JPS6195280A - Upper shielding body for fast breeder reactor - Google Patents

Upper shielding body for fast breeder reactor

Info

Publication number
JPS6195280A
JPS6195280A JP59217110A JP21711084A JPS6195280A JP S6195280 A JPS6195280 A JP S6195280A JP 59217110 A JP59217110 A JP 59217110A JP 21711084 A JP21711084 A JP 21711084A JP S6195280 A JPS6195280 A JP S6195280A
Authority
JP
Japan
Prior art keywords
heat
shield
heat insulating
insulating structure
shielding body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59217110A
Other languages
Japanese (ja)
Other versions
JPH0469355B2 (en
Inventor
功 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59217110A priority Critical patent/JPS6195280A/en
Publication of JPS6195280A publication Critical patent/JPS6195280A/en
Publication of JPH0469355B2 publication Critical patent/JPH0469355B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、液体金属冷却型高速増殖炉°の上部遮蔽体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an upper shield for a liquid metal cooled fast breeder reactor.

[発明の技術的背景とその問題点] 第4図はタンク型高速増殖炉を示すもので、図中、符号
1は原子炉容器内ノ全。この原子炉容器1は、万一の冷
却材流出に備えて外部を保護容器2で包囲され、上部筒
口は上部遮蔽体(ルーフスラブ)3により遮蔽されてい
る。また上部遮蔽体3の下部周辺部は円筒状のスカート
4を介して周囲の鉄筋コンクリート壁5により形成され
たビット至りa内に収容されている。そして原子炉容器
1内には炉心6が設けられるとともに、−次冷却材ボン
ブ7、−次冷却材流入口8aおよび流出口8bを有する
中間熱交換器8、炉心上部i構9および一次冷却材とし
ての液体ナトリウム10が収容され、液体ナトリウム1
0の液面と上部遮蔽体3との間にはアルゴンガス等の不
活性ガスがカバーガスとして封入されている。なお、符
号11は一次冷即材ボンプ7を駆動するモータ、12.
13はそれぞれ中間熱交換器8に接続された二次冷却材
流入管および二次冷却材流出管である。またiv号14
・・・は上記−次冷却iンプ7の吸込孔であり、これら
の吸込孔14−・・・は外筒15に囲まれている。ざら
に符号16は炉心6を支持する炉心支持体、17は炉心
6の下方に設けられた高圧ブレナム、18は炉心6を゛
囲む炉心支持枠である。 −そして上記−次冷却材ポン
ブ7の吐出口と高圧プレナム17との間は導圧管19に
よって連通され、上記外筒15および炉心支持枠18は
原子炉容器1内を上部ブレナム20aと下部ブレナム2
0bとに区画する隔壁20によって支持されている。
[Technical background of the invention and its problems] Figure 4 shows a tank-type fast breeder reactor, and in the figure, reference numeral 1 indicates the entire inside of the reactor vessel. The reactor vessel 1 is surrounded on the outside by a protective vessel 2 in case of coolant leakage, and the upper cylinder mouth is shielded by an upper shield (roof slab) 3. Further, the lower peripheral portion of the upper shield 3 is housed in a bit to a formed by a surrounding reinforced concrete wall 5 via a cylindrical skirt 4. A reactor core 6 is provided in the reactor vessel 1, and a secondary coolant bomb 7, an intermediate heat exchanger 8 having a secondary coolant inlet 8a and an outlet 8b, a core upper i structure 9, and a primary coolant liquid sodium 10 is accommodated, liquid sodium 1
An inert gas such as argon gas is sealed between the liquid level at 0 and the upper shield 3 as a cover gas. Note that reference numeral 11 is a motor that drives the primary cold ready-to-read material pump 7;
13 are a secondary coolant inflow pipe and a secondary coolant outflow pipe connected to the intermediate heat exchanger 8, respectively. Also iv issue 14
. . are suction holes of the above-mentioned sub-cooling pump 7, and these suction holes 14-- are surrounded by an outer cylinder 15. Roughly speaking, reference numeral 16 is a core support body that supports the reactor core 6, 17 is a high-pressure blemish provided below the reactor core 6, and 18 is a core support frame that surrounds the reactor core 6. -Then, the discharge port of the secondary coolant pump 7 and the high pressure plenum 17 are communicated with each other by a pressure impulse pipe 19, and the outer cylinder 15 and the core support frame 18 are connected to the upper blenum 20a and the lower plenum 20a within the reactor vessel 1.
It is supported by a partition wall 20 that divides the space into 0b and 0b.

上部遮蔽体3には中央に円形の開口部21が、またその
周囲には透孔22・・・が、それぞれ設けられ、開口部
21には回転プラグ23が、また各透孔22・・・には
上゛記−次冷却材ボンブ7、中間熱交換器8等が、それ
ぞれ嵌合支持されている。そして回転プラグ23には上
記炉心上部機構9のほか燃料交換器およびこれを駆動す
る燃料交換駆動装置(いずれも図示せず)が支持されて
おり、上記炉心上部機構9には炉心6に対して制御棒(
図示せず)を挿入・引抜き操作する制−棒駆動磯構(図
示せず)が支持されている。
The upper shielding body 3 is provided with a circular opening 21 in the center and through holes 22 around it, and a rotary plug 23 is provided in the opening 21, and each through hole 22 is provided in the opening 21. The above-mentioned secondary coolant bomb 7, intermediate heat exchanger 8, etc. are fitted and supported on the mounts, respectively. In addition to the core upper mechanism 9, the rotary plug 23 supports a fuel exchanger and a fuel exchange drive device (none of which are shown) that drives the core upper mechanism 9. Control rod (
A control rod drive rock (not shown) is supported for inserting and withdrawing the control rod (not shown).

