product. In addition, when the fiber length of silicon nitride fiber is short,
Silicon nitride fibers do not function well as fibers, so the strength improvement effect tends to be insufficient. Conversely, when the fiber length is large, it is difficult to combine silicon nitride fibers and copper powder in the powder metallurgy method. During the mixing process, silicon nitride w4r41 tends to become entangled with each other, causing segregation of silicon nitride fibers, making it difficult to form a homogeneous fiber molded body in the pressure casting method. Therefore, according to the results of experimental research conducted by the inventors of the present application, the average II fiber diameter of silicon nitride fibers is 1.0μ or less;
In particular, it is preferably 0.1-1°0μ, and the aspect ratio is 10-3000. Especially 20-2500, even 5
It is preferable that it is 0-2000.

更にマトリックス金属としての純銅は銀に次いで導電性
の高いものであるが、その導電性は純度が低下するにつ
れて低下する。本願発明者等が行った実験的研究の結果
によれば、上述の如き窒化ケイ素繊維にて複合強化され
る純銅の純度は99゜5%以上、特に99.7%以上で
あることが好ましい。
Furthermore, pure copper as a matrix metal has the second highest electrical conductivity next to silver, but its electrical conductivity decreases as its purity decreases. According to the results of experimental studies conducted by the inventors of the present application, the purity of pure copper compositely reinforced with silicon nitride fibers as described above is preferably 99.5% or more, particularly 99.7% or more.

本発明によれば、強化材としての窒化ケイ素繊維の大き
さ及び体積率、マトリックス金属としての純銅の純度が
上述の如く設定されるので、耐摩耗性、強度の如き機械
的性質に優れ、しかも導電性、熱伝導性、高温強度の如
き電気的熱的性質にも優れた電極用窒化ケイ素繊維強化
銅複合材料を得ることができる。
According to the present invention, the size and volume fraction of silicon nitride fibers as a reinforcing material and the purity of pure copper as a matrix metal are set as described above, so that mechanical properties such as wear resistance and strength are excellent, and It is possible to obtain a silicon nitride fiber-reinforced copper composite material for electrodes that has excellent electrical and thermal properties such as electrical conductivity, thermal conductivity, and high-temperature strength.

尚本願発明者等が行った他の実験的研究の結果によれば
、電極用窒化ケイ素繊維強化鋼複合材料の導電性はその
密度比、即ち複合材料の見掛けの密度に対する真密度の
比が低下するにつれて低下する。従って本発明の一つの
詳細な特徴によれば、複合材料の密度比は0.90以上
、特に0992以上、更には0693以上に設定される
According to the results of other experimental studies conducted by the present inventors, the conductivity of silicon nitride fiber-reinforced steel composite materials for electrodes is determined by a decrease in the density ratio, that is, the ratio of the true density to the apparent density of the composite material. decreases as the temperature increases. According to one detailed feature of the invention, therefore, the density ratio of the composite material is set to 0.90 or more, in particular 0992 or more, and even 0693 or more.

また本発明による複合材料が重ね抵抗溶接用の電極に適
用される場合に於て、電極自身の発熱を低減し、良好な
抵抗溶接を実現するためには、本願発明者等が行った実
験的研究の結果によれば、複合材料の導電率rAcsは
70%以上であることが好ましい。従って本発明の他の
一つの詳細な特徴によれば、複合材料の電気伝導度IA
CSは70%以上、特に72%以上、更には75%以上
に設定される。
In addition, when the composite material according to the present invention is applied to an electrode for lap resistance welding, in order to reduce the heat generation of the electrode itself and achieve good resistance welding, the experimental According to research results, the electrical conductivity rAcs of the composite material is preferably 70% or more. According to another detailed feature of the invention, therefore, the electrical conductivity of the composite material IA
CS is set to 70% or more, particularly 72% or more, and even 75% or more.

