JPS6195220A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPS6195220A
JPS6195220A JP21624384A JP21624384A JPS6195220A JP S6195220 A JPS6195220 A JP S6195220A JP 21624384 A JP21624384 A JP 21624384A JP 21624384 A JP21624384 A JP 21624384A JP S6195220 A JPS6195220 A JP S6195220A
Authority
JP
Japan
Prior art keywords
spectrophotometer
light
specimen
sample
separate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21624384A
Other languages
Japanese (ja)
Inventor
Takeo Murakoshi
村越 武雄
Yoshio Toyama
遠山 恵夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21624384A priority Critical patent/JPS6195220A/en
Publication of JPS6195220A publication Critical patent/JPS6195220A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements

Abstract

PURPOSE:To enable the measurement of a specimen which can not be measured in a spectrophotometer, by providing a separate specimen chamber other than a spectrophotometer and connecting this separate specimen chamber and the specimen chamber of the spectrophotometer by an optical conduit to introduce specimen light into the separate specimen chamber. CONSTITUTION:A separate specimen chamber 24 is provided apart from a spectrophotometer 22. This separate specimen chamber 24 is connected to the specimen chamber 14 of the spectrophotometer 22 by optical conduits 20, 36 such as optical fibers. A specimen 32 is received in the separate specimen chamber 24 and specimen light 10 is incident to the separate specimen chamber 24 from the spectrophotometer 22 by the optical conduit 20 while light after transmitted through the specimen 32 is again returned to the spectrophotometer 22 by the optical conduit 36 to perform necessary data processing in the spectrophotometer 22. By this method, even with respect to a specimen incapable of being measured in the spectrophotometer 22 like a radioactive specimen, measurement can be performed in the same way as a usual specimen.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、大形試料あるいは危険物質の測定が行える分
光光度計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a spectrophotometer capable of measuring large samples or hazardous substances.

〔発明の背景〕[Background of the invention]

従来の装置は、特開昭57−175246 号公報に記
載のように、セルホールダおよび検知器が取外し可能な
ユニット内に配置され、かつ試料ビームおよび対照ビー
ムが光源およびモノクロメータユニットから光導管によ
って取外し可能なユニットの試料ホールダ内の試料セル
および対照セルに導かれるように構成されている。
A conventional device, as described in Japanese Patent Application Laid-Open No. 57-175246, has a cell holder and a detector arranged in a removable unit, and a sample beam and a reference beam detached from a light source and a monochromator unit by means of a light conduit. The sample cell and the reference cell are configured to be guided into the sample holder of the possible unit.

かかる従来の装置を用いて放射性試料を測定する場合、
検出部とセル部が接近しているため検出部が放射線によ
って被ばくされる危険性が大で放射線物質の測定には適
していない。
When measuring radioactive samples using such conventional equipment,
Since the detection part and the cell part are close to each other, there is a high risk that the detection part will be exposed to radiation, making it unsuitable for measuring radioactive substances.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、分光光度計の試料室内で測定できない
試料の測定が可能な分光光度計を提供することにある。
An object of the present invention is to provide a spectrophotometer that can measure samples that cannot be measured within the sample chamber of the spectrophotometer.

〔発明の概要〕[Summary of the invention]

上記目的を達成すべく本発明は、分光光度計の分光器で
分光された光を試料室より先導管を用いて前記分光光度
計以外に設置された別試料室に導き、前記別試料室の試
料を透過後の光を前記分光光度計の試料室に導き、前記
分光光度計内に設置された検出器によって光信号を電気
信号に変換しデータ処理を行うようにしたものである。
In order to achieve the above object, the present invention guides light separated by a spectrometer of a spectrophotometer from a sample chamber to a separate sample chamber installed outside the spectrophotometer using a lead tube, and The light after passing through the sample is guided into the sample chamber of the spectrophotometer, and a detector installed in the spectrophotometer converts the optical signal into an electrical signal and performs data processing.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面の簡単な説明する。 Hereinafter, one embodiment of the present invention will be briefly described with reference to the drawings.

