JPS6195091A - Hydrogenative pyrolysis of heavy hydrocarbon - Google Patents

Hydrogenative pyrolysis of heavy hydrocarbon

Info

Publication number
JPS6195091A
JPS6195091A JP21716584A JP21716584A JPS6195091A JP S6195091 A JPS6195091 A JP S6195091A JP 21716584 A JP21716584 A JP 21716584A JP 21716584 A JP21716584 A JP 21716584A JP S6195091 A JPS6195091 A JP S6195091A
Authority
JP
Japan
Prior art keywords
oil
heavy hydrocarbon
catalyst
heating furnace
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21716584A
Other languages
Japanese (ja)
Other versions
JPH0236638B2 (en
Inventor
Nobuhiko Asakura
朝倉 暢彦
Hiroshi Miyama
深山 浩
Hidekatsu Kashiwara
柏原 英勝
Yoshio Kimura
木村 義男
Toshiaki Inaba
因幡 俊昭
Kenji Shimokawa
下川 憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP21716584A priority Critical patent/JPS6195091A/en
Publication of JPS6195091A publication Critical patent/JPS6195091A/en
Publication of JPH0236638B2 publication Critical patent/JPH0236638B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:Heavy hydrocarbon oil is rapidly heated, pyrolyzed, then subjected to hydrogenolysis in the presence of a catalyst to give high oil from which contaminants such as sulfur, nitrogen, metals and asphalten are removed with high stability. CONSTITUTION:Heavy hydrocarbon oil is rapidly heated in a furnace, then pyrolyzed in the soaking tube to obtain the pyrolysate. The product is, as it is, or after separation of low-boiling fractions are removed, subjected to hydrolygenolysis in the presence of a hydrogenation catalyst such as a hydrogenation metallic catalyst such as copper supported on a porous inorganic oxide such as alumina at 350-450 deg.C, 50-250kg/cm<2>G, 0.1-5Hr<-1> liquid space velocity, 100-2,000Nl/lH2/oil ratio to give light oil.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は重質炭化水素油の水素化熱分解法し;関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for hydropyrolysis of heavy hydrocarbon oils.

〔従来技術〕[Prior art]

重質炭化水素油の処理技術として軽度熱分解(ビスブレ
ーキングと呼ぶ)法と、接触水素化分解法は広く世界に
知られた技術である。ビスブレーキング法は重質炭化水
素油を生成油の安定性を阻害しない範囲内で軽度に熱処
理し1重質炭化水素の粘度を低下させる方法である。し
かし、この方法では炭化水素油中の金属硫黄分、窒素分
等の不純物゛の除去は期待できない。また、分解により
重質炭化水素油の一部が軽質油に転化するものの。
Light thermal cracking (called visbreaking) and catalytic hydrocracking are widely known technologies for processing heavy hydrocarbon oils around the world. The visbreaking method is a method in which heavy hydrocarbon oil is subjected to a mild heat treatment within a range that does not impair the stability of the produced oil to reduce the viscosity of the heavy hydrocarbon. However, this method cannot be expected to remove impurities such as metal sulfur and nitrogen from hydrocarbon oil. Although some of the heavy hydrocarbon oil is converted to light oil through cracking.

並列的に重縮合反応が生起し、アスファルテンやトルエ
ン不溶分等の重合物が生成される。一方。
A polycondensation reaction occurs in parallel, producing polymers such as asphaltene and toluene-insoluble matter. on the other hand.

接触水素化分解法では重質炭化水素油中の硫黄分、窒素
分、金属等を除去蓋ることができるので1品質が向上し
付加価値の高い生成油が得られるが、軽質化率が低いた
め中間留分(灯油、軽油)の生産量が少ない。
Catalytic hydrocracking can remove sulfur, nitrogen, metals, etc. from heavy hydrocarbon oil, improving quality and producing oil with high added value, but the lightening rate is low. Therefore, the production volume of middle distillates (kerosene, light oil) is low.

以上のような理由により、重質炭化水素油の処理には、
前記両法を組み合せ、軽質化率の向上と品質の良い生成
油を達成する方法が提案されている(特公昭54−22
444号、特公昭57−205484号)。
For the reasons mentioned above, when processing heavy hydrocarbon oil,
A method has been proposed in which the above two methods are combined to improve the lightening rate and produce oil of good quality (Japanese Patent Publication No. 54-22
No. 444, Special Publication No. 57-205484).

しかし、上記組み合せ法においては、前段の熱分解工程
でスラッジ(コーク状物質)が発生すると。
However, in the above combination method, sludge (coke-like substance) is generated in the preceding thermal decomposition step.

