JPS6195267A - Ultrasonic object confirmation apparatus - Google Patents

Ultrasonic object confirmation apparatus

Info

Publication number
JPS6195267A
JPS6195267A JP21611984A JP21611984A JPS6195267A JP S6195267 A JPS6195267 A JP S6195267A JP 21611984 A JP21611984 A JP 21611984A JP 21611984 A JP21611984 A JP 21611984A JP S6195267 A JPS6195267 A JP S6195267A
Authority
JP
Japan
Prior art keywords
ultrasonic
exciting
excitation
obstacle
reflected wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21611984A
Other languages
Japanese (ja)
Inventor
Masao Kako
加来 雅郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21611984A priority Critical patent/JPS6195267A/en
Publication of JPS6195267A publication Critical patent/JPS6195267A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S15/101Particularities of the measurement of distance

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enhance the confirmation accuracy of an obstacle by reducing the effect of the multiple reflection of an ultrasonic wave, by setting two or more kinds of exciting powers of an ultrasonic oscillation element to cyclically changeover the same and providing a definite exciting stop period. CONSTITUTION:In an apparatus wherein the ultrasonic reflected wave from an object is detected and the distance to the object is measured from the detection time thereof, two or more kinds of exciting powers 30a, 30b different in magnitude are set and said exciting powers are cyclically changed over to be applied to ultrasonic oscillation elements. Then, an exciting stop period 30c is provided between the exciting pulses of these oscillation elements. By this method, the correspondence to objects at short and long distances can be performed by the magnitude of exciting powers and, because the stop period 30c is provided, a multiple reflected wave 32c is not detected even if generated and the adverse effect of multiple reflection can be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波による物体認識装置に係り、特に多重反
射による計測誤差を軽減するための装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an object recognition device using ultrasonic waves, and particularly to a device for reducing measurement errors due to multiple reflections.

〔発明の背景〕[Background of the invention]

従来、この種の装置の中には、超音波の反射波を一部分
岐して、遅延、”減衰などの処理を行なったのちに、も
う一方の信号と加算、減算などの処理を施し、必要な信
号のみと取り出すものがある(特開昭58−20699
0号公IP)=、シかし多重反射が起こりやすい環境に
おいては・、遅延時間の調整が難しいなどのImQがあ
つ虎。
Conventionally, some devices of this kind split a part of the reflected ultrasound wave, perform processing such as delay and attenuation, and then perform processing such as addition or subtraction with the other signal to obtain the necessary signals. There is a method that extracts only the signal (Japanese Patent Laid-Open No. 58-20699)
0 Public IP) = In an environment where multiple reflections are likely to occur, ImQ may be high, such as making it difficult to adjust the delay time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、超音波による物体認識において、物体
からの多重反射が比較的生じやすい環境においても、そ
の・多重・反射によって物体認識精度への悪影響・を軽
減することのできる超音波距離計測装置を提供すること
にある。
An object of the present invention is to provide an ultrasonic distance measurement system that can reduce the negative effects of multiple reflections on object recognition accuracy even in environments where multiple reflections from objects are relatively likely to occur in object recognition using ultrasonic waves. The goal is to provide equipment.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、本発明は超音波発温素子
の励振電力を周期的に制御するとともに、物体認識を主
に近距離用と遠距離用とに分割し、遠距離計・測と近距
離計測の間は、一定゛の休止期間を設ける午とで、多重
反射にキる悪し 影響を軽減するもので゛ある。        ′〔発
明の実施例〕・ 。
In order to achieve the above object, the present invention periodically controls the excitation power of an ultrasonic heating element, and divides object recognition into two types: short-range and long-range, and performs long-range measurement and measurement. A certain pause period is provided between the measurement and the short-distance measurement to reduce the negative effects of multiple reflections. ′ [Embodiments of the invention]・.