以上の構成において、高圧ブレナム17内の液体ナトリ
ウム10は炉心6を下方から上方へ流通し、炉心6にお
ける核反応熱により昇温する。そして炉心6から上部ブ
レナム2Oa内に流入した液体ナトリウム10は中間熱
♀換器8内に流入口8aを通して流入し、この内部で原
子炉容器1の外部を循環する二次冷却材と熱交換したの
ち、流出口8bを通して隔壁20より下方の下部ブレナ
ム2Ob内へ流出する。そして二次冷却材の熱で蒸気を
発生させ、その蒸気は発電用タービンの駆動源となる。
In the above configuration, the liquid sodium 10 in the high-pressure blemish 17 flows through the reactor core 6 from below to above, and is heated by nuclear reaction heat in the reactor core 6. The liquid sodium 10 flowing from the core 6 into the upper blemish 2Oa flows into the intermediate heat exchanger 8 through the inlet 8a, where it exchanges heat with the secondary coolant circulating outside the reactor vessel 1. Thereafter, it flows out into the lower blenheim 2Ob below the partition wall 20 through the outlet 8b. The heat from the secondary coolant generates steam, which becomes the driving source for the power generation turbine.

一方、下部ブレナム2Ob内の液体ナトリウム10は外
筒15の下端に設けられた流入口15aおよび吸込孔1
4を通して一次冷却材ポンプ7に流入してこのポンプ7
で加圧され、導圧管19を通して再び炉心6下方の高圧
プレナム 、   □。
On the other hand, the liquid sodium 10 in the lower brenum 2Ob is supplied to the inlet 15a and the suction hole 1 provided at the lower end of the outer cylinder 15.
4 into the primary coolant pump 7.
The high pressure plenum below the reactor core 6 is pressurized through the impulse pipe 19 again.

17内に送り込まれることになる。It will be sent into the 17th.

ところで、原子炉容器1の上方開口を遮蔽する上部遮蔽
体3には原子炉容器1やこれを外部より取囲む保護容器
2が直接懸架され、また上部遮蔽体3には液0体ナトリ
ウム10を炉心6に圧送するための一次冷却材ポンプ7
、中間熱交換器8、回転プラグ23等の重量構造物が搭
載されているので、上部遮蔽体3はこれらの重量構造物
を支持する強度を得るため、および原子炉容器1内より
放射される中性子等の放射線を遮蔽するために、通常、
鉄製の梁をめぐらしたコン−クリ−1−構造物で構、成
されている。
Incidentally, the reactor vessel 1 and the protective vessel 2 that surrounds it from the outside are directly suspended on the upper shield 3 that shields the upper opening of the reactor vessel 1, and the upper shield 3 is equipped with liquid 0-body sodium 10. Primary coolant pump 7 for pumping into the reactor core 6
, an intermediate heat exchanger 8 , a rotating plug 23 , and other heavy structures are installed, so the upper shield 3 is designed to have the strength to support these heavy structures and to protect against radiation from inside the reactor vessel 1. In order to shield radiation such as neutrons,
It consists of a single concrete structure surrounded by iron beams.

しかしながら、原子炉容器1内が高温であるので上部遮
蔽体3の上面と下面とに著しい温度差が生じ、これによ
り上部遮蔽体3が熱変形し、搭載構造物が傾斜して原子
炉容器1.、内の構造物と干渉したり、上部遮蔽体3自
体に亀裂が生じたりするおそれがある。
However, due to the high temperature inside the reactor vessel 1, a significant temperature difference occurs between the top and bottom surfaces of the upper shield 3, which causes the upper shield 3 to thermally deform, causing the on-board structure to tilt, causing the reactor vessel 1 to .. There is a risk that the upper shield 3 may interfere with structures inside the upper shield 3 or cracks may occur in the upper shield 3 itself.

このような事態を防止するために、従来では第5図に示
すように上部遮蔽体3の下部に冷却構造体26および断
熱構造体27が組込まれている。
In order to prevent such a situation, conventionally a cooling structure 26 and a heat insulating structure 27 are incorporated in the lower part of the upper shield 3 as shown in FIG.

上記断熱構造体27は当然、断熱効果の高いものでなけ
ればならないので、ステンレス#I簿板等よりなる熱遮
蔽板を多層に積層し、しかも各熱遮蔽板の間に浸入した
液体ナトリウムが、隣接する熱遮蔽板間の熱伝導媒体と
なって断熱効果が損やれ−ることのないように、各熱遮
蔽板間の間隔を10M以上あけている。
Naturally, the heat insulating structure 27 must have a high heat insulating effect, so heat shield plates made of stainless steel #I board or the like are laminated in multiple layers, and the liquid sodium that has entered between each heat shield plate is The distance between each heat shield plate is set at 10M or more so that the heat shield plate does not act as a heat conduction medium and impair the heat insulation effect.