スラッジが後段の固定床触媒装置の触媒層に堆積し、つ
いには圧力損失が増大し運転継続が不可能となる。この
コークス状物質は熱分解工程における重縮合反応で生起
するトルエン不溶分に代表される重合物が生成油から析
出してきたものであり、軽質化率がある限度を越えると
急激に上昇する。
Sludge accumulates on the catalyst layer of the fixed bed catalyst device in the latter stage, eventually increasing the pressure loss and making it impossible to continue operation. This coke-like material is produced by the precipitation of polymers, typically toluene-insoluble matter, produced in the polycondensation reaction during the thermal decomposition process, and increases rapidly when the lightening rate exceeds a certain limit.

従って、接触水素化分解装置での触媒層の閉塞を防止す
るためには、熱分解工程でコーク状物質を生成しないよ
うな運転方法が非常に重要となる。
Therefore, in order to prevent clogging of the catalyst bed in a catalytic hydrocracking apparatus, an operating method that does not generate coke-like substances during the thermal cracking process is very important.

前記ビスブレーキング法には加熱炉分解方式とソーカー
分解方式または両方式を組み合せる方式がある。加熱炉
分解方式は、通常、加熱炉出口温度460〜520℃の
範囲で高温短時間で熱分解を行なう方法で広く一般に実
施されている。しかし、高温条件であることと加熱炉バ
ーナーからの輻射のため反応管表面温度が高くなるため
、管内面にコークが析出付着するいわゆるコーキングが
生じ安定運転期間は3〜6ケ月が限度と言われる。一方
、ソーカー分解方式は加熱炉分解方式より低い温度で長
時間反応を行なわせるもので1反応容器内でのコーキン
グ現象は温和であり、1年程度の長期安定運転が可能で
ある。しかし、このソーカーは、長時間の反応時間を必
要とするため炉分解より反応器容積を大きくする必要が
あり、一般には大口径の竪形ドラムであり、ただ単に大
きな空の槽にすぎない。このため小口径チューブ反応管
に代表されるピストン流れに対して大口径ソーカードラ
ムでは逆混合流れが生じ、反応器内に滞留時間分布が起
きる。先に°述べたように1分解苛酷度(軽質化率)が
増すと(これは温度の上昇または反応時間増大による)
、重縮合化合物が生成するが、このソーカー分解方式の
場合、反応容器中の長時間滞留物が過度の熱履歴を受け
、コークス状物質が析出してくる。このため管状分解方
式に比して、ソーカー分解方式では、総合的に低い軽質
化率でスラッジが生起するという欠点がある。
The visbreaking method includes a heating furnace decomposition method, a soaker decomposition method, or a combination of both methods. The heating furnace decomposition method is generally widely practiced as a method in which thermal decomposition is carried out at a high temperature and in a short time at a heating furnace outlet temperature in the range of 460 to 520°C. However, due to the high temperature conditions and the radiation from the heating furnace burner, the surface temperature of the reaction tube becomes high, resulting in so-called coking, where coke deposits and adheres to the inner surface of the tube, and the period of stable operation is said to be limited to 3 to 6 months. . On the other hand, the soaker decomposition method allows the reaction to take place for a long time at a lower temperature than the heating furnace decomposition method, and the coking phenomenon within a single reaction vessel is mild, allowing stable operation for a long period of about one year. However, since this soaker requires a long reaction time, it is necessary to have a larger reactor volume than for furnace decomposition, and it is generally a large-diameter vertical drum, which is simply a large empty tank. For this reason, a reverse mixing flow occurs in a large-diameter soaker drum compared to a piston flow typified by a small-diameter tube reaction tube, and a residence time distribution occurs in the reactor. As mentioned earlier, when the decomposition severity (lightening rate) increases (this is due to an increase in temperature or an increase in reaction time)
, polycondensation compounds are produced, but in the case of this soaker cracking method, the long-term residence material in the reaction vessel undergoes excessive thermal history and coke-like substances precipitate. Therefore, compared to the tubular cracking method, the soaker cracking method has the disadvantage that sludge is generated at a lower overall lightening rate.

〔目  的〕〔the purpose〕

本発明は、重質炭化水素油の処理に見られる前k 、X
J & Mよ□3o□オう。       ′)〔構 
 成〕 本発明によれば、炭化水素油を加熱炉において急速に加
熱し、次に管状ソーキング装置にて熱分解を行なった後
、得られた熱分解生成油をそのまま/もしくは低沸点留
分を分解除去した後、温度350〜450℃、圧力50
〜250kg/C4G、液空間速度0.1〜5Hr−7
、H2/油比10o〜2oooNQ/Qノ条件下テ水素
化処理触媒を用いて水素化分解を行なうことを特徴とす
る炭化水素油の水素化分解法が提供される。
The present invention is characterized in that the front k,
J&M □3o□Oh. ′) [structure
According to the present invention, hydrocarbon oil is rapidly heated in a heating furnace, then thermally decomposed in a tubular soaking device, and then the resulting thermally decomposed oil is used as it is/or a low boiling point fraction is added to the hydrocarbon oil. After decomposition and removal, the temperature is 350-450℃ and the pressure is 50℃.
~250kg/C4G, liquid space velocity 0.1~5Hr-7
, a H2/oil ratio of 10o to 2ooo NQ/Q is provided.