第1図は本発明の一実施例である。図中1は超音波1発
振素子を含むアンテナ、2はロータリジヨイントおよび
アンテナの駆動用モータ、5はアンテナの回転角度を計
測する念めの回転検出器、4は超音波発掘子励振用の送
信器および受信信号処理回路(以後送受信処理回路と略
す)であるOq中、破線で囲んだ部分(A)はアンチ 
 ・す1から障害物までの距離を計測する回路で、  
□主に基準信号発生器5.パルスカウンタ6.D′タイ
プフリップフロップ(D−FF)7およびラッチ8で構
成している。また、破線で囲んだ部分(B)はアンテナ
1の回転角度を計測する回路で、主に回転検出器6.前
述のDタイプフリ 。
FIG. 1 shows an embodiment of the present invention. In the figure, 1 is an antenna including an ultrasonic 1 oscillation element, 2 is a rotary joint and a motor for driving the antenna, 5 is a rotation detector for measuring the rotation angle of the antenna, and 4 is an ultrasonic probe for excitation. The part (A) surrounded by a broken line in Oq, which is the transmitter and reception signal processing circuit (hereinafter abbreviated as transmission and reception processing circuit), is the anti-transmission circuit.
・A circuit that measures the distance from station 1 to an obstacle.
□ Mainly reference signal generator 5. Pulse counter6. It consists of a D' type flip-flop (D-FF) 7 and a latch 8. Also, the part (B) surrounded by the broken line is a circuit that measures the rotation angle of the antenna 1, and mainly consists of the rotation detector 6. The aforementioned D type furi.

ツブフロップ7、パルスカウンタ9およびラッチ10で
構成している011は送受信処理回路4の切換回路で、
超音波発振子への励振電力を制御および送受信処理回路
の切換動作を行なう。12竺、中央処理装置、13はそ
の記憶部を示し、超音波発掘子゛子の励振制御や、距離
データと角度データから障害物物体の位置を演算訃よび
補正を行なう。
011 is a switching circuit for the transmission/reception processing circuit 4, which is composed of a block flop 7, a pulse counter 9, and a latch 10.
Controls the excitation power to the ultrasonic oscillator and switches the transmission/reception processing circuit. Reference numeral 12 indicates a central processing unit, and 13 indicates a storage unit, which controls the excitation of the ultrasonic excavator, and calculates and corrects the position of an obstacle from distance data and angle data.

距離計測においては、超音波発掘子を1ms程度励振す
ると同時tこD−FF7およびパルスカウンタ6をリセ
シトする。この時r)−FF7のQ出力はLOWになり
ランチは解除される。
In distance measurement, the ultrasonic probe is excited for about 1 ms and at the same time the D-FF 7 and pulse counter 6 are reset. At this time, the Q output of r)-FF7 becomes LOW and the launch is canceled.

また、切換回路11は超音波発振子を励振時には送受信
地理回”路4を送信側1こ切換え、その後受信イロ°1
へと切換えて反射波の戻りを待機する0ここて、r、え
対数が、戻・りて宋たとすると送受信処理回路4で増幅
、整形された信号がD−F″F7のCL Kに入りQ出
力をHI G Hにする0この時ラッチ8および10は
パルスカウンタ6および97の値を保持する。、即ちラ
ッチ8は距離データを   ・ラッチ10畦角匿データ
を、ラッチ端子りがLOW’になるまで(次の超音波励
振パルスが発振されるまで)保持する。このあと、中央
処理装@12は各々のデータを読み取り、再び超音波発
振子を励振して同様の動作を繰り返し行なう。
In addition, when the ultrasonic oscillator is excited, the switching circuit 11 switches the transmitting/receiving geographic circuit 4 to one on the transmitting side, and then switches the receiving circuit to one on the transmitting side.
0 and waits for the reflected wave to return. Here, r, and logarithm return to 0. If the logarithm returns to Song, the signal amplified and shaped by the transmitting/receiving processing circuit 4 enters CLK of D-F''F7. Q output is set to HIGH 0 At this time, latches 8 and 10 hold the values of pulse counters 6 and 97. That is, latch 8 holds the distance data, latch 10 holds the ridge angle data, and the latch terminal is LOW'. (until the next ultrasonic excitation pulse is emitted).Then, the central processing unit @12 reads each data, excites the ultrasonic oscillator again, and repeats the same operation.