ところが上記の構造によれば、熱′a蔽板間を通して輻
射熱が伝達されるため充分な断熱効果が19られないの
みならず、断熱構造体27の厚さが充分でなく、また3
0.−間もの長期にわたる原子炉。
However, according to the above structure, radiant heat is transmitted through between the heat shielding plates, so not only a sufficient insulation effect is not achieved, but also the thickness of the insulation structure 27 is not sufficient, and the thickness of the insulation structure 27 is insufficient.
0. - Long-term nuclear reactors.

寿命期間中に液体ナトリウムが断熱構造体27の内部に
浸入し、断熱効果をますます劣化させるおそれがあった
。また上記の構う4では上部遮蔽体3の熱応力発生を防
止するため多数の熱aμ板を使用する必要があり、製造
経費が高くなる不具合があった。
There was a risk that liquid sodium would enter the inside of the heat insulating structure 27 during the life period, further deteriorating the heat insulating effect. Further, in the above-mentioned structure 4, it is necessary to use a large number of thermal Aμ plates in order to prevent the occurrence of thermal stress in the upper shielding body 3, which has the disadvantage of increasing manufacturing costs.

また、最近では熱遮蔽板として全屈薄板の代りに金網を
用い、それらめ間に輻射熱を遮断4.するための薄い断
熱シートを1枚ずつ挟むことも行われているが、このよ
うな構造にした場合でも輻射熟をi!!断する断熱シー
トの厚□さが十分てなく1.しかも長年の間に液体ナト
リウムが浸入して断熱効果がますます低下するおそれが
あった。
Recently, wire mesh has been used as a heat shielding plate instead of a fully bent thin plate, and radiant heat is blocked between the gaps.4. It is also done to sandwich thin insulation sheets one by one in order to prevent radiation ripening. ! The insulation sheet to be cut is not thick enough □1. Moreover, there was a risk that liquid sodium would seep in over the years, further reducing the insulation effect.

[発明の目的] 本発明はこのような事情にもとづいてなされたもので、
その目的は、高い断熱効果により遮蔽本体の下面側の温
度上昇を抑制しJvi体ナトナトリウム着によ゛っても
その断熱効果が低下しにくく、かつ安価な高速増殖炉の
上部遮蔽体を提供することにある。
[Object of the invention] The present invention was made based on the above circumstances, and
The purpose is to provide an inexpensive upper shield for a fast breeder reactor that suppresses the temperature rise on the lower surface side of the shield body through its high heat insulation effect, and whose heat insulation effect is less likely to deteriorate even when JVI body sodium deposits occur. It's about doing.

[発明の概要] 以上の目的達成のため、本発明は、原子炉容器の上方間
口を閉塞し原子炉容器内に収容された冷却材にカバーガ
スを介して上方より一対向する遮蔽本体と、複数の金属
薄板製熱遮蔽板および金網を交互に積層してな゛り前記
遮蔽本体の下面に取付けられた断熱構造体と、遮熱本体
の下面より垂直!に亘って配設されるとともに上端部に
通気孔を有し、上記断熱構造体を下面側より覆う金属薄
板製の蒸着防止膜とを具備したことを特徴とする。
[Summary of the Invention] To achieve the above object, the present invention provides a shielding body that closes the upper opening of a reactor vessel and faces a coolant contained in the reactor vessel from above via a cover gas; A heat insulating structure consisting of a plurality of heat shield plates made of thin metal plates and wire meshes stacked alternately and attached to the lower surface of the shield body is perpendicular to the lower surface of the heat shield body! It is characterized by comprising a vapor deposition prevention film made of a thin metal plate, which is disposed over the entire length of the structure, has a ventilation hole at the upper end, and covers the heat insulating structure from the lower surface side.

[発明の実施例〕 以下、本発明を液体金属冷却型のタンク型高速増殖炉に
適用した゛一実施例を、第1図ないし第3図を参照して
説明する。
[Embodiment of the Invention] Hereinafter, an embodiment in which the present invention is applied to a liquid metal cooled tank type fast breeder reactor will be described with reference to FIGS. 1 to 3.

第1図はタンク型高速増殖炉の概略構成を示すもので、
第4図と同一部分には同一符号が付しである。すなわち
図中、符号1は原子炉容器である。
Figure 1 shows the schematic configuration of a tank-type fast breeder reactor.
The same parts as in FIG. 4 are given the same reference numerals. That is, in the figure, reference numeral 1 is a nuclear reactor vessel.

この原子炉容器1は、万一の冷却材流出に備えて外部を
保讃容器2で包囲され、上部開口は上部遮蔽体(ルーフ
スラブ>30により遮蔽されている。
The reactor vessel 1 is surrounded on the outside by a protection vessel 2 in case of coolant leakage, and the upper opening is shielded by an upper shield (roof slab>30).

また上部遮蔽体30の下部周辺部は円筒状のスカート4
を介して周囲の鉄筋コンクリート壁5により形成された
ビット!−5a内辷収容されている。
Further, the lower peripheral portion of the upper shield 30 has a cylindrical skirt 4.
A bit formed by the surrounding reinforced concrete wall 5 through! -5a is stored inside.