第1図において、光源より発せられた白色光は分光器で
単色光化され、チョッピング機構によシ試料光10と対
照光12に分けられて試料室14に導かれる。試料光1
0は幅約5m、高さ8!I11の光束で、この光束はレ
ンズ16、ミラー18を介して光ファイバー20の入射
端面2OAで幅約2鰭、高さ4咽のスポットに収束さn
1元ファイバーに照射される。光ファイバー20によっ
て試料光10は分光光度計22から独立した別置き試料
室24に導かれ出射されるが、全反射を伝導原理とする
光ファイバー20からの光束は広がシを持っている。こ
のため、光ファイバー20の出射端面20B付近に光を
平行光線にすべく光学素子26が設置されている。
In FIG. 1, white light emitted from a light source is converted into monochromatic light by a spectroscope, divided into sample light 10 and reference light 12 by a chopping mechanism, and guided to a sample chamber 14. Sample light 1
0 is about 5m wide and 8 high! The light beam I11 is converged into a spot about 2 fins wide and 4 fins high at the incident end face 2OA of the optical fiber 20 via the lens 16 and mirror 18.
A single fiber is irradiated. The sample light 10 is guided by the optical fiber 20 to a separate sample chamber 24 independent of the spectrophotometer 22 and is emitted therefrom, but the light beam from the optical fiber 20 has a spread pattern based on total reflection as the transmission principle. For this reason, an optical element 26 is installed near the output end face 20B of the optical fiber 20 to convert the light into parallel rays.

平行光縁30は試料32に照射され、収光素子34によ
シ光束は収光され約φ3Bのスポットとし光ファイバー
36の入射端面36Aに照射される。光ファイバー36
に照射された光は再び分光光度計22の試料室14へ導
かれ、光ファイバー36の出射端36Bよシミラ−42
、レンズ44を介して分光光度計22の検出部へと照射
され、  、光エネルギーは電気信号に変換されデータ
処理部で信号を表示部に表示されると共にプリンタ等に
記録される。
The parallel light edge 30 is irradiated onto the sample 32, and the light beam is converged by the light collecting element 34 to form a spot of approximately φ3B and irradiated onto the incident end surface 36A of the optical fiber 36. optical fiber 36
The irradiated light is guided again to the sample chamber 14 of the spectrophotometer 22, and is passed from the output end 36B of the optical fiber 36 to the similar mirror 42.
The light energy is irradiated onto the detection section of the spectrophotometer 22 through the lens 44, and the light energy is converted into an electrical signal, and the signal is displayed on the display section in the data processing section and recorded on a printer or the like.

一方、対照光12はレンズ46で収光されス、リット4
8で試料光10とのバランスがとられ、レンズ50を介
して分光光度計22の検出部へ照射される。
On the other hand, the contrast light 12 is collected by the lens 46 and the slit 4
At step 8, the sample light 10 is balanced and irradiated to the detection section of the spectrophotometer 22 through the lens 50.

この対照光12は、必要に応じて試料光10とまったく
同様な方法で別置き試料室に導かれ、試料光10とのバ
ランスをとることも容易に可能である。
This control light 12 can be guided to a separate sample chamber in exactly the same manner as the sample light 10, if necessary, and can easily be balanced with the sample light 10.

このような構成になるので別置き試料室24は、必要に
応じ自由に寸法を変えることができる。
With this configuration, the dimensions of the separate sample chamber 24 can be changed freely as necessary.

又光ファイバーの長さを変え別室に置き、分光光度計2
2よシ遠隔操作による危険物の測定も可能である。
In addition, the length of the optical fiber was changed and the spectrophotometer 2 was placed in a separate room.
2. Measurement of dangerous substances by remote control is also possible.

第2図〜第4図は、別置き試料室に大形ガラス測定用の
ガラスホールダを設置した実施例を示したものである。
FIGS. 2 to 4 show an embodiment in which a glass holder for measuring large glass is installed in a separate sample chamber.

52は光7アイパー20の端面をリードする金属管で、
ケース54に取付けられた管56によってサポートされ
、光ファイバー20の出射位置の調整もこの金属管5.
2の固定位置を変えて行うことができる。60は金属管
52をボス58内の管56を締付けて固定するねじであ
シ、62は大形ガラス64をばね66にてはさみサポー
トするサポータである。ばね66は屈折ができ、大形ガ
ラス64の厚さに応じ位置可変ができるようになってい
る。68は大形ガラス64t−上下及び左右に移動させ
る機構で、その詳細は第3図。
52 is a metal tube leading the end face of Hikari 7 Eyeper 20,
It is supported by a tube 56 attached to the case 54, and the output position of the optical fiber 20 is also adjusted by this metal tube 5.
This can be done by changing the fixed position of 2. 60 is a screw for fixing the metal tube 52 by tightening the tube 56 in the boss 58, and 62 is a supporter that supports the large glass 64 by sandwiching it with a spring 66. The spring 66 is bendable and its position can be varied depending on the thickness of the large glass 64. 68 is a mechanism for moving the large glass 64t vertically and horizontally, the details of which are shown in FIG.