第2図はアンテナ1と障害物15.’16との関係を示
した図で、アンテナ1゛は反時計回りに回転しながら障
害物を認識するものとする。′図中、1−5&は障害物
15に向かって超音波の伝播径路を模式的に示したも:
めである。向□様に16gは障害物16に対して、16
b゛〜i6dは障害物16および壁17に対して、17
a〜′17cは壁17に対しての伝播径路を示したもの
である。
Figure 2 shows the antenna 1 and the obstacle 15. In the diagram showing the relationship with '16, it is assumed that the antenna 1' recognizes obstacles while rotating counterclockwise. 'In the figure, 1-5& schematically shows the propagation path of the ultrasonic wave toward the obstacle 15:
It's a good thing. 16g towards □ is 16g against 16 obstacles.
b~i6d are 17 against the obstacle 16 and the wall 17.
A to '17c show propagation paths to the wall 17.

第3図は超音波発振子の励振パルスと障害物からの反射
波を示すタイムチャートである。
FIG. 3 is a time chart showing excitation pulses of the ultrasonic oscillator and reflected waves from obstacles.

20〜22は′超音波発振子の励振パルスで、23〜2
6は障害物からの・反射波を示すもので、アンテナ1か
ら障害物までの距離計測は、超音波発振子の励振が終了
してから最初に反−封液が戻□って来るまでの時間TI
−T4の時間からそれぞれ演算する。
20-22 are the excitation pulses of the ultrasonic oscillator, 23-2
6 indicates a reflected wave from an obstacle, and the distance measurement from antenna 1 to the obstacle is measured from the end of excitation of the ultrasonic oscillator until the first return of the anti-sealing liquid. Time TI
- Calculate each from time T4.

また、アンテナ1の方向は反射波が戻って来た時の回転
検出器3の読み゛でわかる。
Further, the direction of the antenna 1 can be determined by reading the rotation detector 3 when the reflected wave returns.

次に、以上の様な物体認識において、多重反射が起きた
場合の悪影響につめて若干説明する。
Next, we will briefly explain the negative effects when multiple reflections occur in object recognition as described above.

第2図において、アンテナ1が障害物1゛6の方゛を向
いているとする゛にの時超音波発振子の励振は第5図の
20で示子時刻島し、障害物1゛6への径路を16af
考見るとてその反射波け28で示される。また、ナンテ
ナ1が静止していれば、次の周期においても、゛超音波
の径路は16aを通る。
In FIG. 2, suppose that the antenna 1 is facing toward the obstacle 1 and 6. When the antenna 1 is facing the obstacle 1 and 6, the excitation of the ultrasonic oscillator shows a time island at 20 in FIG. route to 16af
This can be seen by the reflected wave 28. Furthermore, if the nantenna 1 is stationary, the path of the ultrasonic wave passes through 16a in the next cycle as well.

したがって、励振パルス21に対応する障害物16から
の反射波は214で示され、23.24で示し起反封液
が戻るまでの時間(TlおよびT2)は同じ時間となり
、障害物は正しく計測される。
Therefore, the reflected wave from the obstacle 16 corresponding to the excitation pulse 21 is shown at 214, and the time (Tl and T2) until the antistatic sealing liquid returns shown at 23.24 is the same time, and the obstacle is correctly measured. be done.

しかしながら、:アンテナ1は反時計まわりに回転して
いるために、□超音波発振子の励振が21で示す時刻に
は、′超音波の径路は16b、16cを通り、゛壁17
の隅で反射して、16dの径路を通り戻って来ることも
ある。このように16b=16dの径路を通って反射波
が戻って来ると、16aの径路よりも長くなるために、
第3図に示す反射波27のように、励振パルス21から
Tsの時間を経過してしまう。しかしながら、距離計測
はある一定の周期で繰り返し行なっているために、図示
のように、反射波27は次の繰り返し周期の中に入って
くる。
However, since the antenna 1 is rotating counterclockwise, at the time when the ultrasonic oscillator is excited, the path of the ultrasonic wave passes through 16b and 16c, and the path of the ultrasonic wave passes through the wall 17.
It may be reflected at the corner of , and come back through the path 16d. In this way, when the reflected wave returns through the path 16b=16d, it becomes longer than the path 16a, so
As shown in the reflected wave 27 shown in FIG. 3, a time period of Ts has elapsed since the excitation pulse 21. However, since distance measurement is repeatedly performed at a certain period, the reflected wave 27 enters into the next repetition period as shown in the figure.