〔原料油〕[Feedstock oil]

本発明で用いる重質炭化水素油としては、石油の常圧蒸
留残渣油、減圧蒸留残渣油、タールサンド油、シエール
オイル、石炭液化油等が挙げられ、その種類は特に制約
されない。
Examples of the heavy hydrocarbon oil used in the present invention include atmospheric distillation residue oil of petroleum, vacuum distillation residue oil, tar sand oil, shale oil, coal liquefied oil, etc., and the type thereof is not particularly limited.

〔原料油の加熱〕[Heating of raw oil]

本発明においては、原料油は、先ず、管状加熱炉を用い
て急速に加熱されるにの場合の加熱条件は、一般的には
、温度380〜520”C1好ましくは420〜480
℃、圧力50〜250kg/cJG、好ましくは100
〜200kg/cnfG、滞留時間〔コイル容積(イ)
/液温計(15℃)(イ/分)〕220以下であり、加
熱炉内における熱分解は極力制限される。この加熱炉に
おける温度及び滞留時間は、その軽質化率phが、ソー
キング装置から得られる生成油の軽質化率Psの172
以下、好ましくは175〜215になるように選定する
のが好ましい。この場合、軽質化率ph及びPsは次の
ように定義される。
In the present invention, the raw material oil is first rapidly heated using a tubular heating furnace, and the heating conditions are generally at a temperature of 380 to 520"C, preferably 420 to 480"C.
°C, pressure 50-250 kg/cJG, preferably 100
~200kg/cnfG, residence time [coil volume (a)
/liquid thermometer (15°C) (I/min)] is 220 or less, and thermal decomposition in the heating furnace is limited as much as possible. The temperature and residence time in this heating furnace are such that the lightening rate ph is 172
Hereinafter, it is preferable to select from 175 to 215. In this case, the weight reduction rates ph and Ps are defined as follows.

Ph=(1−−)xlOO(1) Ps=(1−−)X100          (2)
Ph:加熱炉での軽質化率 Ps:ソーキング装置から得られる生成油の軽質化率 A :原料油中の538°C以上の留分の重量B :加
熱炉からの生成油中の538℃以上の留分の重量 C:ソーキング装置からの生成油中の538℃以上の留
分の重量 この管状加熱炉による原料油の加熱では、炭化水素油と
共に、水素又は水素含有ガスを加熱炉に供給するのが有
利であり、この水素又は水素含有ガスの添加により、管
内の液流速が増大し、また炭化水素分圧が低下するため
、コーキング現象が抑制されるという効果が得られる。
Ph=(1--)xlOO(1) Ps=(1--)X100 (2)
Ph: Lightening rate in the heating furnace Ps: Lightening rate of the produced oil obtained from the soaking device A: Weight of the fraction of 538°C or higher in the raw oil B: 538°C or higher of the fraction of the produced oil from the heating furnace Weight of the fraction C: Weight of the fraction of 538°C or higher in the oil produced from the soaking device In heating the feedstock oil using this tubular heating furnace, hydrogen or hydrogen-containing gas is supplied to the heating furnace along with the hydrocarbon oil. The addition of hydrogen or hydrogen-containing gas increases the liquid flow rate in the pipe and lowers the hydrocarbon partial pressure, resulting in the effect of suppressing the coking phenomenon.

この水素又は水素含有ガスの原料油に対する添加割合は
、50〜200ON12/u、好ましくは100〜50
ON Q / nである。
The addition ratio of hydrogen or hydrogen-containing gas to the raw material oil is 50 to 200 ON12/u, preferably 100 to 50
ON Q/n.

〔ソーキング装置による熱分解〕[Pyrolysis using soaking device]

前記の管状加熱炉から得られた生成油は、管状ソーキン
グ装置で熱分解される。この場合、このソーキング装置
の管径(内径)は、一般には、前記加熱炉の管径と同径
又は大きい径が選定される。
The product oil obtained from the tubular heating furnace is pyrolyzed in a tubular soaking device. In this case, the pipe diameter (inner diameter) of the soaking device is generally selected to be the same or larger than the pipe diameter of the heating furnace.

このソーキング装置における液状炭化水素油の線速度は
、ピストン流と見なせるに十分な液レイノルズ数が必要
であり、通常、0.5m/秒〜10m/秒、好ましくは
1.5111/秒〜5傾/秒の範囲にするのがよい。こ
の波線速度が前記範囲より小さくなると、流体の運動エ
ネルギーが小さく、反応による重縮合物が反応管壁面に
凝固付着し易く、また前記範囲より大きくなると、反応
管内での圧力損失が著しく増大し、実用的ではない。
The linear velocity of the liquid hydrocarbon oil in this soaking device requires a liquid Reynolds number sufficient to be considered as a piston flow, and is usually 0.5 m/sec to 10 m/sec, preferably 1.5111/sec to 5 inclination. /second range is recommended. When this wave line velocity is smaller than the above range, the kinetic energy of the fluid is small, and the polycondensate resulting from the reaction tends to solidify and adhere to the wall surface of the reaction tube, and when it is larger than the above range, the pressure loss within the reaction tube increases significantly. Not practical.

