JPS6195237A - Nuclear magnetic resonance computer diagnostic photography apparatus - Google Patents

Nuclear magnetic resonance computer diagnostic photography apparatus

Info

Publication number
JPS6195237A
JPS6195237A JP59215187A JP21518784A JPS6195237A JP S6195237 A JPS6195237 A JP S6195237A JP 59215187 A JP59215187 A JP 59215187A JP 21518784 A JP21518784 A JP 21518784A JP S6195237 A JPS6195237 A JP S6195237A
Authority
JP
Japan
Prior art keywords
power
coil
magnetic field
power source
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59215187A
Other languages
Japanese (ja)
Inventor
Isamu Uetomi
上冨 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59215187A priority Critical patent/JPS6195237A/en
Publication of JPS6195237A publication Critical patent/JPS6195237A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3628Tuning/matching of the transmit/receive coil

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To form a correct RF magnetic field even if the load state of a RF coil changes, by providing an automatic preset circuit and matching the output of a RF power source with predetermined RF power. CONSTITUTION:When an object to be examined is inserted, the operation point of a RF coil 3 transfers to a curve B(f1.p2) from a curve A(f1.p1). This RF magnetic field is monitored by the search coil 4 in an automatic preset circuit 10 and DC voltage proportional to a RF magnetic field is outputted by a detection amplifying circuit 5 to be inputted to a RF power source (1A) while a presetting circuit 6 outputs the preset level corresponding to the image pick-up mode of the object to be examined. The DC voltage of the RF magnetic field is compared with the preset level by a RF power source (1A) to raise the output of RF power. If an automatic preset circuit 10, which forms a trial operation mode at every object to be examined and sets the same so as to preliminarily form the correct RF magnetic field in matching relation to a load state, is provided, an operation point is automatically set to a curve C(f1.p1).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、核磁気共鳴コンピュータ診断撮像装置(ニ
ーCT)  におけるRF’磁界例えば〜イク・波磁界
め安定化に関するものである。   □〔従来の技術〕
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to the stabilization of RF' magnetic fields, such as ~-wave magnetic fields, in nuclear magnetic resonance computer diagnostic imaging systems (knee CT). □ [Conventional technology]
.

従来この種の装置として第り図忙示すものがあった。図
において、(1)はRF電源例えばマイクロ波電源、(
コ)は共振整合回路、(J)はRFコイルである。第3
図は第4図におけるRFコイル(3)の供給電力・周波
数特性を示すもので、PはRFコイル(,71への供給
電力、fはRF周波数−線AはRFコイル(J)内に被
検体(図示しない)例えば人体などが挿入されていない
ときの特性つまり無負荷時の供給電力・周波数特性1曲
線Bは被検体が挿入された負荷時の供給電力・周波数特
性を示す。f。
Conventionally, there have been several types of devices of this type. In the figure, (1) is an RF power source, such as a microwave power source, (
C) is a resonant matching circuit, and (J) is an RF coil. Third
The figure shows the power supply/frequency characteristics of the RF coil (3) in Figure 4, where P is the power supplied to the RF coil (, 71, f is the RF frequency, and line A is the power applied to the RF coil (J). Characteristics when a specimen (not shown), for example, a human body, etc., is not inserted, that is, supplied power and frequency characteristics at no load.1 Curve B shows the supplied power and frequency characteristics when a specimen is inserted and loaded.f.

は無負荷時の共振周波数、ftは選ばれたNMRFCT
の動作周波!?!i(これは直流磁界強度で一義的に決
まる)、plは無負荷時の周波数fzにおけるRFコイ
ル(3)への供給電力、pコは負荷時の周波数f/にお
けるRFコイル(3)への供給電力、flは負荷時の共
振周波数である。
is the no-load resonant frequency, ft is the selected NMRFCT
Operating frequency! ? ! i (this is uniquely determined by the DC magnetic field strength), pl is the power supplied to the RF coil (3) at frequency fz when no load is applied, and pco is the power supplied to the RF coil (3) at frequency f/ when loaded. The supplied power, fl, is the resonant frequency under load.