この結果、計測される距離データはT4で示す時間とな
り、T1〜T3で計測された値と異なり、障害物を誤っ
た位置に認識することになる。
As a result, the measured distance data becomes the time indicated by T4, which is different from the values measured at T1 to T3, and the obstacle is recognized at a wrong position.

第4図および第5図は本発明の詳細説明図である。第4
図の50で示す励振パルス波形は、超音波発振子に印加
する励振電力を振幅で表わし、横軸は時刻を表わす。
4 and 5 are detailed explanatory diagrams of the present invention. Fourth
The excitation pulse waveform shown at 50 in the figure represents the excitation power applied to the ultrasonic oscillator in terms of amplitude, and the horizontal axis represents time.

51〜34で示す波形は超音波の反射波であり、反射波
の強度を振幅で表わし、横軸は時刻を表わす。35は送
受信処理回路4のコンパレータの基準値を示し、このレ
ベルを越え走ものを有効な反射波とする。
Waveforms 51 to 34 are reflected waves of ultrasonic waves, and the intensity of the reflected waves is represented by amplitude, and the horizontal axis represents time. Reference numeral 35 indicates a reference value of the comparator of the transmission/reception processing circuit 4, and anything that exceeds this level is treated as an effective reflected wave.

第5図は本発明の詳細な説明するフローチャートで、以
後第1図〜第4図を参照して説明する0 第5図において、まず、障害物の認識を開始(スタート
)すると、アンテナ1の基準点を検出する。基準点が検
出されると、はじめに、超音波発振子に印加する励振電
力は、近距離用(波形60a)を発振する。今、第2図
においてアンテナ1が障害物15の方を向いているとす
ると、ある時間後に反射波51aが戻って来る。この時
31b 、 31cに示す多重反射が戻る場合もあるが
、31bは励振パルスの繰り返し周期が同−周期内であ
るために問題ない。また、31cは次の繰り返し周期に
入っているが、励振電力が近距離用のために超音波出力
が小さく、反射波のレベルがコンパレータの基準値を越
えずに、悪影響を与えない。したがって、フローチャー
トの(ホ)〜(ト)ではMEMOIにT6で示す距離デ
ータとその時の角度データが記憶される。
FIG. 5 is a flowchart for explaining the present invention in detail, which will be explained hereinafter with reference to FIGS. 1 to 4. In FIG. Detect reference points. When the reference point is detected, first, the excitation power applied to the ultrasonic oscillator oscillates for short distance (waveform 60a). Now, in FIG. 2, if the antenna 1 is facing toward the obstacle 15, the reflected wave 51a will return after a certain period of time. At this time, multiple reflections shown at 31b and 31c may return, but there is no problem in 31b because the repetition period of the excitation pulse is within the same period. Further, although 31c is in the next repetition period, the ultrasonic output is small because the excitation power is used for short distances, and the level of the reflected wave does not exceed the reference value of the comparator and has no adverse effect. Therefore, in (e) to (g) of the flowchart, the distance data indicated by T6 and the angle data at that time are stored in MEMOI.

つづいて、遠近距離用(波形60b)の超音波を発振す
るとフローチャートでeF)、障害物15からの反射波
は32a % !+20の様に多重反射することもある
。この時、認識される距離データはT7に相当する。フ
ローチャート(図〜(支)においては、に)において、
遠距離データを対象にしているために〜t FJvo 
uには何も記憶しない。次に5[]cに示した様に超音
波発振子の励振休止期間を設けると、この間の距離、角
度データの読み取りも行なわないために32cに示した
ような多重反射を誤認することはない1、 今、仮りにこの間に励振およびデータの読み込みを行な
ったとすると、次の繰り返し周期への多重反射の要因を
増加させるとともに、32c′で示す誤った反射波を認
識し、T8に相当する距離データを取り込む恐れが生じ
る。
Next, when ultrasonic waves for long and short distances (waveform 60b) are oscillated, the reflected wave from the obstacle 15 is 32a%! There may be multiple reflections like +20. At this time, the recognized distance data corresponds to T7. In the flowchart (in Figures ~ (branch)),
Because it targets long-distance data ~t FJvo
Nothing is stored in u. Next, if we provide an excitation pause period for the ultrasonic oscillator as shown in 5[]c, the distance and angle data will not be read during this period, so there will be no misidentification of multiple reflections as shown in 32c. 1. Now, if excitation and data reading were performed during this period, the factor of multiple reflections in the next repetition period would increase, and the erroneous reflected wave shown at 32c' would be recognized, and the distance corresponding to T8 would be increased. There is a risk that data will be imported.