第4図に示す。70はカバーでケース54に金具72で
固定されてムシ、開閉できるようになっている。
It is shown in Figure 4. A cover 70 is fixed to the case 54 with metal fittings 72 so that it can be opened and closed.

第3図及び第4図において、74は大形ガラス64をセ
ットするベース78を左右に移動するレールで、固定機
構80を有し測定すべき任意の位置で固定できる。82
はレール74とローラ機構84及びナツト機構86を取
付けるベースで、ハンドル88を回転し、送りねじ90
を回転することによシナット機構86が上下しナツト機
構86と連結しているベース82が上下する。ローラ機
構84は、レール92上をベース82の上下の運動に伴
って回転する。94は送夛ねじ90の軸受で、両サイド
にベアリング96を有し回転を円滑にしている。90は
全体のベース、100はV −ル92をサポートするサ
ポータであシベース98にねじ102で固定されている
In FIGS. 3 and 4, reference numeral 74 denotes a rail for moving left and right a base 78 on which a large glass 64 is set, and has a fixing mechanism 80 so that it can be fixed at any desired position to be measured. 82
is a base on which the rail 74, roller mechanism 84, and nut mechanism 86 are attached, and by rotating the handle 88, the feed screw 90
By rotating the nut mechanism 86, the nut mechanism 86 moves up and down, and the base 82 connected to the nut mechanism 86 moves up and down. The roller mechanism 84 rotates on the rail 92 as the base 82 moves up and down. Reference numeral 94 denotes a bearing for the feed screw 90, which has bearings 96 on both sides to ensure smooth rotation. Reference numeral 90 represents the entire base, and reference numeral 100 represents a supporter for supporting the V-ru 92, which is fixed to the shingle base 98 with screws 102.

このような構成なので、分光光度の試料室にセットでき
ない大形ガラスも外置き試料室で自由に任意の位置の透
過率測定ができる。
With this configuration, even for large glasses that cannot be set in the spectrophotometer sample chamber, transmittance measurements can be made freely at any position in the external sample chamber.

他の例を第5図〜第9図に示す。Other examples are shown in FIGS. 5 to 9.

第5図は放射線物質等の危険試料の測定をすべく、分光
光度計よシ遠く離れた別室に置いた別置き試料室24に
70−セル110をセットした実施例である。又、光フ
ァイバー20の出射端付近に置かれ光を平行光縁にする
光学素子26は、金属管52内に固定されている。
FIG. 5 shows an embodiment in which a 70-cell 110 is set in a separate sample chamber 24 placed in a separate room far away from the spectrophotometer in order to measure dangerous samples such as radioactive substances. Further, an optical element 26 placed near the output end of the optical fiber 20 and converting the light into parallel light edges is fixed within the metal tube 52 .

第6図は屑セル112を外置き試料室24にセットした
実施例で、114はセル台、116は遮光フタである。
FIG. 6 shows an embodiment in which a waste cell 112 is set in an external sample chamber 24, where 114 is a cell stand and 116 is a light-shielding lid.

第5図のフローセルセットを試料側に、第6回向セルセ
ットを対照側にし、分光光度計より光ファイバー20で
別置き試料室24にセットすることも容易である。父、
第5図フローセルセットと第6図角セルセットヲ別々に
分離させて使用することもできる。
It is also easy to set the flow cell set of FIG. 5 on the sample side and the 6th direction cell set on the control side, using the optical fiber 20 from the spectrophotometer in the separate sample chamber 24. father,
The flow cell set shown in FIG. 5 and the corner cell set shown in FIG. 6 can also be used separately.

第7図は、試料118の拡散反射全測定する支持金具1
20をセットした外置き試料室24で、入射用元ファイ
バー122と出射用光ファイバー124を同軸にした例
を示している。
FIG. 7 shows the support fitting 1 for measuring the total diffuse reflection of the sample 118.
20 is set in the external sample chamber 24, and an example is shown in which the original input fiber 122 and the output optical fiber 124 are coaxial.