次に動作について説明する。RFコイル(3)はインダ
クタンスと抵抗とからなるインピーダンスz=R+Jx
を持つ。このRFコイル(,7)に電力(電流)を供給
して内部にRF磁界を形成する。しかしRF電源(1)
から効率良(RFコイル(3)に電力を供給するために
は、共振整合回路2)でRFコイル(3)のインダクタ
ンスとの共振状態を形成し、RF電源(1)より児だ共
振整合回路側のインピーダンスを抵抗にし〔つまり容量
などを用ちいてRFコイル(Jlのインダクタンスを打
ち消す]かつRF 電源(1)の内部抵抗と等しくする
ことが必要となる。
Next, the operation will be explained. The RF coil (3) has impedance z=R+Jx consisting of inductance and resistance.
have. Power (current) is supplied to this RF coil (, 7) to form an RF magnetic field inside. But RF power supply (1)
In order to efficiently supply power to the RF coil (3), a resonant state is formed with the inductance of the RF coil (3) in the resonant matching circuit 2), and the resonant matching circuit is connected to the RF power source (1). It is necessary to make the side impedance a resistance (that is, use a capacitor or the like to cancel the inductance of the RF coil (Jl)) and make it equal to the internal resistance of the RF power source (1).

第S図の曲iAは第弘図の回路構成における無負荷動作
状態を示し、fOけ共振周波数、fzは動作周波数であ
り、このときはRF’電源(/lとの整合がとれていて
、RFコイル(3)へは電力plを供給できることにな
る。この曲線Aを見ただけではRFコイル(J)へpl
より大きい電力を供給できるように見受けられるが、R
F電源(1)との整合性がくずれるので、′a力の供給
は必ずしも改善されない。
Curve iA in Fig. S shows the no-load operating state in the circuit configuration shown in Fig. H, where fO is the resonant frequency and fz is the operating frequency. This means that power pl can be supplied to the RF coil (3).Just by looking at this curve A, it is possible to supply pl to the RF coil (J).
Although it appears to be able to supply more power, R
Since the compatibility with the F power supply (1) is lost, the supply of 'a force is not necessarily improved.

曲線Bは被検体をRFコイル(、?)に挿入して負荷状
態にしたときのRFコイル(3)への供給電力・周波数
特性を示す。インダクタンスが小さくなり抵抗損失が増
えるため0曲線が急峻でなくなり、共振周波数も高い方
の12にずれる。従って、動作周波数カにおける供給電
力はpaK減少することになる。つまり、動作周波数で
/でRFコイル(3)の負荷状態が変化すれば、RF′
:1イル(3)への供給電力が変化し、従って内部に形
成されるRF磁界が変化することが分る。
Curve B shows the power and frequency characteristics supplied to the RF coil (3) when a subject is inserted into the RF coil (?) and the RF coil (?) is in a loaded state. As the inductance decreases and resistance loss increases, the 0 curve becomes less steep, and the resonant frequency shifts to the higher 12. Therefore, the supplied power at the operating frequency is reduced by paK. In other words, if the load condition of the RF coil (3) changes at/at the operating frequency, RF'
It can be seen that the power supplied to the 1-il (3) changes, and therefore the RF magnetic field formed inside changes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のNMRFCTは以上のように構成されていたので
、RFコイルの負荷状態(被検体としての人体の頭部、
全身、子供、大人など)に応じてRFコイルの形成する
RF磁界が変化し、被検体によって毎回共振整合回路の
同調を取り直すなどの問題点があった。
Since the conventional NMRFCT was configured as described above, the load condition of the RF coil (the head of the human body as the subject,
The RF magnetic field formed by the RF coil changes depending on the subject (whole body, child, adult, etc.), and there are problems in that the resonant matching circuit is retuned each time depending on the subject.

この発明はこのような問題点をなく丁ためになされたも
ので、たとえRFコイルの負荷状態が変っても共振整合
回路の同調を取り直す必要のない安定なNMRFCTを
得ることを目的とする。
The present invention has been made to eliminate these problems, and aims to provide a stable NMRFCT that does not require retuning of the resonant matching circuit even if the load condition of the RF coil changes.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るNMRFCTは、RF@力またはRFs
界をモニタする手段と、このモニタ手段のモニタ信号な
RF電源へフィードバックする手段と、RF電源に所定
のRF電力をプリセットするプリセット器とから成る自
動プリセット回路を投げたものである。
The NMRFCT according to this invention is based on RF@force or RFs.
The automatic presetting circuit includes a means for monitoring the field, a means for feeding back a monitor signal of the monitoring means to the RF power supply, and a presetting device for presetting the RF power to a predetermined RF power.