次に、アンテナ1が障害物16に向いているとすると、
フローチャート(/つ〜(ト)・においては、超音波発
振子の励振電力が小さいために、反射波は53aで示さ
れ認識されない。フローチャート(力〜(、Fにおいて
は励振電力が大きく、反射波は54aで示すように戻り
、距離データI/iT+oに相当する。このデータは(
力においてIVI E M OHに記憶される。
Next, assuming that the antenna 1 is facing the obstacle 16,
In the flowchart (/2~(g)), the excitation power of the ultrasonic oscillator is small, so the reflected wave is indicated by 53a and is not recognized.In the flowchart (~(, F), the excitation power is large and the reflected wave is returns as shown at 54a and corresponds to the distance data I/iT+o. This data is (
Stored in IVI E M OH in power.

以上のように、近距離の障害物15は、励振電力が小さ
な周期フローチャート09〜(ト)で認識され、MEM
OIに記憶される。
As described above, the short-distance obstacle 15 is recognized in cycle flowcharts 09 to (g) with small excitation power, and the MEM
Stored in OI.

遠距離の障害物16は、励振電力が大きな周期フローチ
ャート(イ)〜(巧で認識され、M FE M OIに
記憶される。また、励振電力が大きい時に起こりやすい
多重反射による悪影響は、フローチャート(rj)〜に
)で励振および距離1.角度データ取り込みを休止する
ことにより軽減される。 ・したがって、障害物はM 
EM OIとM E M OII  ゛のデータから演
・算することにより、多重反射の影響がなく認識される
A long-distance obstacle 16 is recognized by periodic flowcharts (a) to (tactile) with large excitation power and stored in the MFEMOI.In addition, the adverse effects due to multiple reflections that tend to occur when excitation power is large are recognized as shown in flowchart (a). rj) to) and distance 1. This can be reduced by pausing the acquisition of angle data.・Therefore, the obstacle is M
By performing calculations from the data of EMOI and MEM OII, recognition is possible without the influence of multiple reflections.

〔発明の効果〕〔Effect of the invention〕

以上から、本発明によれば、近距離の障害物の認識には
近距離用の超音波発振子の励振電力を用い、遠距離の障
害物の認識には遠距離用の励振電力を用いて、遠距離用
の励振り1.力発振後には一定の休止期間を設けること
lこより、超音:波の多重反射の悪影響を軽減出来、障
害物の認識精度の向上がはかれる。
From the above, according to the present invention, the short-distance excitation power of the ultrasonic oscillator is used to recognize short-distance obstacles, and the long-distance excitation power is used to recognize long-distance obstacles. , long-distance excitation 1. By providing a certain rest period after force oscillation, the adverse effects of multiple reflections of ultrasonic waves can be reduced, and the accuracy of recognizing obstacles can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例図、第2図はアンテナと障害
物との関係図、第3図および第4図は超音波発振子の励
振パルスと障害物からの反射波を示すタイムチャート、
第5図は本発明の説明フローチャートである。 1・・・アンテナ    4・・・送、受信処理回路6
.9・・・カウンタ  8,10・・・ラッチ11・・
・切換回路    12・・・中央処理装置15、16
・・・障害物   50・・・励振パルス殖1 図 1゜ 第2 凹 M 3 圀 第 4 図 め 5 図
Fig. 1 is a diagram of an embodiment of the present invention, Fig. 2 is a diagram of the relationship between the antenna and an obstacle, and Figs. 3 and 4 are timing diagrams showing the excitation pulse of the ultrasonic oscillator and the reflected wave from the obstacle. chart,
FIG. 5 is an explanatory flowchart of the present invention. 1... Antenna 4... Transmission and reception processing circuit 6
.. 9...Counter 8, 10...Latch 11...
・Switching circuit 12...Central processing unit 15, 16
... Obstacle 50 ... Excitation pulse breeding 1 Fig. 1゜ 2nd concave M 3 4th Fig. 5 Fig.