なお、前記波線速度は次の式で表わされる。Note that the wave linear velocity is expressed by the following formula.

R:波線速度(m/秒) Q:炭化水素油供給量(kg/秒) 9815℃における炭化水素油の密度(kg/m)A:
管内流通断面積(イ) ソーキング装置の管の長さ/内径比(L/D)は、10
0以上、とするのがよい。
R: Wave linear velocity (m/sec) Q: Hydrocarbon oil supply amount (kg/sec) Density of hydrocarbon oil at 9815°C (kg/m) A:
Pipe flow cross-sectional area (a) The length/inner diameter ratio (L/D) of the soaking device pipe is 10
It is preferable to set it to 0 or more.

このソーキング装置での入口温度は380〜520℃、
好ましくは420〜480℃、圧力は50〜250kg
/cI#、好ましくは100〜200kg/CIIG、
滞留時間は2〜60分、好ましくは5〜30分である。
The inlet temperature of this soaking device is 380-520℃,
Preferably 420-480℃, pressure 50-250kg
/cI#, preferably 100-200kg/CIIG,
The residence time is between 2 and 60 minutes, preferably between 5 and 30 minutes.

本発明の場合、このソーキング装置による熱分解は、水
素加圧下で実施するのが好ましく、水素圧力50〜25
0kg/dGで実施するのが有利である。炭化水素油の
熱分解においては、通常、生成油に含まれるアスファル
テン分は増加し、またその含量は熱分解が苛酷にな□。
In the case of the present invention, the thermal decomposition using this soaking device is preferably carried out under hydrogen pressure, and the hydrogen pressure is 50 to 25%.
Advantageously, it is carried out at 0 kg/dG. In the thermal decomposition of hydrocarbon oils, the asphaltene content in the resulting oil usually increases, and the content increases as the thermal decomposition becomes more severe.

オ、1.。あう78、オ11.8、□    1条件下
で熱分解を実施する場合には、驚くべきことに、アスフ
ァルテン含量は増加せず1M料油と同等かもしくは低下
する傾向も見られる。
O, 1. . Surprisingly, when thermal decomposition is carried out under 78, 11.8, □1 conditions, the asphaltene content does not increase and tends to be equal to or lower than that of 1M feed oil.

本発明のソーキング装置は、前記したように管状のもの
(管状コイル)から構成されると共に、好ましくはデコ
ーキング用バーナーを備えている。
The soaking device of the present invention is composed of a tubular member (tubular coil) as described above, and is preferably equipped with a decoking burner.

この場合、デコーキング用バーナーは、運転停止時に管
状コイル内に付着するコークを、デコーキング(空気と
水蒸気を導入してコークを燃焼除去する方法)操作によ
り除去するために用いられ、前記加熱炉のバーナーより
も小容量(約20%程度)のものとなる。このデコーキ
ング用バーナーは、ソーキング装置の温度制御にも適用
することができる。従来の空塔ベッセル型ソーキング装
置では、デコーキング操作は非常に困難であるという欠
点を有していたが、本発明の場合、デコーキング操゛作
は簡単であり、このような欠点は生じない。
In this case, the decoking burner is used to remove coke that adheres to the inside of the tubular coil when the operation is stopped by decoking (a method of burning and removing coke by introducing air and steam). It has a smaller capacity (approximately 20%) than the previous burner. This decoking burner can also be applied to temperature control of a soaking device. Conventional sky tower vessel type soaking devices had the disadvantage that the decoking operation was very difficult, but in the case of the present invention, the decoking operation is easy and such a disadvantage does not occur. .

〔熱分解生成油の水素化処理〕[Hydrotreatment of pyrolysis generated oil]

前記のソーキング装置から得られた熱分解生成油は、そ
のまま/もしくは低沸点留分を分離除去した後、水素化
処理触媒の存在下で水素化分解される。この水素化分解
は、従来公知の方法に従って実施され、一般には、温度
350〜450°C1水素圧50〜250kg/cn?
G、液空間速度0.1〜5.Ohr″″1の条件が採用
される。水素化処理触媒としては、従来公知のものであ
り、例えば、多孔性無機酸化物に水素化活性金属成分を
担持させたものが用いられる。この場合、多孔性無機酸
化物としては、従来公知の合成又は天然産の種々のもの
、例えば、γ−アルミナ、α−アルミナ、シリカ、マグ
ネシア、ボリア、ジルコニア、ホスフイア、クロミア、
チタニア、シリカ−アルミナ、アルミナ−ボリア。
The thermally cracked oil obtained from the above-mentioned soaking device is hydrocracked as it is or after separating and removing a low-boiling fraction in the presence of a hydrotreating catalyst. This hydrogenolysis is carried out according to a conventionally known method, generally at a temperature of 350 to 450°C and a hydrogen pressure of 50 to 250 kg/cn?
G, liquid space velocity 0.1-5. The condition of Ohr″″1 is adopted. The hydrogenation catalyst is a conventionally known catalyst, and for example, one in which a hydrogenation-active metal component is supported on a porous inorganic oxide is used. In this case, as the porous inorganic oxide, various conventionally known synthetic or natural products such as γ-alumina, α-alumina, silica, magnesia, boria, zirconia, phosphine, chromia,
Titania, silica-alumina, alumina-boria.