〔作 用〕[For production]

この発明においては、自動プリセット回路が所定のRF
電力KRF電源の出力を合わせるので。
In this invention, the automatic preset circuit
Because it matches the output of the power KRF power supply.

たとえRFコイルの負荷状態が変っても、共S整合回路
の同調を取り直す必要がない。
Even if the load condition of the RF coil changes, there is no need to retune the co-S matching circuit.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する第1図
はこの発明の一実施例を示すブロック図二タ手段例えば
RFコイル<3)の形成するRFa界をモニタする制御
サーチコイル、(よ)はこのサーチコイル(3)のモニ
タ信号なRF電源(/A)へフィードバックする手段例
えば検波・増幅回路、(A)はRF電源(/A)に所定
のRF電力をプリセットするプリセット器である。なお
、これらのサーチコイル(り)、検波・増幅回路(5)
およびプリセット器(6)は自動プリセット回路(10
)を構成する6第λ図はNMRFCTの撮像モードのシ
ーケンスΦノ(ターンを示す図で、5Qz−8Qn は
被検体に応じて決められる傾斜砒界、スライス磁界、R
F)くルスなどの時系列的なパターンを、示しBQoは
この発明にかかわる試し運転モードのパターンである第
3図は第5図に示したm、Fコイルの供給電力1周波数
特性に曲線Cを加えたもので、この曲線Cは曲線Bを周
波数flにおいて供給電力p、になるように移動させた
ものであり、こ4の移動はRF電源の出力を上げること
によって出来る。
Hereinafter, an embodiment of the present invention will be explained with reference to the drawings. Fig. 1 is a block diagram showing an embodiment of the present invention. ) is a means for feeding back the monitor signal of this search coil (3) to the RF power supply (/A), such as a detection/amplification circuit, and (A) is a preset device that presets the RF power supply (/A) to a predetermined RF power. . In addition, these search coils (ri), detection/amplification circuits (5)
And the preset device (6) is an automatic preset circuit (10
) is a diagram showing the sequence Φ (turn) of the imaging mode of NMRFCT, where 5Qz-8Qn are the gradient arsenic field, slice magnetic field, and
BQo is the pattern of the test run mode related to this invention. Figure 3 shows the curve C for the power supply power 1 frequency characteristic of the m and F coils shown in Figure 5. This curve C is obtained by shifting the curve B so that the supplied power becomes p at the frequency fl, and this shift can be made by increasing the output of the RF power source.

次にこの発明の動作について説明する。RF電源(/A
ンの出力が一定とすると、RFコイル(3)の動作点は
被検体を挿入することにより曲線人の点(ft、 pl
)より曲線Bの点(rz、pコ)へと移る。
Next, the operation of this invention will be explained. RF power supply (/A
Assuming that the output of the RF coil (3) is constant, the operating point of the RF coil (3) is changed to the curved point (ft, pl) by inserting the subject.
) to point (rz, pco) on curve B.

、+   pt>”xfKf)”’Q、RF”4′(”
>Fi’311CtB*;4 RFai ’界は弱くな
る。自動てリセット回路(10)中のサーチコイル(り
)でこのRF磁界をモニタし、検波・増幅回路(3)で
モニタ信号すなわちR’F磁界に比例した直流電圧を出
力してRF電源(/A)への入力とする一方、プリセッ
ト器(6)は被検体の撮像モードに応じたプリセット・
レベルを出力する。次にRF電源(/A)でRF磁界の
直流電圧とRF z力のプリセット・レベルとを比較し
て、プリセット・レベルまでRF電力の出力を上げる。
, + pt>"xfKf)"'Q, RF"4'("
>Fi'311CtB*;4 RFai' field becomes weaker. The search coil (RI) in the automatic reset circuit (10) monitors this RF magnetic field, and the detection/amplification circuit (3) outputs a monitor signal, that is, a DC voltage proportional to the R'F magnetic field, and the RF power supply (/ A), while the preset device (6) inputs the preset data according to the imaging mode of the subject.
Output the level. Next, the RF power supply (/A) compares the DC voltage of the RF magnetic field and the preset level of the RF z force, and increases the RF power output to the preset level.

従って、被検体毎に撮像モードの前に試し運転モードを
作り。
Therefore, create a trial run mode for each subject before starting the imaging mode.