そして原子炉容器1内には炉心6が設けられるとともに
、−次冷却材ポンプ7、−次冷却材流入口8aおよび流
出口8bを有する中間熱交換器8、炉心上部[w49お
よび一次冷却材としての液体ナトリウム10が収容され
、液体ナト−リウ・ム10の液面と上部遮蔽体30との
間にはアルゴンガス等の不活性ガスがカバーガスとして
封入されている。
A reactor core 6 is provided inside the reactor vessel 1, and a secondary coolant pump 7, an intermediate heat exchanger 8 having a secondary coolant inlet 8a and an outlet 8b, an upper part of the core [W49 and a primary coolant] liquid sodium 10 is contained therein, and an inert gas such as argon gas is sealed as a cover gas between the liquid level of the liquid sodium 10 and the upper shield 30.

なお、符号11は一次冷却材ボンプ7を駆動するモ°−
タ、12.13はそれぞれ中間熱交換器8に接続された
二次冷却材流入管iよび二次冷却材流出管である。ま“
た符号14・・・は上記−次冷却材ボンブ7の吸込孔で
あり、これらの吸込孔14・・・は外筒15に囲まれて
いる。さらに符号16は炉心6を支持する炉心支持体、
17は炉心6の下方に設けられた高圧プレナム、18は
炉心6を囲む炉心支持枠である。そして上記−次冷却材
ポンブ7、の吐出口と高圧プレナム77との澗は導圧管
19によって連通され、上記外筒′15および炉心支持
枠18は原子炉容器1内を上部プレナム20aとT” 
N 71i t L 2011 k 、’ニー 区画’
 T Zz R!i! 201−J: vて支持されて
いる。上部遮蔽体30には中央に円形の開口部21が、
またその周囲には透孔22・・・が、それぞれ設けられ
、開口部21には回転プラグ23が、また各透孔22・
・・には上記−次冷却材ボンブ7、中間熱交換器8等が
、それぞれ嵌合支持されている。
Note that reference numeral 11 is a motor that drives the primary coolant pump 7.
12 and 13 are a secondary coolant inflow pipe i and a secondary coolant outflow pipe connected to the intermediate heat exchanger 8, respectively. Ma"
Reference numerals 14 are suction holes of the secondary coolant bomb 7, and these suction holes 14 are surrounded by an outer cylinder 15. Further, reference numeral 16 denotes a core support that supports the core 6;
17 is a high-pressure plenum provided below the core 6, and 18 is a core support frame surrounding the core 6. The discharge port of the secondary coolant pump 7 and the high-pressure plenum 77 are communicated by a pressure impulse pipe 19, and the outer cylinder '15 and the core support frame 18 are connected to the upper plenum 20a and the upper plenum 20a in the reactor vessel 1.
N 71i t L 2011 k, 'knee compartment'
TZZR! i! 201-J: Supported by v. The upper shield 30 has a circular opening 21 in the center.
In addition, through holes 22 are provided around the openings 21, and rotary plugs 23 are provided in the openings 21.
The above-mentioned secondary coolant bomb 7, intermediate heat exchanger 8, etc. are fitted and supported in .

前記上部遮蔽体30の一蔽本体31内の下部には冷却構
造体32が設けられている。また、遮蔽本体31の下面
および前記回転プラグ23の下面には、それぞれ断熱構
造体33.34が設けられている。これらの冷却構造体
□・32および断熱構造体33.34は、炉心6′より
上昇上できた熱が遮・蔽本体31や回転プラグ23に達
するのを阻止するためのものである。
A cooling structure 32 is provided at a lower portion within the shielding body 31 of the upper shielding body 30 . Further, heat insulating structures 33 and 34 are provided on the lower surface of the shielding body 31 and the lower surface of the rotary plug 23, respectively. These cooling structures □ and 32 and heat insulating structures 33 and 34 are for preventing heat rising from the core 6' from reaching the shielding body 31 and the rotating plug 23.

第2図および第3図は上記冷却構造体32および断熱9
1M体33の周辺部を示すもので、冷却構造体32は、
第2図に示すように下面部に多数のオリフィス35を有
し、これらのオリフィス35より窒素ガス、空気等の冷
却ガスを下方へ向けて噴出させ、その冷却ガスの噴流を
遮蔽本体31の下面部に接触さ゛せることによりその温
度上昇を防止し、遮蔽本体31の上下面の塩度差による
熱変形を防止するものである。なお符号36は冷FAt
l造体32へ冷却ガスを供給する給気配管、37は冷却
構造体32内のガスを排出させる排気配管である。
2 and 3 show the cooling structure 32 and the heat insulation 9.
It shows the peripheral part of the 1M body 33, and the cooling structure 32 is
As shown in FIG. 2, the lower surface has a large number of orifices 35, and these orifices 35 eject cooling gas such as nitrogen gas or air downward, and the jet of cooling gas is directed to the lower surface of the shielding body 31. By touching the shield body 31, the temperature rise is prevented, and thermal deformation due to the difference in salinity between the upper and lower surfaces of the shield body 31 is prevented. In addition, the code 36 is a cold FAt
An air supply pipe 37 supplies cooling gas to the cooling structure 32, and an exhaust pipe 37 discharges gas inside the cooling structure 32.