更にブローイング法などにて製造される窒化ケイ素繊維
の集合体中にはその製法上人なり小なり非繊維化粒子が
含まれており、これらの非繊維化粒子はその硬さ)(v
  (50(1>が1000以上であり、またその大き
さも窒化ケイ素m維のm帷径に比して非常に大きいもの
である。本願発明者等が行った研究の結果によれば、か
かる非繊維化粒子を含有する窒化ケイ素繊維の集合体を
強化材とする複合材料は加工性が非常に悪く、かかる複
合材料が電極に適用された場合には非繊維化粒子がマト
リックスより脱落することに起因して被溶接材に異常摩
耗の如き不具合を発生させることがある。かかる問題は
特に直径150μ以上の比較的大きい非m帷七粒子の含
有率が高い場合に顕著である。従って本発明の更に他の
一つの詳細な特徴によれば、窒化ケイ素H&帷の集合体
中に含まれる直径150μ以上の非繊維化粒子の量は7
wt%以下、特に5wt%以下更には1wt%以下に制
限される。
Furthermore, the aggregate of silicon nitride fibers produced by blowing method etc. contains non-fibrous particles to some extent due to the manufacturing process, and these non-fibrous particles have a hardness) (v
(50 (1>) is 1000 or more, and its size is also very large compared to the m thread diameter of silicon nitride m fibers.According to the results of the research conducted by the inventors of the present application, such a Composite materials that are reinforced by aggregates of silicon nitride fibers containing fibrous particles have very poor processability, and when such composite materials are applied to electrodes, non-fibrous particles tend to fall off from the matrix. This may cause problems such as abnormal wear in the welded material.This problem is particularly noticeable when the content of relatively large non-molecular particles with a diameter of 150μ or more is high.Therefore, the present invention According to yet another detailed feature, the amount of non-fibrous particles with a diameter of 150μ or more contained in the silicon nitride H&tape aggregate is 7.
It is limited to 5 wt% or less, particularly 1 wt% or less.

尚本発明の複合材料がスポット溶接装置等の電極に適用
される場合には、電極の全体が複合材料にて形成されて
もよく、また電極の複連接材との当接部のみが複合材料
にて形成され、他の部分が純銅にて形成されてもよい。
In addition, when the composite material of the present invention is applied to an electrode of a spot welding device, etc., the entire electrode may be formed of the composite material, or only the part of the electrode in contact with the multiple connecting member is made of the composite material. The other parts may be made of pure copper.

以下に添−付の図を参照しつつ本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to embodiments with reference to the accompanying drawings.

(1)鋳造例 集合体中に含まれる直径150μ以上の非繊維化粒子の
含有量が実質的に零であるよう処理された下記の表1に
示された種々の窒化ケイ素繊維を用意し、それらの窒化
ケイ素1m1rI#1にて第1図に示されている如き縦
80m■、横8Qmm、高さ2011111の繊維成形
体2を形成した。この場合窒化ケイ素m維は白Ox80
mmの端面に平行な平面内に於てはランダムであり、高
さ方向に積層された状態にて配向された。尚表1の各試
料の窒化ケイ素繊維はタテホ化学工業株式会社製のrs
i 3 NtホイスカJであった。
(1) Casting Example Prepare various silicon nitride fibers shown in Table 1 below that have been treated so that the content of non-fibrous particles with a diameter of 150 μm or more contained in the aggregate is substantially zero, A fiber molded body 2 having a length of 80 m, a width of 8 Q mm, and a height of 20111111 as shown in FIG. 1 was formed using 1 m1 of silicon nitride #1. In this case, the silicon nitride m fiber is white Ox80
They were oriented randomly in a plane parallel to the end face of mm, and were stacked in the height direction. The silicon nitride fibers in each sample in Table 1 were manufactured by Tateho Chemical Industry Co., Ltd.
It was i 3 Nt Whisker J.

次いで4IN成形体2を600℃に予熱した後、第2図
に示されている如く下型3と上型4とノックアウトビン
5とよりなる高圧鋳造装置6の下型3内に配置し、該下
型内に1200℃の純銅(純度99.9%)の溶湯7を
注渇し、該溶湯を約1000 kg/♂の圧力にて加圧
し、その加圧状態を溶湯が完全に凝固するまで保持した
。溶湯が完全に凝固した後下型3内よりノックアウトピ
ン5により凝固体を取出し、該凝固体に対し研削等の機
械加工を施した。かくして得られた凝固体の窒化ケイ素
繊維にて強化された純銅よりなる部分について空温及び
500℃に於けるビッカース硬さ、導電率及び密度比の
測定を行った。その結果を下記の表2に示す。
Next, after preheating the 4IN molded body 2 to 600°C, it is placed in the lower mold 3 of a high-pressure casting apparatus 6 consisting of a lower mold 3, an upper mold 4, and a knockout bin 5, as shown in FIG. Pour molten metal 7 of pure copper (purity 99.9%) at 1200°C into the lower mold, pressurize the molten metal at a pressure of about 1000 kg/♂, and maintain the pressurized state until the molten metal completely solidifies. did. After the molten metal was completely solidified, the solidified body was taken out from the lower mold 3 using a knockout pin 5, and the solidified body was subjected to mechanical processing such as grinding. The Vickers hardness, electrical conductivity, and density ratio at air temperature and at 500° C. were measured for the portion of the solidified body made of pure copper reinforced with silicon nitride fibers. The results are shown in Table 2 below.