第8図は、ミラー126,128を用いて試料130の
正反射光の相対反射率を測定する実施例を示すものであ
る。1001%補正を行うときは試料130と同位置に
基準ミラー又は基準試料を七′1      ッ卜すれ
ばよい。
FIG. 8 shows an example in which the relative reflectance of specularly reflected light from a sample 130 is measured using mirrors 126 and 128. When performing 1001% correction, it is sufficient to place a reference mirror or a reference sample at the same position as the sample 130 by 7'1.

・− 第9図は、試料132の正反射光の絶対反射率を測定す
る実施例で、134,136はミラー、138は基準ミ
ラーである。100m補正時は実線の光学系、すなわち
入射光はミラー134、基準ミラー138、ミラー13
6を介して光ファイバー36の入射端面に取付けられた
収光素子34によシ照射される。また、試料132を測
定するときはP、の位置に試料132をセットし、基準
ミラー138をP2の位置にセット、ミラー136を点
線のように切替て行う。
- FIG. 9 shows an example of measuring the absolute reflectance of specularly reflected light of a sample 132, in which reference numerals 134 and 136 are mirrors, and 138 is a reference mirror. When correcting 100m, the solid line optical system, that is, the incident light is mirror 134, reference mirror 138, and mirror 13.
6, the light is irradiated onto a light collecting element 34 attached to the incident end face of an optical fiber 36. When measuring the sample 132, the sample 132 is set at position P, the reference mirror 138 is set at position P2, and the mirror 136 is switched as shown by the dotted line.

第2図〜第9図に示すように、分元光糺計の試料室以外
の所に測定サンプルの大きさと測定内容に応じた付属装
置をセットすることによって、従来のように試料室の大
きさに合せてサンプルの大きさを決るのではなく、試料
の原寸の状態で測定ができる。したがって、製造ライン
の品質管理、たとえば、窓ガラスの透過率の測定などが
できる。
As shown in Figures 2 to 9, by setting the attached equipment according to the size of the sample to be measured and the contents of the measurement in a place other than the sample chamber of the spectrometer, the size of the sample chamber can be Rather than determining the size of the sample according to the size, measurements can be made at the actual size of the sample. Therefore, it is possible to control the quality of the production line, for example, to measure the transmittance of window glass.

またガラスフィルタ等の透過率が放射線を照射しどのよ
うに変化するか等の経時変化測定も分光光計よ)遠く離
して行うことができるので安全性の点からも優れている
It is also excellent from a safety point of view, as measurements of changes in the transmittance of glass filters and the like over time, such as how they change when irradiated with radiation, can be carried out from a distance (using a spectrophotometer).

試料室を別置するにあたって最も重要な点は、分光光度
計で分光した光を損失なく検知器に導く技術にある。
The most important point in locating a separate sample chamber is the technology to guide the light separated by the spectrophotometer to the detector without loss.

光ファイバーによる光伝送損失eこは、入射端面での面
反射損失、コア材による吸収損失、コア材質の内部気泡
、異物による散乱による損失、ファイバーの曲シによる
曲シ損失、出射端面における面反射損失、そして試料ホ
ニルダ部の空間による光フアイバー出力端よシ出射した
光の広がりkより次の光ファイバーの入射−に入るまで
の損失がある。以上の個々の損失の中で、特に他と比較
し損失の多いのは、最後の光ファイバーの入射端に入る
までの損失である。
Optical transmission loss due to optical fibers includes surface reflection loss at the input end face, absorption loss due to the core material, loss due to internal bubbles in the core material and scattering due to foreign objects, bending loss due to fiber bending, and surface reflection loss at the output end face. , and there is a loss from the spread of the light emitted from the output end of the optical fiber due to the space in the specimen portion until it enters the next optical fiber. Among the individual losses mentioned above, the loss that is particularly large compared to the others is the loss up to the input end of the final optical fiber.

この損失の実測データ′t″第1θ図に示す。光7アイ
パー間の距離tを長くするにつれて急激に損失も増大す
る。
Actual measurement data ``t'' of this loss is shown in Fig. 1θ. As the distance t between the seven optical eyes increases, the loss increases rapidly.