アルミナーホスフイア、シリカ−マグネシア、合成ゼオ
ライト、合成セピオライト等の合成品の他、天然に産出
するセピオライト、ゼオライト、ボーキサイト、アタパ
ルジャイト、カオリン、モンモリロナイト等の天然品を
挙げることができる。水素化活性金属成分としては、従
来公知のもの、例えば1周期律表■族、■族、■族及び
■族金属の中から選ばれる少なくとも1種が用いられ、
このようなものの具体例としては、例えば、銅、バナジ
ウム、モリブデン、タングステン、コバルト、ニッケル
、鉄等が挙げられ、殊に触媒の活性及び寿命の点からは
、VIB族と■族との組合せ、例えば、Co−No、 
Ni−Mo、 N1−u、又はCo−阿o−Niの組合
せのものの使用が好ましい。また多孔性無機酸化物に担
持される水素化活性金属成分の形態は、通常、酸化物及
び/又は硫化物である。水素化活性金属成分の担持量は
、金属酸化物換算で、多孔性無機酸化物に対し、1〜3
5重量%程度である。
Examples include synthetic products such as alumina phosphere, silica-magnesia, synthetic zeolite, and synthetic sepiolite, as well as naturally occurring products such as sepiolite, zeolite, bauxite, attapulgite, kaolin, and montmorillonite. As the hydrogenation active metal component, at least one metal selected from conventionally known metals, such as metals from Groups 1, 2, 2 and 2 of the Periodic Table, is used,
Specific examples of such materials include copper, vanadium, molybdenum, tungsten, cobalt, nickel, iron, etc. In particular, from the viewpoint of catalyst activity and life, combinations of group VIB and group II, For example, Co-No.
The use of Ni-Mo, N1-u, or Co-Ao-Ni combinations is preferred. Further, the hydrogenation-active metal component supported on the porous inorganic oxide is usually in the form of an oxide and/or a sulfide. The supported amount of the hydrogenation active metal component is 1 to 3 in terms of metal oxide relative to the porous inorganic oxide.
It is about 5% by weight.

本発明における触媒は、粉末状、顆粒状の他。The catalyst in the present invention may be in the form of powder, granules, or other forms.

種々の形状の成形品の形で用いることができるが、殊に
、中空円筒状、断面楕円、トリローブ、多裂葉状等の押
出成形品の形で用いるのが有利であり。
Although it can be used in the form of molded products of various shapes, it is particularly advantageous to use it in the form of extruded molded products such as hollow cylinders, ellipsoids, trilobes, and multilobed shapes.

その寸法は、反応床の方式で異なるが、一般的には、0
.8〜6.2+u+、好ましくは1.0〜3.1+nn
程度である0本発明で用いる触媒は、殊に、細孔容積0
.4〜1.5cc/g、表面積100〜250ryf/
g、細孔径50〜400人の物性を有するものの使用が
好ましい。
Its dimensions vary depending on the type of reaction bed, but are generally 0
.. 8-6.2+u+, preferably 1.0-3.1+nn
The catalyst used in the present invention has a pore volume of about 0.
.. 4-1.5cc/g, surface area 100-250ryf/
It is preferable to use one having physical properties of 50 to 400 g and pore size.

この水素化処理工程によれば、前記熱分解工程や1ら得
られた生成油中の不純物、硫黄分、窒素分、金属分及び
アスファルテン分を効率よく除去することができる。こ
の場合、前記熱分解工程ではスラッジの副生がないため
、この水素化処理工程では、触媒閉塞が長期間生起せず
、安定的にアスファルテン分のような重縮合物を分解す
ることが可能となり、得られる水素化処理生成油の安定
性は飛躍的に高められる。
According to this hydrotreating step, impurities, sulfur content, nitrogen content, metal content, and asphaltene content in the product oil obtained in the thermal decomposition process or step 1 can be efficiently removed. In this case, since no sludge is produced as a by-product in the thermal decomposition process, catalyst clogging does not occur for a long period of time in this hydrotreating process, making it possible to stably decompose polycondensates such as asphaltene components. , the stability of the resulting hydrotreated oil is dramatically increased.