また上述の如く形成された凝固体に対し旋削等の機械加
工を施して、第3図に示されている如く、全長1−23
11111、呼び径a−15mm、電極先端の直径、即
ち図には示されていない被溶接材との当接面9aの直径
d−5+u+、電極先端外周部の径方向断面の曲率半径
R−8IIであり、実質的に切頭円錐形をなす先端部8
のみが窒化ケイ素繊維にて複合強化されたスポット溶接
用の電極チップ9を。
Further, the solidified body formed as described above is subjected to machining such as turning, and the total length is 1-23 mm as shown in FIG.
11111, nominal diameter a-15 mm, diameter of the electrode tip, that is, diameter d-5+u+ of the contact surface 9a with the welded material (not shown in the figure), radius of curvature R-8II of the radial cross section of the outer periphery of the electrode tip and has a substantially truncated conical tip 8
Only the electrode tip 9 for spot welding is compositely reinforced with silicon nitride fiber.

形成した。尚第3図に於て9bは冷却水通路を示してい
る。
Formed. In FIG. 3, 9b indicates a cooling water passage.

上述の如く形成された電極チップ9を用いて、第4図に
示されている如く、2枚の厚さ0.8mll1の冷間圧
延鋼板(JIS規格5CP28G>の被溶接材10に対
し1000打点のスポット溶接を行い、100打点目の
溶接が行われた俄の電極当り径を測定し、また被溶接材
10に正常なナゲツトを形成し得る溶接打点回数をチッ
プの寿命として測定した。これらの結果を下記の表2に
示す。
Using the electrode tip 9 formed as described above, as shown in FIG. Spot welding was carried out, and the diameter per electrode was measured until the 100th welding point was performed, and the number of welding points that could form a normal nugget on the welded material 10 was measured as the tip life. The results are shown in Table 2 below.

(2)焼結例 下記の表3に示された窒化ケイ素m維11及び純銅(I
4i度99.9%)粉末12をそれぞれ窒化ケイ素ms
aの体積率が所定の値になるよう秤量し、それらを第5
図に示されている如きV型混粉機13を用いて、回転数
30rpm、、混粉時間30分にて乾式混粉を行った。
(2) Sintering example Silicon nitride m fiber 11 and pure copper (I) shown in Table 3 below
4i degree 99.9%) powder 12 respectively silicon nitride ms
Weigh so that the volume ratio of a becomes a predetermined value, and add them to the fifth
Dry powder mixing was carried out using a V-type powder mixer 13 as shown in the figure at a rotation speed of 30 rpm and a powder mixing time of 30 minutes.

尚族3於て各試料の窒化ケイ素II雑はタテホ化学工業
株式会社製のrsIaN4ボイス力」であった。
The silicon nitride II miscellaneous material for each sample in Shouzoku 3 was rsIaN4 Boyce Force manufactured by Tateho Chemical Industry Co., Ltd.

次いで上述の如く混粉することにより得られた混合物を
順次第6図に示されている如きホットプレス装置14の
型15内に配置し、ヒータ16により800℃に加熱し
つつアッパパンチ17とロアバンチ18とにより加圧力
200 kg/♂、加圧時間10分、雰囲気10”’j
orrの真空の条件にてホットプレスを行った。かくし
て得られた焼結体に対し研削等の機械加工を行った後、
室温及び500℃に於けるビッカース硬さ、導電率、密
度比をそれぞれ測定した。その測定結果を下記の表4に
示す。
Next, the mixture obtained by mixing the powders as described above is sequentially placed in the mold 15 of the hot press device 14 as shown in FIG. Pressure force: 200 kg/♂, pressurization time: 10 minutes, atmosphere: 10"'j
Hot pressing was performed under vacuum conditions of orr. After performing mechanical processing such as grinding on the sintered body thus obtained,
Vickers hardness, electrical conductivity, and density ratio were measured at room temperature and at 500°C. The measurement results are shown in Table 4 below.