また前記断熱構造体33は、第3図に示すように多数の
ステンレスflI薄板よりなる熱遮蔽板38・・・とス
テンレス鋼製金1!39・・・とを交互に積層してなる
もので、遮蔽本体31の下面に溶接された、下部外周に
ねじ部を有する複数の支持管40・・・と、各支持管4
0のねじ部に螺合するナツト41・・・とによって遮蔽
本体31の下面に取付けられている。
As shown in FIG. 3, the heat insulating structure 33 is made by alternately laminating heat shielding plates 38 made of a large number of stainless flI thin plates and stainless steel gold plates 1!39... , a plurality of support pipes 40 having threaded portions on the lower outer periphery, which are welded to the lower surface of the shielding body 31, and each support pipe 4.
The shield body 31 is attached to the lower surface of the shield body 31 by a nut 41 that is screwed into the threaded portion of the shield body 31.

なお、上記ナツト41・・・は緩み防止のため必要に応
じて支持管40・・・に対し点溶接等の手段で固定され
る。上記金網39は、隣接する熱遮蔽板38・・・同志
が互に接触して熱伝導が生じることを防止するためのも
のである。そして複数枚の熱遮蔽板38・・・によって
液体ナトリウム10の液面から遮蔽本体31へ向う輻射
熱が遮蔽される。また熱遮蔽板38・・・および金網3
9・・・は温度変化に伴う伸縮を充分吸収できるように
、あらかじめたわませて製作されている。
Note that the nuts 41 are fixed to the support tubes 40 by spot welding or the like as necessary to prevent loosening. The wire mesh 39 is used to prevent adjacent heat shielding plates 38 from coming into contact with each other and causing heat conduction. Radiant heat directed from the surface of the liquid sodium 10 toward the shielding body 31 is shielded by the plurality of heat shielding plates 38 . In addition, the heat shield plate 38... and the wire mesh 3
9... are made to be bent in advance so that they can sufficiently absorb the expansion and contraction caused by temperature changes.

さらに、上記断熱構造体33の下面より遮蔽本体31の
垂直壁面にかけてステンレスW4薄板よりなる蒸着防止
膜42で覆われている。この蒸着防止膜42は、液体ナ
トリウム10の液面より蒸発するナトリウム蒸気が断熱
構造体33の内部に浸入することを防止し、熱遮蔽板3
8間に付着する凝縮ナトリウムにより熱伝導パスが形成
されることを防止して断熱構造体33の断熱性能劣化を
未然に防止するためのためのものである。上記蒸着防止
膜42の上部には、遮蔽本体31と回転プラグ23との
間に位置させて呼吸孔43が設けられている。この呼吸
孔43は蒸着防止1f142の内外の圧力差をなくし、
内外圧力差による蒸着防止膜42の変形や損傷を防止す
るためのものである。
Further, the area from the bottom surface of the heat insulating structure 33 to the vertical wall surface of the shielding body 31 is covered with a vapor deposition prevention film 42 made of a stainless steel W4 thin plate. The vapor deposition prevention film 42 prevents sodium vapor that evaporates from the liquid surface of the liquid sodium 10 from entering the inside of the heat insulating structure 33 and prevents the heat shielding plate 3
This is to prevent heat conduction paths from being formed due to condensed sodium adhering between the heat insulating structures 33 and to prevent deterioration of the heat insulating performance of the heat insulating structure 33. A breathing hole 43 is provided in the upper part of the vapor deposition prevention film 42 between the shielding body 31 and the rotary plug 23 . This breathing hole 43 eliminates the pressure difference between the inside and outside of the vapor deposition prevention 1f142,
This is to prevent deformation or damage to the vapor deposition prevention film 42 due to the difference in internal and external pressure.

なお、回転プラグ23の下面に設けられた断熱構造体3
4も遮蔽本体31111の断熱構造体33と同様の構成
であり、必要に応じて遮蔽本体31側と同様の蒸着防止
膜が設けられる。
Note that the heat insulating structure 3 provided on the lower surface of the rotating plug 23
4 also has the same configuration as the heat insulating structure 33 of the shielding body 31111, and a vapor deposition prevention film similar to that on the shielding body 31 side is provided as necessary.

以上の構成において、高圧プレナム17内の液体ナトリ
ウム10は炉心6を下方から上方へ流通し、炉心6にお
ける核反応熱により昇温する。そ    ′して炉心6
から上部プレナム20a内に流入した液体ナトリウム1
0は中間熱交換器8内に流入口8aを通して流入し、こ
の内部で原子炉容器1の外部を循環する二次冷却材と熱
交換したのら、流出口8bを通して隔壁20より下方の
下部プレナム2Ob内へ流出する。そして二次冷却材の
熱で蒸気を発生させ、その蒸気は発電用タービンの駆動
源となる。一方、下部ブレナム2Ob内の液体すI・リ
ウム10は外rt!i15の下端に設けられた流入口1
5aおよび吸込孔14を通して一次冷却材ボンブ7に流
入してこのポンプ7で加圧され、導圧管19を通して再
び炉心6下方の高圧プレナム17内に送り込まれること
になる。
In the above configuration, the liquid sodium 10 in the high-pressure plenum 17 flows through the reactor core 6 from below to above, and is heated by the heat of nuclear reaction in the reactor core 6. Then the reactor core 6
Liquid sodium 1 flowing into the upper plenum 20a from
0 flows into the intermediate heat exchanger 8 through the inlet 8a, where it exchanges heat with the secondary coolant circulating outside the reactor vessel 1, and then flows through the outlet 8b into the lower plenum below the partition wall 20. Flows into 2Ob. The heat from the secondary coolant generates steam, which becomes the driving source for the power generation turbine. On the other hand, the liquid I/Rium 10 in the lower Blenheim 2Ob is outside rt! Inlet 1 provided at the lower end of i15
The coolant flows into the primary coolant bomb 7 through 5a and the suction hole 14, is pressurized by the pump 7, and is again sent into the high-pressure plenum 17 below the reactor core 6 through the pressure guiding pipe 19.