負荷の状態に合せて正しいRF磁界を前もって作るよう
にセットする自動プリ七ット回路(10)を設けると、
自動的に曲線Cの点(ft、pt)に動作点がセットさ
れることになる。
If an automatic pre-set circuit (10) is provided to set the correct RF magnetic field in advance according to the load condition,
The operating point is automatically set at the point (ft, pt) of the curve C.

動作点(ft、pt)は必ずしもRF’電源(/Aと共
振整合回路(2)との整合がとれた状態ではなl、)。
The operating point (ft, pt) is not necessarily the state where the RF' power supply (/A and the resonance matching circuit (2) are matched).

つまり、かなり大きなV8WRが立つ場合もあることを
覚悟して、RF電源(/A)を設計してお(必要がある
In other words, it is necessary to design the RF power supply (/A) with the understanding that a fairly large V8WR may be required.

又、試し運動モード・パター′ン内のRF電力のパター
ンは、パルスの繰返して゛あっても良0シ直流的な時間
幅の大きいパルスがあっても良(・。検  、P被・増
幅回路(j2)で、前)者の場合はサンプルφホールド
或はピーク・ホールド的な回路を更に組込むことで達成
できる。  □ 以上のように、一つの動作点(ft・pl)が決定され
れば、同一被検体である限りRFコイルの負荷状態は同
じであるため、撮像モード・パターンによってplを変
化させる必要のあるときはRF電源(tA)の出力を下
げれば良い。これはRF電源(/A)の出力が変化する
のみで、共振整合回路(コ)やRFコイル(、?)との
整合状態は変化しない。つまり、プリセット器(6)に
マイクロプロセッサを組み込み、plの変化パターンの
ブ四グラム化(プリセット・パターンの記憶化)をする
のは容易であるし、又試し運転モードを非常に低い電力
で行なった後の撮像モードへの置替え(比例計算による
スケーリング)も可能である。
In addition, the RF power pattern in the trial exercise mode pattern may have repeated pulses or DC-like pulses with a large time width. In (j2), the former case can be achieved by further incorporating a sample φ hold or peak hold type circuit. □ As mentioned above, once one operating point (ft/pl) is determined, the load condition of the RF coil remains the same as long as the same object is being examined, so it is necessary to change pl depending on the imaging mode/pattern. In such a case, the output of the RF power supply (tA) should be lowered. This only changes the output of the RF power supply (/A), but does not change the matching state with the resonance matching circuit (c) or the RF coil (?). In other words, it is easy to incorporate a microprocessor into the preset device (6) and convert the PL change pattern into a four-gram (memory of the preset pattern), and it is also possible to perform the test run mode using very low power. It is also possible to replace the imaging mode with a later imaging mode (scaling by proportional calculation).

変流器や変圧器によりモニタして、フィードバックする
ことも可能である。
It is also possible to monitor and provide feedback using a current transformer or transformer.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、RFコイル内に挿入
する被検体(負荷)が変わっても絶えず正しいRFa界
が形成できるように自動プリセット回路を構成したので
、安定したNMRFCTを提供できる効果がある。
As described above, according to the present invention, since the automatic preset circuit is configured so that a correct RFa field can be constantly formed even if the object (load) inserted into the RF coil changes, it is possible to provide stable NMRFCT. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

g/図はこの発明の一実施例を示すブロック図、 ′第
コ図はこの発明の試し運転モードを加えた時系列的なパ
ターンを示す図、第3図はこの発明のN M P。 −CT の供給電力・周波数特性を示す曲線図、W。 ダ図は従来のNMRFCTを示すブロック図、第3図は
従来のNMRFCTの供給電力・周波数特性を示す曲膀
図である。 /A” ” RFm#、(2)−−共Fi 整合回路、
(,71−−RFコイル、 (<’)・・サーチコイル
、 (、lt)・・検波。 増幅回路、(6)・・プリセット器。 なお、各図中、同一符号は同−又は相当部分を示す。 +o:ttmy+)tvFcya−%’ ”熱2図 馬3図 烏4図 壓5図
Figure g/ is a block diagram showing an embodiment of the present invention, Figure 1 is a diagram showing a time-series pattern including the trial run mode of the present invention, and Figure 3 is the NMP of the present invention. -Curve diagram showing power supply/frequency characteristics of CT, W. Fig. 3 is a block diagram showing a conventional NMRFCT, and Fig. 3 is a curved diagram showing power supply/frequency characteristics of the conventional NMRFCT. /A” ”RFm#, (2)--Co-Fi matching circuit,
(,71--RF coil, (<')...Search coil, (,lt)...Detection. Amplifier circuit, (6)...Preset device. In each figure, the same reference numerals are the same or equivalent parts. +o:ttmy+)tvFcya-%' ``Heat 2, Horse 3, Crow 4, He 5