また上述の如く形成された焼結体に対し旋削等の機械加
工を行って、第3図に示されている如く、全長1−23
mm、呼び径a−16111111.被溶接材との当接
面9aの直径d−6+1L電極先端外周部の径方向断面
の曲率半径R= 8mmであり、全体に亙り窒化ケイ素
tINにて複合強化された純銅よりなるスポット溶接用
の電極チップ9を形成した。かくして形成された電極チ
ップを用いて、上述の鋳造例に於て行われた溶接試験と
同一の要領及び同一の条件の溶接試験を行い、スポット
溶接が1000打点行われた後の電極当り径及び電極チ
ップの寿命を測定した。その測定結果を表4に示す。
Further, the sintered body formed as described above is subjected to machining such as turning, and the total length is 1-23 mm as shown in FIG.
mm, nominal diameter a-16111111. The radius of curvature R of the radial cross section of the outer periphery of the electrode tip is 8 mm, and the diameter of the contact surface 9a with the material to be welded is d - 6 + 1L, and the entire area is made of pure copper compositely reinforced with silicon nitride tIN. An electrode chip 9 was formed. Using the electrode tip thus formed, a welding test was conducted in the same manner and under the same conditions as the welding test conducted in the above-mentioned casting example, and the diameter per electrode and The life of the electrode tip was measured. The measurement results are shown in Table 4.

(3)比較例 スポット溶接用の電極チップ構成材料として現在賞用さ
れているクロム銅を(Cu−0,6wt%cr>試料1
として用意し、該試料について常温及び500℃に於【
プるビッカース硬さ、導電率、密度比を測定し、またこ
のクロム銅にて形成された電極チップを用いて上述の溶
接試験と同一の要領及び条件にて溶接試験を行い、電極
当り径及び電極チップの寿命を測定した。その結果を下
記の表2に示す。
(3) Comparative Example Chromium copper, which is currently used as a constituent material of electrode tips for spot welding, was used (Cu-0.6wt%cr>Sample 1).
The sample was prepared as
The Vickers hardness, electrical conductivity, and density ratio were measured, and a welding test was conducted using the electrode tip made of chromium copper in the same manner and conditions as the welding test described above, and the diameter per electrode and The life of the electrode tip was measured. The results are shown in Table 2 below.

下記の族1〜表4より、特に試料2.3.5.6.8.
9より、窒化ケイ素繊維の体積率が高くなるにつれて電
極チップの硬さが増大するが、試料4.5.6.20と
試料8.9との対比により、窒化ケイ素繊維の体積率が
高くなるにつれて電極チップの寿命が著しく低下するこ
とがわかる。従って窒化ケイ素繊維の体積率は25%以
下であることが好ましい。また試料10び11より、窒
化ケイ素繊維の体積率は2.0%以上であることが好ま
しいことがわかる。また試料4〜7より、平均繊維径が
15μの如く比較的大きい場合には電極チップの寿命が
短く、従って窒化ケイ素繊維の平均繊維径は5μ以下で
あることが好ましいことがわかる。但しタテホ化学工業
株式会社製の窒化ケイ素繊維は繊維径のばらつきが大き
く、直径1゜0μ程度の繊維も含まれていることから判
断すれば、窒化ケイ素繊維の平均繊維径は1.0μ以下
が好ましいものと推測される。
From Group 1 to Table 4 below, especially samples 2.3.5.6.8.
9, the hardness of the electrode tip increases as the volume fraction of silicon nitride fiber increases, but the comparison between sample 4.5.6.20 and sample 8.9 shows that the volume fraction of silicon nitride fiber increases. It can be seen that the life of the electrode tip decreases significantly as the temperature increases. Therefore, the volume fraction of silicon nitride fibers is preferably 25% or less. Moreover, from Samples 10 and 11, it can be seen that the volume fraction of silicon nitride fibers is preferably 2.0% or more. Moreover, from Samples 4 to 7, it can be seen that when the average fiber diameter is relatively large such as 15μ, the life of the electrode tip is short, and therefore it is preferable that the average fiber diameter of the silicon nitride fiber is 5μ or less. However, judging from the fact that the silicon nitride fiber manufactured by Tateho Chemical Industry Co., Ltd. has a large variation in fiber diameter and includes fibers with a diameter of about 1°0μ, the average fiber diameter of silicon nitride fiber is 1.0μ or less. It is assumed that this is preferable.