また、液体ナトリウム10からの輻射熱はカバーガスを
通して断熱構造体33へ伝達されるが、断熱構造体33
からさらに遮蔽本体31へ伝達される伝熱量は次式で表
わすことができる。
In addition, the radiant heat from the liquid sodium 10 is transmitted to the heat insulating structure 33 through the cover gas, but the heat insulating structure 33
The amount of heat that is further transferred to the shield body 31 can be expressed by the following equation.

ここで、 q;断熱Bt体33内の熱流束(kcal、’ td 
hr)σ:ステファンホルツマン定数 (kcal/mhr ’に’ ) n:熱遮蔽1i38の枚数 ε;輻射率 に、;熱遮蔽板38の熱伝導度(kcal、′rrLh
r’c )At/A:上部遮蔽体30下面の総面積に対
する、熱遮蔽板38を貫通する金属部の総断面積の割合 2:断熱構造体33の厚さくm) t;熱遮蔽板38の板厚(m) kg;カバーガスの熱伝導度(kcal/ m hr’
c )T1:断熱構造体33の下面温度(K)■、:断
熱構造体33の上面温度(すなわち遮蔽本体31の下面
温度)       (’K)以上のように断熱構造体
33を、熱遮蔽板38と金網39とを交互に積層して構
成することにより、輻射熱は熱遮蔽板38で遮蔽され、
隣接する熱遮蔽板38間の熱伝導は金網39によって防
止されることになる。したがって断熱tP4造体33の
断熱効果が高められ、熱;1熱板38の枚数を減らして
断熱構造体33全体を軽口にすることができる。その結
果断熱wIi造体33を支持する支持管38等の、断熱
構造体33を1通する金属部の総断面積を小さくするこ
とができ、A 1.′Aを小ざくすることができる。そ
こで上式の関係により、qの埴を小さくすることができ
る。
Here, q; heat flux in the adiabatic Bt body 33 (kcal, ' td
hr) σ: Stefan Holtzmann constant (kcal/mhr 'to') n: Number of heat shields 1i38 ε; emissivity; thermal conductivity of heat shield plate 38 (kcal,'rrLh
r'c) At/A: Ratio of the total cross-sectional area of the metal parts passing through the heat shield plate 38 to the total area of the lower surface of the upper shield 30 2: Thickness of the heat insulation structure 33 m) t: Heat shield plate 38 Plate thickness (m) kg; Cover gas thermal conductivity (kcal/m hr'
c) T1: Temperature of the lower surface of the heat insulating structure 33 (K) ■,: Temperature of the upper surface of the heat insulating structure 33 (i.e. temperature of the lower surface of the shielding body 31) ('K) As described above, the heat insulating structure 33 is connected to the heat shielding plate 38 and wire mesh 39 are alternately layered, radiant heat is shielded by the heat shield plate 38,
Heat conduction between adjacent heat shield plates 38 is prevented by the wire mesh 39. Therefore, the heat insulating effect of the heat insulating tP4 structure 33 is enhanced, and by reducing the number of heat plates 38, the whole heat insulating structure 33 can be made lighter. As a result, the total cross-sectional area of the metal parts that pass through the heat insulating structure 33, such as the support pipe 38 that supports the heat insulating wIi structure 33, can be reduced, and A1. 'A can be made smaller. Therefore, according to the relationship in the above equation, the value of q can be made smaller.