Claims (1)

【特許請求の範囲】 1、超音波を発振し、物体からの反射波が戻るまでの時
間を計測することによつて、物体までの距離を計測する
物体認識装置において、少なくとも、第1、第2の2種
類以上の励振電力で、周期的に超音波発振子を励振し、
かつ、一定期間第1の励振休止期間と、第2の励振休止
期間とをもつ超音波による物体認識装置。 2、上記超音波発振子の第1励振電力は近距離用とした
物体認識期間と、上記超音波発振子の第2励振電力を遠
距離用とした物体認識期間と、一定期間の励振休止期間
とからなる特許請求の範囲第一項の超音波による物体認
識装置。
[Claims] 1. In an object recognition device that measures a distance to an object by emitting ultrasonic waves and measuring the time until a reflected wave from the object returns, at least a first Exciting the ultrasonic oscillator periodically with two or more types of excitation power as described in 2.
and an object recognition device using ultrasonic waves having a first excitation rest period and a second excitation rest period for a certain period of time. 2. An object recognition period in which the first excitation power of the ultrasonic oscillator is for short distance use, an object recognition period in which the second excitation power of the ultrasonic oscillator is used for long distance use, and an excitation rest period of a certain period. An ultrasonic object recognition device according to claim 1, comprising:
JP21611984A 1984-10-17 1984-10-17 Ultrasonic object confirmation apparatus Pending JPS6195267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21611984A JPS6195267A (en) 1984-10-17 1984-10-17 Ultrasonic object confirmation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21611984A JPS6195267A (en) 1984-10-17 1984-10-17 Ultrasonic object confirmation apparatus

Publications (1)

Publication Number Publication Date
JPS6195267A true JPS6195267A (en) 1986-05-14

Family

ID=16683543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21611984A Pending JPS6195267A (en) 1984-10-17 1984-10-17 Ultrasonic object confirmation apparatus

Country Status (1)

Country Link
JP (1) JPS6195267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261582A (en) * 1988-08-26 1990-03-01 Matsushita Electric Works Ltd Ultrasonic detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261582A (en) * 1988-08-26 1990-03-01 Matsushita Electric Works Ltd Ultrasonic detector

Similar Documents

Publication Publication Date Title
JP2688289B2 (en) Radar distance measuring device
US20110261654A1 (en) Optimum pseudo random sequence determining method, position detection system, position detection method, transmission device and reception device
JP3516686B2 (en) Position-selective velocity measuring device using Doppler principle
JPS6195267A (en) Ultrasonic object confirmation apparatus
EP0157400B1 (en) Ultrasonic transmitter/receiver
JP2002243845A (en) Radar device and distance measuring method by the same
JP2638329B2 (en) Distance measurement method for laser radar
JPS5997069A (en) Ultrasonic car height measuring apparatus
JPS6361976A (en) Ultrasonic switch
JPS5830235Y2 (en) radar couch
JPH10123238A (en) Distance measuring device
KR0173227B1 (en) Distance measuring apparatus using high-frequency wave
JP3162873B2 (en) Ship speed measuring device
JPH11326513A (en) Distance measuring apparatus
JPS61102573A (en) Ultrasonic body recognizing device
CN116338700A (en) Method, device, equipment and program product for detecting distance of obstacle in blind area
JP3593630B2 (en) Human body detection sensor
RU1840913C (en) Pulse radar
JPS604435B2 (en) radar device
JPH0414756B2 (en)
CN117784148A (en) Ultrasonic wave-based obstacle detection method, device and storage medium
JPH04296682A (en) Sectorscan indication circuit
SU1278719A1 (en) Method and apparatus for measuring actual velocity of ground vehicles
JPH0395477A (en) Ultrasonic detector
JPS581372B2 (en) I'm going to have a good time.