また試料12と13との比較より、アスペクト比が10
未満の場合には電極当り径が著しく増大し、試料16と
17との比較より、アスペクト比が3000を越えると
電極チップの寿命が著しく低下することがわかる。従っ
て窒化ケイ素mMのアスペクト比は10〜3000であ
ることが好ましい。更に試料20〜23より、密度比が
0.90未満の場合には電極チップの寿命が非常に短く
、また電気導電率が70%未満の場合にも電極チップの
寿命が短いことがわかる。従って密度比及び電気導電率
はそれぞれ0.90以上、70%以上であることが好ま
しい。
Also, from the comparison of samples 12 and 13, the aspect ratio is 10.
When the aspect ratio is less than 3,000, the diameter per electrode increases significantly, and from a comparison of samples 16 and 17, it can be seen that when the aspect ratio exceeds 3000, the life of the electrode tip is significantly reduced. Therefore, the aspect ratio of silicon nitride mM is preferably 10 to 3000. Furthermore, from Samples 20 to 23, it can be seen that when the density ratio is less than 0.90, the life of the electrode tip is very short, and when the electrical conductivity is less than 70%, the life of the electrode tip is also short. Therefore, the density ratio and electrical conductivity are preferably 0.90 or more and 70% or more, respectively.

以上の説明より、本発明によれば、重ね抵抗溶接用の電
極の形成に適した優れた電極用窒化ケイ素繊維強化銅複
合材料が得られることが理解されよう。
From the above description, it will be understood that according to the present invention, an excellent silicon nitride fiber-reinforced copper composite material for electrodes, which is suitable for forming electrodes for lap resistance welding, can be obtained.

以上に於ては本発明を幾つかの比較例との対比に於て本
発明の複合材料の幾つかの実施例について詳細に説明し
たが、本発明はこれらの実施例に限定されるものではな
く、本発明の範囲内にて稜々の実施例が可能であること
は当業者にとって明らかであろう。
Although the present invention has been described above in detail with respect to several examples of the composite material of the present invention in comparison with several comparative examples, the present invention is not limited to these examples. It will be apparent to those skilled in the art that numerous embodiments are possible within the scope of the invention.

表     1 表    2 表     3 表     4Table 1 Table 2 Table 3 Table 4

【図面の簡単な説明】[Brief explanation of drawings]

第1図は窒化ケイ素繊維にて形成された繊維成    
′形体を示す斜視図、第2図は第1図に示された繊維成
形体を用いて複合材料が製造される場合の鋳造工程を示
す断面図、第3図は本発明による複合材料にて形成され
たスポット溶接用の電極チップの一つの実施例を示す解
図、第4図は第3図に示された電極チップを用いて行わ
れるスポット溶接の要領を示す解図、第5図及び第6図
は粉末冶金法による複合材料の製造過程の混粉工程及び
ホットブレス工程を示す断面図である。 1・・・窒化ケイ素繊維、2・・・繊維成形体、3・・
−下型、4・・・上型、5・・・ノックアウトビン、6
・・・高圧鋳造装置、7・・・溶湯、8・・・先端部、
9・・・電極チップ、9a・・・当接面、9b・・・冷
却水通路、1o・・・被溶接材、11・・・窒化ケイ素
m帷、12・・・純銅V)末、13・・・V型混粉機、
14・・・ホットプレス装置、15・・・型、16・・
・ヒータ、17・・・アッパバンチ、18・・・Oアパ
ンチ 第1図 第2図 第 3 図 第4図
Figure 1 shows a fiber structure made of silicon nitride fibers.
Figure 2 is a cross-sectional view showing the casting process when a composite material is produced using the fiber molded body shown in Figure 1, and Figure 3 is a perspective view showing the composite material according to the present invention. An illustration showing one embodiment of the formed electrode tip for spot welding, FIG. 4 is an illustration showing the procedure for spot welding performed using the electrode tip shown in FIG. 3, and FIGS. FIG. 6 is a cross-sectional view showing a powder mixing step and a hot pressing step in the process of manufacturing a composite material by powder metallurgy. 1... Silicon nitride fiber, 2... Fiber molded body, 3...
- Lower mold, 4... Upper mold, 5... Knockout bin, 6
... High pressure casting device, 7... Molten metal, 8... Tip part,
9... Electrode tip, 9a... Contact surface, 9b... Cooling water passage, 1o... Material to be welded, 11... Silicon nitride m-thread, 12... Pure copper V) powder, 13 ...V-type flour mixing machine,
14... Hot press device, 15... Mold, 16...
・Heater, 17... Upper bunch, 18... O-a punch Figure 1 Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)平均繊維径が1.0μ以下であり、アスペクト比
が10〜3000である窒化ケイ素繊維を強化材とし、
純度99.5%以上の純銅をマトリックスとし、前記窒
化ケイ素繊維の体積率が200〜25%である電極用窒
化ケイ素繊維強化銅複合材料。
(1) Silicon nitride fibers having an average fiber diameter of 1.0 μ or less and an aspect ratio of 10 to 3000 are used as reinforcement,
A silicon nitride fiber-reinforced copper composite material for an electrode, which has pure copper with a purity of 99.5% or more as a matrix and has a volume fraction of the silicon nitride fibers of 200 to 25%.
(2)特許請求の範囲第1項の電極用窒化ケイ素繊維強
化銅複合材料に於て、前記複合材料の密度比は0.90
以上であることを特徴とする電極用窒化ケイ素繊維強化
銅複合材料。
(2) In the silicon nitride fiber reinforced copper composite material for electrodes according to claim 1, the density ratio of the composite material is 0.90.
A silicon nitride fiber-reinforced copper composite material for electrodes, which is characterized by the above.
(3)特許請求の範囲第1項又は第2項の電極用窒化ケ
イ素繊維強化銅複合材料に於て、前記複合材料の導電率
IACSは70%以上であることを特徴とする電極用窒
化ケイ素繊維強化銅複合材料。
(3) In the silicon nitride fiber-reinforced copper composite material for electrodes according to claim 1 or 2, the composite material has a conductivity IACS of 70% or more. Fiber reinforced copper composite material.
JP21909284A 1984-10-18 1984-10-18 Silicon nitride fiber reinforced copper compound material for electrode Pending JPS6195785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21909284A JPS6195785A (en) 1984-10-18 1984-10-18 Silicon nitride fiber reinforced copper compound material for electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21909284A JPS6195785A (en) 1984-10-18 1984-10-18 Silicon nitride fiber reinforced copper compound material for electrode