この原因は、第11図に示すように光フアイバー出力光
の広が9と、光ファイノi−の特つ伝送可能な光の入射
角θに起因する。一般に光ファイバーは全反射を起す最
大の角度、即ち受光角度を開口数(Numerical
 Aperture ) NAと呼び式(1)%式% ここで nl :コア180の屈折率 n2 :クラット182の屈折率 このときの入射角が最大角匿でありこれ以上の角度の光
はファイバー内を伝わることができず、損失となる。石
英ファイバーの場fNA中0.21でθ中12°とな夛
、2θ=24°以内の光しか伝送でない。これらの損失
金できるだけ少なくするために、第12図〜第14図に
示すように光ファイバーの端面を工夫すると共に光フア
イバー出射光を平行光線にする必要がある。
This is caused by the spread 9 of the optical fiber output light and the incident angle θ of the light that can be transmitted by the optical fiber i-, as shown in FIG. In general, for optical fibers, the maximum angle at which total reflection occurs, that is, the acceptance angle, is determined by the numerical aperture (Numerical Aperture).
Aperture) NA is called formula (1)% formula% where nl: refractive index of core 180 n2: refractive index of crut 182 The incident angle at this time is the maximum angle, and light at angles larger than this will propagate within the fiber. This will result in a loss. Since the field fNA of the quartz fiber is 0.21 and θ is 12°, only light within 2θ=24° is transmitted. In order to reduce these losses as much as possible, it is necessary to devise the end face of the optical fiber and make the light emitted from the optical fiber a parallel beam, as shown in FIGS. 12 to 14.

第1図に示したように、分光光度計22で分光した試料
光lOは光ファイバー20の入射端面20Aで幅約2m
、高さ4頗のスポットに収束されている。この光を有効
に光ファイバー200入射端面20Aに入射させるため
に、J12図〜第     14図に示すように受光部
184の形状を幅約3閣、高さ約5mとし、出力端面2
0Bの形状186を試料透過窓径4鋼φに合せ約3Wφ
とし出力端部に焦点距離の長いレンズ188を設置し近
似平行光線190とした。
As shown in FIG. 1, the sample light lO separated by the spectrophotometer 22 has a width of about 2 m at the incident end face 20A of the optical fiber 20.
, are converged into a spot with a height of 4 mm. In order to effectively make this light enter the input end face 20A of the optical fiber 200, the shape of the light receiving part 184 is approximately 3 m wide and approximately 5 m high, as shown in Figs.
Match the shape 186 of 0B with the sample transmission window diameter 4 steel φ to approximately 3Wφ
A lens 188 with a long focal length is installed at the output end to form an approximate parallel beam 190.

試料を透過した光を受光する光ファイバー36の端面1
92の寸法を試料透過窓径4調φよシ少し大きい5mφ
とした。光ファイバー36の出力端の形状194は約3
喘φとしミラー42を介し分光光度計へ伝送した。これ
によって光損失を1150にし、ノイズ全1/10少な
くし安定した測定を可能とした。
End face 1 of the optical fiber 36 that receives the light transmitted through the sample
The dimension of 92 is 5mφ, which is slightly larger than the sample transmission window diameter of 4mmφ.
And so. The shape 194 of the output end of the optical fiber 36 is approximately 3
The sample φ was transmitted to a spectrophotometer via a mirror 42. This reduced the optical loss to 1150, reduced the total noise by 1/10, and enabled stable measurements.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、試料の寸法に制限されず、又放射線等
の危険物質の測定も遠隔操作によって測定できる効果が
ある。
According to the present invention, there is an effect that there is no restriction on the size of the sample, and dangerous substances such as radiation can be measured by remote control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる分光光度計の溝数図、第2図は大
形ガラス測定用ガラスホールダの側面図、第3図は第2
図の平面図、第4図は第2図の正面図、第5図乃至第9
図は試料室の他の実施例を示す図、第10図は光フアイ
バー間の距離と出力との関係を示す図、第11図は光フ
ァイバーの光伝送損失を説明する図、第12図乃至第1
4図は光ファイバーの詳細図である。 10・・・試料光、12・・・対照光、14.24・・
・試料室、20.36・・・光ファイバー、22・・・
分光光度計、32・・・試料。
Fig. 1 is a diagram of the number of grooves of the spectrophotometer according to the present invention, Fig. 2 is a side view of a glass holder for measuring large glass, and Fig. 3 is a diagram of the number of grooves of a spectrophotometer according to the present invention.
Figure 4 is a front view of Figure 2, Figures 5 to 9 are
The figures show another example of the sample chamber, Fig. 10 shows the relationship between the distance between optical fibers and the output, Fig. 11 shows the optical transmission loss of the optical fiber, and Figs. 1
Figure 4 is a detailed diagram of the optical fiber. 10... Sample light, 12... Control light, 14.24...
・Sample chamber, 20.36...Optical fiber, 22...
Spectrophotometer, 32...sample.