Claims (6)

【特許請求の範囲】[Claims] (1)RF電源からのRF電力が共振整合回路を通して
供給されることによりRF磁界を形成するRFコイルを
備えた核磁気共鳴コンピユータ診断撮像装置において、
前記RF電力または前記RF磁界をモニタしかつこれを
前記RF電源へフイードバツクすることにより所定のR
F電力に前記RF電源の出力を合わせる自動プリセツト
回路を設けたことを特徴とする核磁気共鳴コンピユータ
診断撮像装置。
(1) In a nuclear magnetic resonance computer diagnostic imaging device equipped with an RF coil that forms an RF magnetic field by supplying RF power from an RF power source through a resonant matching circuit,
A predetermined R is achieved by monitoring the RF power or the RF magnetic field and feeding it back to the RF power source.
A nuclear magnetic resonance computer diagnostic imaging apparatus characterized in that an automatic preset circuit is provided for adjusting the output of the RF power source to the F power.
(2)自動プリセツト回路は、RF電源に所定のRF電
力をプリセツトするプリセツト器を含む特許請求の範囲
第1項記載の核磁気共鳴コンピユータ診断撮像装置。
(2) The nuclear magnetic resonance computer diagnostic imaging apparatus according to claim 1, wherein the automatic preset circuit includes a preset device that presets the RF power source to a predetermined RF power.
(3)自動プリセツト回路は、RFコイルの形成するR
F磁界をモニタする手段としてのサーチコイルを含む特
許請求の範囲第1項または第2項記載の核磁気共鳴コン
ピユータ診断撮像装置。
(3) The automatic preset circuit uses R formed by the RF coil.
3. A nuclear magnetic resonance computer diagnostic imaging apparatus according to claim 1, which includes a search coil as means for monitoring the F magnetic field.
(4)自動プリセツト回路は、RF電源からRFコイル
へ供給されるRF電力をモニタする手段としての変流器
または変圧器を含む特許請求の範囲第1項または第2項
記載の核磁気共鳴コンピユータ診断撮像装置。
(4) The nuclear magnetic resonance computer according to claim 1 or 2, wherein the automatic preset circuit includes a current transformer or a transformer as means for monitoring the RF power supplied from the RF power source to the RF coil. Diagnostic imaging device.
(5)自動プリセツト回路は、モニタ手段のモニタ信号
をRF電源へフイードバツクする手段としての検波・増
幅回路を含む特許請求の範囲第3項または第4項記載の
核磁気共鳴コンピユータ診断撮像装置。
(5) The nuclear magnetic resonance computer diagnostic imaging apparatus according to claim 3 or 4, wherein the automatic preset circuit includes a detection/amplification circuit as means for feeding back the monitor signal of the monitor means to the RF power source.
(6)プリセツト器は、マイクロプロセツサが組み込ま
れている特許請求の範囲第2項記載の核磁気共鳴コンピ
ユータ診断撮像装置。
(6) The nuclear magnetic resonance computer diagnostic imaging apparatus according to claim 2, wherein the preset device incorporates a microprocessor.
JP59215187A 1984-10-16 1984-10-16 Nuclear magnetic resonance computer diagnostic photography apparatus Pending JPS6195237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59215187A JPS6195237A (en) 1984-10-16 1984-10-16 Nuclear magnetic resonance computer diagnostic photography apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59215187A JPS6195237A (en) 1984-10-16 1984-10-16 Nuclear magnetic resonance computer diagnostic photography apparatus

Publications (1)

Publication Number Publication Date
JPS6195237A true JPS6195237A (en) 1986-05-14

Family

ID=16668114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59215187A Pending JPS6195237A (en) 1984-10-16 1984-10-16 Nuclear magnetic resonance computer diagnostic photography apparatus

Country Status (1)