Publications (1)

Publication Number Publication Date
JPS6195785A true JPS6195785A (en) 1986-05-14

Family

ID=16730128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21909284A Pending JPS6195785A (en) 1984-10-18 1984-10-18 Silicon nitride fiber reinforced copper compound material for electrode

Country Status (1)

Country Link
JP (1) JPS6195785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5611945A (en) * 1993-10-08 1997-03-18 Honda Giken Kogyo Kabushiki Kaisha Resistance welding electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5611945A (en) * 1993-10-08 1997-03-18 Honda Giken Kogyo Kabushiki Kaisha Resistance welding electrode

Similar Documents

Publication Publication Date Title
Bai et al. Dry sliding wear of A356-Al-SiCp composites
Guo et al. Effects of reflow on wettability, microstructure and mechanical properties in lead-free solders
JPS5970736A (en) Composite material and its production
JP2008201080A (en) Cylinder for molding machine
US3441392A (en) Preparation of fiber-reinforced metal alloy composites by compaction in the semimolten phase
JP5059338B2 (en) Carbon fiber reinforced aluminum composite and manufacturing method thereof
US6254660B1 (en) Corrosion-resistant alloy, preparation process and article made from the alloy
US5236032A (en) Method of manufacture of metal composite material including intermetallic compounds with no micropores
US6432557B2 (en) Metal matrix composite and piston using the same
CN100387378C (en) Electric contactor and alloy for electrode, preparing method thereof
JPS6195785A (en) Silicon nitride fiber reinforced copper compound material for electrode
US4961781A (en) High corrosion-and wear resistant-powder sintered alloy and composite products
US5590388A (en) Molded ceramic articles and production method thereof
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPS616242A (en) Fiber reinforced metallic composite material
JPS6195786A (en) Silicon carbide fiber reinforced copper compound material for electrode
CA2020335C (en) Method of manufacture of metal matrix composite material including intermetallic compounds with no micropores
JPS61108492A (en) Alumina fiber reinforced copper composite material for electrode
JPS61108493A (en) Alumina-silica fiber reinforced copper composite material for electrode
JPS637345A (en) Electrical contact material and its production
Gu et al. Microstructures and properties of direct laser sintered tungsten carbide (WC) particle reinforced Cu matrix composites with RE–Si–Fe addition: A comparative study
JPWO2019045067A1 (en) Cylinder for molding machine and its manufacturing method
JPH0421732A (en) Copper matrix composite material and its manufacture
JPS6358900B2 (en)