Claims (1)

【特許請求の範囲】[Claims] 1、分光光度計の分光器で分光された光を試料室より先
導管を用いて前記分光光度計外に設置された別試料室に
導き、前記別試料室の試料を透過後の光を前記分光光度
計の試料室に導き、前記分光光度計内に設置された検出
器によつて光信号を電気信号に変換しデータ処理を行う
ことを特徴とする分光光度計。
1. The light separated by the spectrometer of the spectrophotometer is guided from the sample chamber to another sample chamber installed outside the spectrophotometer using a lead tube, and the light after passing through the sample in the separate sample chamber is A spectrophotometer, characterized in that the spectrophotometer is guided into a sample chamber of the spectrophotometer, and a detector installed in the spectrophotometer converts an optical signal into an electrical signal and performs data processing.
JP21624384A 1984-10-17 1984-10-17 Spectrophotometer Pending JPS6195220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21624384A JPS6195220A (en) 1984-10-17 1984-10-17 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21624384A JPS6195220A (en) 1984-10-17 1984-10-17 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPS6195220A true JPS6195220A (en) 1986-05-14

Family

ID=16685514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21624384A Pending JPS6195220A (en) 1984-10-17 1984-10-17 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPS6195220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088821A (en) * 1990-06-29 1992-02-18 Nicolas J. Harrick Spectroscopic analysis system with remote terminals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132923A (en) * 1979-01-30 1980-10-16 Commissariat Energie Atomique Remoteecontrolled measuring spectrophotometer
JPS5816550A (en) * 1981-07-22 1983-01-31 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132923A (en) * 1979-01-30 1980-10-16 Commissariat Energie Atomique Remoteecontrolled measuring spectrophotometer
JPS5816550A (en) * 1981-07-22 1983-01-31 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088821A (en) * 1990-06-29 1992-02-18 Nicolas J. Harrick Spectroscopic analysis system with remote terminals

Similar Documents

Publication Publication Date Title
US7864317B2 (en) Compact catadioptric spectrometer
CA1312741C (en) Mirror arrangement for a path of rays in a multiple reflection measuring unit
CN104483104B (en) A kind of photo detector spectral response analysis system
JPS63500263A (en) automatic refractometer
JPH0131130B2 (en)
JP3299937B2 (en) Confocal microspectrophotometer system
US3827811A (en) Optical measuring device employing a diaphragm with reflecting surfaces
JPH0797078B2 (en) Infrared microspectrophotometer
Zheng et al. Self-referencing Raman probes for quantitative analysis
JPS61292043A (en) Photodetecting probe for spectocolorimeter
US5517032A (en) Thin film thickness measuring system
JPS6195220A (en) Spectrophotometer
JPS61228331A (en) Apparatus for measuring specimen of spectrophotometer
RU2688961C1 (en) Device for measuring bidirectional infrared radiation brightness coefficient of materials
US3669547A (en) Optical spectrometer with transparent refracting chopper
JPH0750026B2 (en) Spectrophotometer
CA2199665A1 (en) Telecentric reflection head for optical monitor
JPH04116452A (en) Microscopic infrared atr measuring apparatus
JPH0776746B2 (en) Infrared microspectrophotometer
Sánchez-Pérez et al. Spectroscopic refractometer for transparent and absorbing liquids by reflection of white light near the critical angle
JP3829663B2 (en) Spectrophotometer
CN212620599U (en) Dispersion type confocal sensor for glass measurement
CN212988272U (en) Spectral measuring instrument for glass measurement
Lowry et al. New accessory for characterizing optical fibers with an FT-IR spectrometer
JP2002372456A (en) Ir spectrophotometer