次に、本発明を図面によりさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to the drawings.

図面は、本発明の方法を実施するためのフローシートを
示す。この図において、3は管状加熱炉、6は管状ソー
キング装置、9は水素化処理装置、11は気液分離器で
ある。
The drawing shows a flow sheet for carrying out the method of the invention. In this figure, 3 is a tubular heating furnace, 6 is a tubular soaking device, 9 is a hydrotreating device, and 11 is a gas-liquid separator.

管路1から導入された原料油は、管路14がら供給され
、管路18を通る補給水素と共に、管路2を通って管状
加熱炉3に供給され、ここで380〜480℃の範囲に
短時間で加熱された後、管路4を通って抜出され、管路
15を通る補給水素及び管路16を通8循環水素8共に
・管状V−#′f装置6に導      ・)入され、
ここで熱分解される。熱分解生成物は、管路7を通って
管状ソーキング装置6がら抜出され、管路17を通る循
環水素と混合され、管路8を過つて水素化処理装置9に
送られ、水素化処理される。
The feedstock oil introduced from pipe 1 is supplied through pipe 14, and together with make-up hydrogen passing through pipe 18, it is supplied through pipe 2 to tubular heating furnace 3, where it is heated to a temperature in the range of 380 to 480°C. After being heated for a short time, it is withdrawn through line 4, and introduced into the tubular V-#'f device 6 together with the make-up hydrogen through line 15 and the circulating hydrogen 8 through line 16. is,
It is thermally decomposed here. The pyrolysis products are withdrawn from the tubular soaking device 6 through line 7, mixed with circulating hydrogen through line 17, and sent via line 8 to the hydrotreater 9 for hydrotreating. be done.

水素化処理生成物は、管路10を通って水素化処理装置
!9から抜出され、気液分離器11に送られ、ここで気
液分離された後、水素を含むガスは管路12を通って管
路16及びエフに循環され、液体生成物は管路13を通
って系外へ抜出され、そのまま製品とされるか、更に製
品の品質向上を目的として水素化処理される。
The hydrotreated product passes through the pipe 10 to the hydrotreating device! 9 and sent to a gas-liquid separator 11 where the gas and liquid are separated, the hydrogen-containing gas is circulated through the pipe 12 to the pipe 16 and F, and the liquid product is passed through the pipe 16 and F. 13 and is extracted out of the system and either used as a product as it is or subjected to hydrogenation treatment for the purpose of improving the quality of the product.

〔効  果〕〔effect〕

本発明は前記構成であり、硫黄分、窒素分、金属及びア
スファルテン分等の汚染分が除去され。
The present invention has the above configuration, and contaminants such as sulfur, nitrogen, metals, and asphaltene are removed.

かつ安定性にすぐれた軽質化波を得ることができる。そ
の上、本発明の場合は、熱分解工程では、コークやスラ
ッジの発生が防止されているので。
In addition, a lightened wave with excellent stability can be obtained. Moreover, in the case of the present invention, the generation of coke and sludge is prevented in the thermal decomposition process.

水素化処理工程において、触媒閉塞の問題は生じず、長
期間にわたって安定的に運転を行うことができる。
In the hydrotreating process, the problem of catalyst clogging does not occur, and stable operation can be performed for a long period of time.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例 原料油として、下記に示す性状の中東系減圧残渣油を用
いた。
As the raw material oil for the examples, a Middle Eastern vacuum residue oil having the properties shown below was used.

表−1 比   重 (d15/4℃)          :
    1.0360粘   度 (IQO’C)(C
P)        :   8000n−へブタン不
溶分(wt%):13.1硫黄含量(wt%)    
     :   5.25バナジウム含量(wt−p
pm)     :  150ニツケル含Ek (wt
、−ppm)      :   52窒素含量(wt
−ppm)        :   0.51コンラド
ソン残留炭素分(Sit、%)  :   23.3’
(CCR) トルエン不溶分(TI) (wt%)    :   
o、。
Table-1 Specific gravity (d15/4℃):
1.0360 Viscosity (IQO'C) (C
P): 8000n-hebutane insoluble content (wt%): 13.1 Sulfur content (wt%)
: 5.25 vanadium content (wt-p
pm): 150 nickel containing Ek (wt
, -ppm): 52 nitrogen content (wt
-ppm): 0.51 Conradson residual carbon content (Sit, %): 23.3'
(CCR) Toluene insoluble content (TI) (wt%):
o.

蒸留生状(vt、%) 343℃以下留分        :   o、。Distilled raw (vt, %) Distillate below 343°C: o.

343〜538℃留分       ニア、0538℃
以上の留分       :   93.0この原料油
を、水素ガスと共に、管状加熱炉に供給し、加熱した後
、管状ソーキング装置に導入して熱分解し、得られた熱
分解生成物をそのまま水素化処理装置に導入して水素化
処理を行った。
343-538℃ fraction Near, 0538℃
Fractions above: 93.0 This feedstock oil is supplied to a tubular heating furnace together with hydrogen gas, heated, and then introduced into a tubular soaking device for pyrolysis, and the resulting pyrolysis product is directly hydrogenated. It was introduced into a processing equipment and subjected to hydrogenation treatment.