また、液体ナトリウム10の蒸気は蒸着防止膜42の外
面に付着して断熱構造体33内部への浸入が防止される
。さらに蒸着防止l!42には呼吸孔43が設けられ、
蒸着防止膜42の内外が同圧に保たれているので、蒸着
防止11!42の、内外圧力差による変形や損傷は確実
に防止される。しかも上記呼吸孔43は蒸着防止膜42
の上端部に設けられているので液体ナトリウム10の蒸
気は上記呼吸孔43まで上昇しにくく、したがって上記
呼吸孔43を通って断熱構造体33内に浸入するナトリ
ウム蒸気の最もごく少量に抑えることができる。特に上
記実施例では呼吸孔43を!!f本体31と回転プラグ
23との間の隙間内に位置させたことにより、呼吸孔4
3へ向って上昇するナトリウム蒸気は上記隙間内を上昇
するうちに遮蔽本体31ヤ回転プラグ23の側型に付着
して凝縮し、ナトリウム濃度が充分低下したガスのみが
呼吸孔43に達することになるので、呼吸孔43からの
ナトリウム蒸気の浸入量をより一層減少させる効果が得
ら杭る。また、断熱構造体33を構成する熱遮蔽板38
および金網39はあらかじめたわませて製作され、温度
変化に伴う伸縮を充分吸収することができるので、il
!蔽本体31の下面全域を単一の熱遮蔽板38または金
網39で覆う構造にすることができ、製作のl1II翠
化が図れ、製造l!費を一層安価にすることができる。
Further, the vapor of the liquid sodium 10 adheres to the outer surface of the vapor deposition prevention film 42 and is prevented from entering the inside of the heat insulating structure 33. Even more prevents vapor deposition! 42 is provided with a breathing hole 43,
Since the pressure inside and outside of the vapor deposition prevention film 42 is maintained at the same pressure, deformation and damage of the vapor deposition prevention film 11!42 due to the difference in pressure between the inside and outside are reliably prevented. Moreover, the above-mentioned breathing hole 43 is connected to the vapor deposition prevention film 42.
Since it is provided at the upper end, it is difficult for the vapor of the liquid sodium 10 to rise up to the breathing hole 43, so that the amount of sodium vapor that enters the heat insulating structure 33 through the breathing hole 43 can be suppressed to the smallest amount. can. Especially in the above embodiment, the breathing hole 43! ! f By locating it in the gap between the main body 31 and the rotary plug 23, the breathing hole 4
As the sodium vapor rises toward 3, it adheres to the shield body 31 and the side mold of the rotating plug 23 and condenses as it rises in the gap, and only the gas whose sodium concentration has sufficiently decreased reaches the breathing hole 43. Therefore, the effect of further reducing the amount of sodium vapor infiltrating from the breathing hole 43 can be obtained. In addition, a heat shielding plate 38 that constitutes the heat insulating structure 33
The wire mesh 39 is made to be bent in advance and can sufficiently absorb expansion and contraction caused by temperature changes.
! The entire lower surface of the shielding body 31 can be covered with a single heat shielding plate 38 or wire mesh 39, making it possible to simplify the manufacturing process and reduce manufacturing costs. The cost can be further reduced.

さらに蒸着・防止膜42は薄板構造のため熱変形が容易
であり、したがってこれも単一体で安価に製作できる。
Furthermore, the vapor deposition/prevention film 42 has a thin plate structure and is easily deformed by heat, so it can also be manufactured as a single piece at low cost.

[R11(7)5FJP!]            
   。□以上詳述したように、本発明によれば、熱遮
蔽    板と金網とを交互に積層してなる遮蔽構造体
による高い断熱効果によって遮蔽本体の下面側の温度上
昇を抑制することができる。また蒸着防止膜によりナト
リウム蒸気の遮熱構造体への浸入が防止されるので、断
熱効果が低下しにクク、蒸着防止膜自体の内外圧力差に
よる変形や損傷は、その上端部に設けられた呼吸孔で圧
力差をなくすことにより防止される。また、上記i@些
は蒸着防止膜の上端部に設けられているので、一体ナト
リウムの液面から上昇するガスは呼吸孔に達するまぞ間
にすトリウム濃度が充分に低下し、もって断熱性能劣化
の原因となるすj・リウム蒸気の呼吸孔からの浸入量を
ごく少量に抑えることができる。さらに熱遮蔽板の枚数
゛減少により製造経費を安価に抑え゛ることができる等
、優れた効果を得ることができる。
[R11(7)5FJP! ]
. □As described in detail above, according to the present invention, the temperature rise on the lower surface side of the shield body can be suppressed due to the high heat insulation effect of the shield structure formed by alternately laminating heat shield plates and wire mesh. In addition, since the vapor deposition prevention film prevents sodium vapor from entering the heat shield structure, the insulation effect will decrease, and deformation and damage due to the pressure difference between the inside and outside of the vapor deposition prevention film itself will be prevented. This is prevented by eliminating the pressure difference at the breathing hole. In addition, since the above-mentioned i@slight is provided at the upper end of the vapor deposition prevention film, the gas rising from the liquid level of the monolithic sodium reaches the breathing hole, where the concentration of thorium is sufficiently reduced, thereby improving the insulation performance. The amount of sulphate vapor that causes deterioration that enters through the breathing holes can be suppressed to a very small amount. Further, by reducing the number of heat shielding plates, manufacturing costs can be kept low, and other excellent effects can be obtained.