Country Link
JP (1) JPS6195237A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1189071A2 (en) * 2000-09-19 2002-03-20 GE Medical Systems Global Technology Company LLC Method of driving an MRI rf transmitter coil
WO2002084317A1 (en) * 2001-04-11 2002-10-24 Koninklijke Philips Electronics Nv Rf transmit calibration for open mri systems
WO2012059845A1 (en) * 2010-11-02 2012-05-10 Koninklijke Philips Electronics N.V. Method of characterizing an rf transmit chain
JP2014528296A (en) * 2011-10-06 2014-10-27 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Two-channel magnetic resonance tomography system
RU2574312C2 (en) * 2010-11-02 2016-02-10 Конинклейке Филипс Электроникс Н.В. Method of determining characteristics of radio-frequency transmitting circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A WHOLE-BODY NMR IMAGING MACHIVE=1980 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1189071A2 (en) * 2000-09-19 2002-03-20 GE Medical Systems Global Technology Company LLC Method of driving an MRI rf transmitter coil
EP1189071A3 (en) * 2000-09-19 2004-07-14 GE Medical Systems Global Technology Company LLC Method of driving an MRI rf transmitter coil
WO2002084317A1 (en) * 2001-04-11 2002-10-24 Koninklijke Philips Electronics Nv Rf transmit calibration for open mri systems
US6552538B2 (en) 2001-04-11 2003-04-22 Koninklijke Philips Electronics, N.V. RF transmit calibration for open MRI systems
WO2012059845A1 (en) * 2010-11-02 2012-05-10 Koninklijke Philips Electronics N.V. Method of characterizing an rf transmit chain
CN103201644A (en) * 2010-11-02 2013-07-10 皇家飞利浦电子股份有限公司 Method of characterizing an RF transmit chain
RU2574312C2 (en) * 2010-11-02 2016-02-10 Конинклейке Филипс Электроникс Н.В. Method of determining characteristics of radio-frequency transmitting circuit
US9575146B2 (en) 2010-11-02 2017-02-21 Koninklijke Philips Electronics N.V. Method of characterizing
JP2014528296A (en) * 2011-10-06 2014-10-27 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Two-channel magnetic resonance tomography system
US9784811B2 (en) 2011-10-06 2017-10-10 Siemens Aktiengesellschaft Two-channel magnetic resonance imaging

Similar Documents

Publication Publication Date Title
US9551767B2 (en) System and method to reduce power loss in a gradient amplifier
US6459265B1 (en) Method and apparatus for reducing input impedance of a preamplifier
DE69102470T2 (en) Tire pressure detection device for a vehicle.
EP0180121B1 (en) Mutual inductance nmr rf coil matching device
DE112010001214B4 (en) Integrated circuit of a switched mode power supply (SMPS) controller for determining operating characteristics from information about filter devices
DE102011083959B4 (en) Method for controlling a magnetic resonance system
DE19717411A1 (en) Monitoring of thermal loading of patient tissue in contact region of neutral electrode of HF treatment unit
JP2000514670A (en) Antenna system for NMR and MRI equipment
DE102007013996B4 (en) Method for local manipulation of a B1 field, magnetic resonance system and auxiliary coil element
US5144244A (en) Error-proof decoupling of transmission and reception antennas in a nuclear magnetic resonance apparatus
JPH01170447A (en) Magnetic resonance imaging apparatus
DE102017200446A1 (en) Correction of an MR transmission signal
JPS6195237A (en) Nuclear magnetic resonance computer diagnostic photography apparatus
US10571538B2 (en) Diagnostic device and method for diagnosing a faulty condition in a gradient amplifier system
DE102014004098B4 (en) VIENNA BRIDGE OSCILLATOR AND CIRCUIT ARRANGEMENT FOR REGULATING DETERMINATION
JPH01181855A (en) Magnetic resonance imaging device
DE102010029463B4 (en) Monitoring method for monitoring and / or protection of components, in particular a high-frequency antenna of a magnetic resonance system, as well as a monitoring device and a magnetic resonance system with a monitoring device for this purpose
CA2373434A1 (en) Abnormality diagnosis method and apparatus for separable transformer
JP4455323B2 (en) Magnetic resonance equipment
US3937214A (en) Electromedical patient monitoring system
JPH04285535A (en) Mri multiple tuning coil
CN111727561B (en) Multi-channel RF transmission system
JPH0246827A (en) Device for imaging magnetic resonance
DE102012201770B3 (en) Method for correcting radio frequency signal digital amplitude and phase to control antenna arrangement of MRI system utilized to image patient body part, involves determining control signal from request signal with respect to offset value
RU2045225C1 (en) Nuclear magnetic tomograph for diagnosing internal diseases