この場合、管状加熱炉は、内径4mn+、長さ2mの管
状コイル(長さと内径比L/D = 500)を備えた
ものである。管状ソーキング装置は、内径4s+m、長
さ3mの管状コイル(長さと内径比L/D = 750
)を備えたものである。水素化処理装置は、市販の水素
化処理触媒(Ni−Co−No/A n 20 z )
を充填した内径37mm、長さ200c+iの円筒反応
管からなるものである。
In this case, the tubular heating furnace is equipped with a tubular coil having an inner diameter of 4 mn+ and a length of 2 m (length to inner diameter ratio L/D = 500). The tubular soaking device is a tubular coil with an inner diameter of 4s+m and a length of 3m (length to inner diameter ratio L/D = 750
). The hydrotreating equipment uses a commercially available hydrotreating catalyst (Ni-Co-No/A n 20 z )
It consists of a cylindrical reaction tube with an inner diameter of 37 mm and a length of 200 c+i filled with .

次に、前記反応条件について示す。Next, the reaction conditions will be described.

(1)管状加熱炉 反応温度(’C)      :  460反応圧力(
kg/cdG)    :  140液滞留時間(分)
;2 水素供給速度(NΩ/Q)  :  200(2)ソー
キング装置 反応温度 入口温度(”C)     :  425出口温度(”
C)     :  415反応圧力(kg/a#G)
    :  140液滞留時間(分)=24 水素供給速度(LQ/Ω)  :  500(3)水素
化処理装置 反応温度(’C)        :  395水素圧
力(kg/a#G)      :  140液空間速
度(hr−1)      :  0.2このようにし
て得られた生成油の性状を次表に示す。
(1) Tubular heating furnace reaction temperature ('C): 460 reaction pressure (
kg/cdG): 140Liquid residence time (min)
;2 Hydrogen supply rate (NΩ/Q): 200 (2) Soaking device reaction temperature Inlet temperature ("C): 425 Outlet temperature ("
C): 415 reaction pressure (kg/a#G)
: 140 Liquid residence time (min) = 24 Hydrogen supply rate (LQ/Ω) : 500 (3) Hydrogenation unit reaction temperature ('C) : 395 Hydrogen pressure (kg/a#G) : 140 Liquid hourly space velocity ( hr-1): 0.2 The properties of the resulting oil thus obtained are shown in the following table.

表−2 *2水素化処理装置からの生成油 なお1表−2において示した熱安定度は、熱分解試験法
ASTMD1661によって試験したものであり。
Table 2 *2 Oil produced from hydrotreating equipment Note 1 The thermal stability shown in Table 2 was tested using the thermal decomposition test method ASTM D1661.

その評価基準は次の通りである。The evaluation criteria are as follows.

1・・・・・安   定 2・・・・・やや不安定 3・・・・・不安定 比較例 実施例において、ソーキング装置として、空塔□ベッセ
ル型反応器(内径2.5cm、高さ80cm)を用い。
1... Stable 2... Slightly unstable 3... Unstable Comparative example In the example, an empty column □ vessel type reactor (inner diameter 2.5 cm, height 80cm).

平均反応温度420℃、反応圧力140kg/c+JG
、平均液滞留時間18分を用いた以外は同様にして実験
を行った。その結果を表−3に示す。
Average reaction temperature 420℃, reaction pressure 140kg/c+JG
The experiment was conducted in the same manner except that an average liquid residence time of 18 minutes was used. The results are shown in Table-3.

表−3 前記衣−2及び表−3に示した結果から、本発明の場合
、熱分解工程でのアスファルテン分(n−へブタン不溶
分)の増大が抑制され、軽質化率が増大すると共に、得
られる水素化処理油の品質が著しく高められて−いるこ
とがわかる。
Table 3 From the results shown in Table 2 and Table 3 above, in the case of the present invention, the increase in asphaltene content (n-hebutane insoluble content) in the thermal decomposition process is suppressed, the lightening rate increases, and It can be seen that the quality of the obtained hydrotreated oil is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明を実施する場合のフローシートの1例を示
す。 3・・・管状加熱炉、6・・・管状ソーキング装置、9
・・・水素化処理装置、11・・・気液分離器。
The drawing shows an example of a flow sheet for implementing the present invention. 3... Tubular heating furnace, 6... Tubular soaking device, 9
... Hydrogenation equipment, 11... Gas-liquid separator.