【図面の簡単な説明】 第1図ないし第3図は本発明の一実施例を示すもので、
第1図はタンク型高速増殖炉の概略断面図、第2図およ
び第3図は上部遮蔽体の一部を拡大して示す断面図、第
4図および第5図は従来例を示すもので、第4図はタン
ク型高速増殖炉の概略断面図、第5図は上部遮蔽体の一
部を拡大して示す断面図である。 1・・・原子炉容器、10・・・冷却材、30・・・上
部遮蔽体、31・・・遮蔽本体、38.・・・熱遮蔽板
、39・・・金網、42・・・蒸着防止膜、43・・・
呼吸孔。 出願人代理人 弁理士 鈴江武彦 12    第1図 第2図 第3図 第4図
[Brief Description of the Drawings] Figures 1 to 3 show an embodiment of the present invention.
Figure 1 is a schematic sectional view of a tank-type fast breeder reactor, Figures 2 and 3 are sectional views showing an enlarged part of the upper shield, and Figures 4 and 5 are conventional examples. , FIG. 4 is a schematic sectional view of a tank-type fast breeder reactor, and FIG. 5 is an enlarged sectional view of a part of the upper shield. DESCRIPTION OF SYMBOLS 1... Reactor vessel, 10... Coolant, 30... Upper shielding body, 31... Shielding main body, 38. ... Heat shielding plate, 39 ... Wire mesh, 42 ... Vapor deposition prevention film, 43 ...
Breathing hole. Applicant's agent Patent attorney Takehiko Suzue 12 Figure 1 Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)原子炉容器の上方開口を閉塞し原子炉容器内に収
容された冷却材にカバーガスを介して上方より対向する
遮蔽本体と、複数の金属薄板製熱遮蔽板および金網を交
互に積層してなり前記遮蔽本体の下面に取付けられた断
熱構造体と、遮蔽本体の下面より垂直壁に亘って配設さ
れるとともに上端部に通気孔を有し、上記断熱構造体を
下面側より覆う金属薄板製の蒸着防止膜とを具備したこ
とを特徴とする高速増殖炉の上部遮蔽体。
(1) A shield body that closes the upper opening of the reactor vessel and faces the coolant contained in the reactor vessel from above via a cover gas, and a plurality of thin metal heat shield plates and wire mesh are laminated alternately. A heat insulating structure is attached to the lower surface of the shielding body, and the heat insulating structure is disposed from the lower surface of the shielding body to a vertical wall and has a ventilation hole at the upper end, and covers the heat insulating structure from the lower surface side. 1. An upper shield for a fast breeder reactor, comprising a vapor deposition prevention film made of a thin metal plate.
(2)前記熱遮蔽板および金網はステンレス鋼よりなる
ことを特徴とする特許請求の範囲第1項記載の高速増殖
炉の上部遮蔽体。
(2) The upper shield for a fast breeder reactor according to claim 1, wherein the heat shield plate and the wire mesh are made of stainless steel.
(3)前記呼吸孔は、遮蔽本体と回転プラグとの間の隙
間内に位置することを特徴とする特許請求の範囲第1項
記載の高速増殖炉の上部遮蔽体。
(3) The upper shield for a fast breeder reactor according to claim 1, wherein the breathing hole is located in a gap between the shield body and the rotating plug.
JP59217110A 1984-10-16 1984-10-16 Upper shielding body for fast breeder reactor Granted JPS6195280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217110A JPS6195280A (en) 1984-10-16 1984-10-16 Upper shielding body for fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217110A JPS6195280A (en) 1984-10-16 1984-10-16 Upper shielding body for fast breeder reactor

Publications (2)

Publication Number Publication Date
JPS6195280A true JPS6195280A (en) 1986-05-14
JPH0469355B2 JPH0469355B2 (en) 1992-11-05

Family

ID=16699003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217110A Granted JPS6195280A (en) 1984-10-16 1984-10-16 Upper shielding body for fast breeder reactor

Country Status (1)

Country Link
JP (1) JPS6195280A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222874A (en) * 1989-02-23 1990-09-05 Toshiba Corp Thermal shield structure of sodium-cooled type fast breeder reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223784A (en) * 1982-06-23 1983-12-26 株式会社東芝 Heat resister of reactor container plug
JPS59105593A (en) * 1982-12-08 1984-06-18 株式会社東芝 Shielding plug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223784A (en) * 1982-06-23 1983-12-26 株式会社東芝 Heat resister of reactor container plug
JPS59105593A (en) * 1982-12-08 1984-06-18 株式会社東芝 Shielding plug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222874A (en) * 1989-02-23 1990-09-05 Toshiba Corp Thermal shield structure of sodium-cooled type fast breeder reactor

Also Published As

Publication number Publication date
JPH0469355B2 (en) 1992-11-05

Similar Documents

Publication Publication Date Title
KR102515866B1 (en) Improved molten fuel reactor thermal management configurations
US20120281803A1 (en) Neutron absorbing composite for nuclear reactor applications
KR101549054B1 (en) Reflective Metal Insulation
JP6402171B2 (en) Passive cooling system for coolant storage area of nuclear power plant
CN109616226A (en) The compound function metallic insulation of shielding material is filled out in a kind of two sides
JPS5814639B2 (en) Genshiro Yodanetsu Sochi
US3016462A (en) Multi-layer vessel having a gamma ray flux absorbing layer
JPS6195280A (en) Upper shielding body for fast breeder reactor
US4226676A (en) Liquid metal cooled nuclear reactors
US4091591A (en) Heat-insulating panel
US4116765A (en) Liquid metal cooled nuclear reactor
US4587086A (en) Nuclear reactor
JPS6195281A (en) Upper shielding body for fast breeder reactor
JPS60114791A (en) Upper shielding body for fast breeder reactor
CN112489828B (en) Shielding and cladding device for compactly arranging small-sized stacks with large expansion difference
US20100172459A1 (en) Fast reactor
JPS60146188A (en) Main vessel for nuclear reactor
JPS60108788A (en) Device for protecting component of fast neutron type reactorfrom heat
JPS60205278A (en) Fast breeder reactor
JPS58178285A (en) Fast breeder
JP2837874B2 (en) Liquid metal cooled fast neutron reactor
JP2009229411A (en) Heat insulator for core domain in reactor pressure vessel
JPS6277596A (en) Intermediate heat exchanger
JPS61173079A (en) Heat exchanger
JPH01217192A (en) Intermediate heat exchanger