Claims (1)

【特許請求の範囲】[Claims] (1)炭化水素油を加熱炉において急速に加熱し、次に
管状ソーキング装置にて熱分解を行なった後、得られた
熱分解生成油をそのまま/もしくは低沸点留分を分離除
去した後、温度350〜450℃、圧力50〜250k
g/cm^2G、液空間速度0.1〜5Hr^−^1、
H_2/油比100〜2000Nl/lの条件下で水素
化処理触媒を用いた水素化分解を行なうことを特徴とす
る炭化水素油の水素化熱分解法。
(1) After rapidly heating the hydrocarbon oil in a heating furnace and then thermally decomposing it in a tubular soaking device, the resulting thermally decomposed oil remains as it is or after separating and removing the low boiling point fraction, Temperature 350-450℃, pressure 50-250k
g/cm^2G, liquid space velocity 0.1~5Hr^-^1,
A method for hydrothermal cracking of hydrocarbon oil, characterized in that hydrocracking is carried out using a hydrotreating catalyst under conditions of a H_2/oil ratio of 100 to 2000 Nl/l.
JP21716584A 1984-10-16 1984-10-16 Hydrogenative pyrolysis of heavy hydrocarbon Granted JPS6195091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21716584A JPS6195091A (en) 1984-10-16 1984-10-16 Hydrogenative pyrolysis of heavy hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21716584A JPS6195091A (en) 1984-10-16 1984-10-16 Hydrogenative pyrolysis of heavy hydrocarbon

Publications (2)

Publication Number Publication Date
JPS6195091A true JPS6195091A (en) 1986-05-13
JPH0236638B2 JPH0236638B2 (en) 1990-08-20

Family

ID=16699874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21716584A Granted JPS6195091A (en) 1984-10-16 1984-10-16 Hydrogenative pyrolysis of heavy hydrocarbon

Country Status (1)

Country Link
JP (1) JPS6195091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103697A (en) * 1987-10-15 1989-04-20 Chiyoda Corp Production of low-boiling oil from high-boiling oil
KR100440479B1 (en) * 2002-04-23 2004-07-14 주식회사 엘지화학 Hydrocarbon pyrolysis process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153505A (en) * 1974-11-07 1976-05-12 Showa Oil Tankasuisono henkanhoho
JPS57123290A (en) * 1981-01-25 1982-07-31 Chiyoda Chem Eng & Constr Co Ltd Method for converting heavy hydrocarbon oil into light fractions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153505A (en) * 1974-11-07 1976-05-12 Showa Oil Tankasuisono henkanhoho
JPS57123290A (en) * 1981-01-25 1982-07-31 Chiyoda Chem Eng & Constr Co Ltd Method for converting heavy hydrocarbon oil into light fractions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103697A (en) * 1987-10-15 1989-04-20 Chiyoda Corp Production of low-boiling oil from high-boiling oil
KR100440479B1 (en) * 2002-04-23 2004-07-14 주식회사 엘지화학 Hydrocarbon pyrolysis process

Also Published As

Publication number Publication date
JPH0236638B2 (en) 1990-08-20

Similar Documents

Publication Publication Date Title
KR102613605B1 (en) Systems and processes for conversion of crude oil
CN105164233B (en) Cut oil fuel and the burnt method of anode grade are produced from decompression residuum
US3287254A (en) Residual oil conversion process
EP0537500B1 (en) A method of treatment of heavy hydrocarbon oil
KR102148952B1 (en) Integrated hydroprocessing and steam pyrolysis of crude oil to produce light olefins and coke
US5080777A (en) Refining of heavy slurry oil fractions
US8658022B2 (en) Process for cracking heavy hydrocarbon feed
CN110099984B (en) Pyrolysis tar conversion
JPS5898387A (en) Preparation of gaseous olefin and monocyclic aromatic hydrocarbon
GB2142930A (en) A process for cracking a heavy hydrocarbon
US9677015B2 (en) Staged solvent assisted hydroprocessing and resid hydroconversion
US3475323A (en) Process for the preparation of low sulfur fuel oil
EP0272038B1 (en) Method for hydrocracking heavy fraction oils
KR20020084408A (en) Process and Apparatus for Processing Residue
KR20210007893A (en) Process for converting a feedstock containing pyrolysis oil
US5413702A (en) High severity visbreaking of residual oil
JP3098030B2 (en) How to improve the quality of residual oil
US3801495A (en) Integrated process combining catalytic cracking with hydrotreating
JPS6195091A (en) Hydrogenative pyrolysis of heavy hydrocarbon
JPH0959652A (en) Production of fuel oil base
CA1161775A (en) On line hydrotreating to produce finished products
WO2013126364A2 (en) Two-zone, close-coupled, dual-catalytic heavy oil hydroconversion process utilizing improved hydrotreating
WO1993017082A1 (en) Process for hydrotreating heavy hydrocarbon oil
US3407134A (en) Process for hydrocracking an asphaltic hydrocarbon feed stock in the presence of a hydrogenated hydrocarbon and hydrocaracking catalyst
JPH05230473A (en) Treatment of heavy hydrocarbon oil