JPS6194503A - Speed controller of motor driven vehicle - Google Patents

Speed controller of motor driven vehicle

Info

Publication number
JPS6194503A
JPS6194503A JP59215907A JP21590784A JPS6194503A JP S6194503 A JPS6194503 A JP S6194503A JP 59215907 A JP59215907 A JP 59215907A JP 21590784 A JP21590784 A JP 21590784A JP S6194503 A JPS6194503 A JP S6194503A
Authority
JP
Japan
Prior art keywords
magnetic force
force generation
output
speed
sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59215907A
Other languages
Japanese (ja)
Other versions
JP2681122B2 (en
Inventor
Yoshiharu Wada
和田 芳治
Yoshiichi Morishita
森下 芳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59215907A priority Critical patent/JP2681122B2/en
Publication of JPS6194503A publication Critical patent/JPS6194503A/en
Application granted granted Critical
Publication of JP2681122B2 publication Critical patent/JP2681122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/002Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes
    • B60L15/005Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes for control of propulsion for vehicles propelled by linear motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To facilitate the installation of a plurality of magnetic force generation sources by providing control means for generating a speed command proportional to the magnitude of the sources provided on a road. CONSTITUTION:Magnetic force generation sources are sequentially disposed on a road. Detecting means 13 on a motor driven vehicle body 1 output rectangular signals 24, 25 at the starting and ending points of the sources. Gate circuit means 18 is closed when the signal 24 is applied, and opened when the signal 25 is applied. Counting means 17 counts timing pulses in response to the travel of guide wheel 3 output from sensing means 16 while the means 18 is closed. Control command means 8 applies a control command in response to the output of the means 17 to a drive circuit 7.

Description

【発明の詳細な説明】 ヒ】 産業上の利用分野 本発明は予め定めらfL九走行路上七走行する電IE!
I車の速度制御装置に関し、その走行路に91QFii
、7発生源を検出してその検出出力の大きさに応じて電
動車の速度を制御する装置に関する。
[Detailed Description of the Invention] [H] Industrial Field of Application The present invention is directed to an electric vehicle running on a predetermined fL nine road.
Regarding the speed control device of I cars, 91QFii is on the driving route.
, 7 relates to a device that detects a generation source and controls the speed of an electric vehicle according to the magnitude of the detected output.

(ロ) 従来の技術 従来、路面に埋設した誘導線に交流電流を流子こ七によ
り生ずる交番磁界を検出Tることにより、あるいは路面
に反射効率の異なる41設け、この保全光学的に検出す
ることによって、電動車l上記線に沿って誘導走行する
ものが、ゴルフカートあるいは運搬車等に適用さnてh
る。
(b) Conventional technology Conventionally, alternating current is applied to a guide wire buried in the road surface by detecting the alternating magnetic field generated by a flow coil, or by installing wires with different reflection efficiencies on the road surface and detecting this maintenance optically. Therefore, electric vehicles that guide the vehicle along the above lines may be applied to golf carts, transport vehicles, etc.
Ru.

このm従来装置において、車励車ケ停止、あるいは紙速
等させる之めに、走行路lに磁力鈍生源を埋設し、この
磁力を検出するようにしてい之(特公昭50−9956
号公報)、この場合に、磁力発生源として永久磁石を用
い友場合VCは、その極性を判用して2t4傾のイシ+
Pjを得るこ七ができ、同様に曲ε誘導線にルー・プを
形成して11号を得、ループの方向1−2えることによ
り、2a譲の15号t″得ることができる。このように
従来装rIItにシいては、2mMの信号を得ることが
できるが、そ几以上の種類を得ることは困−である、こ
のため、走行路の状況に応じたきめ細かな走行制御を行
りことができない。
In this conventional device, a magnetic force slowing source is buried in the running path l and this magnetic force is detected in order to stop the vehicle exciter or change the speed of the paper.
In this case, if a permanent magnet is used as the magnetic force generation source, the VC is determined by its polarity and the 2t4 tilt is +
Pj can be obtained. Similarly, by forming a loop on the curved ε guide line to obtain No. 11, and by determining the direction of the loop 1-2, it is possible to obtain No. 15 t'' of 2a. Although it is possible to obtain a signal of 2mM with the conventional rIIt, it is difficult to obtain a signal of more than that level.For this reason, it is necessary to carry out detailed driving control according to the conditions of the driving route. I can't do it.

(ハ)発明が解決しようとする間赳点 未発明はかかる点に鑑み発明さ1次ものにして。(c) Problems that the invention attempts to solve In view of this point, a non-invented item is treated as an invented primary item.

走行路に設けた複数の磁力発生源の長さあるいは間隔k
J!4にすることにより、複数[類の設置位置に応じに
個号を検出し、この検出出力に比例し九走行速度KiI
J@する装置を提供すること上目的とする。
Length or interval k of multiple magnetic force generation sources provided on the running path
J! 4, the individual numbers are detected according to the installation position of multiple [classes], and the traveling speed KiI is proportional to this detection output.
The purpose is to provide a device that performs J@.

に)問題点を解決するための手段 かかる目的t4戚するため、未発明による装置は、電動
車本体の走行路に設けられる複数の磁力発生源と、この
磁力発生at検出する検出手段と、この検出手段の出力
の大きさに比例し比速度指令′に発する制御手段とを具
備してなる。
B) Means for Solving the Problems In order to achieve the above object, an uninvented device includes a plurality of magnetic force generation sources provided on the running path of the electric vehicle body, a detection means for detecting the magnetic force generation, and a detection means for detecting the magnetic force generation at. and control means for issuing a specific speed command 'proportional to the magnitude of the output of the detection means.

mf’F用 愼欽の磁力発生1IAC1′)庚さあるりは間隔を異に
して、この長さあるいは間隔に対応して検出手段の出力
の大きさが^なり、多′Ia類の位置検出値号と4る。
Magnetic force generation 1IAC1' for mf'F Value number and 4.

1九制御手段は、検出手段の出力の大きさに比列し7を
走行速度指令をiするので、複数の磁力発生源の民さあ
るいは間隔t、所望の速度に比例したものξすることが
でき、複数の磁力発生源のedlが簡単になる。
19. Since the control means sets the traveling speed command i in proportion to the magnitude of the output of the detection means, it is possible to set the distance or spacing t of the plurality of magnetic force generating sources to a value ξ proportional to the desired speed. This simplifies the edl of multiple magnetic force generation sources.

(へ)実施例 本発明の1実4例を1而に基いて説明する。第1凶にf
t1#車の原理構成図である。この図面において1(I
Iは1に鯛単本体にして、少なくとも1個の駆勘阜稚1
!Iと少なくとも1111の#譬阜輪131とt儂凡て
いる・属劇車檜Illは態動モータ(引により、縛導阜
輪Illはj11度1#lj祷モータ161によりt大
々駆動さ几、各モータ14ハilは犬々繊動U路16;
又は(1]にて制御さnる。この両部aL!!l路に制
御手段(3)内の−j−指令手段(1)1からの指金に
基いて副−さル、又大々パルス幅又4@略を偏見ており
、この回路にエフ各モータ(4ハsI!滑らかに1ii
11−する1りにして−る。
(f) Examples One example and four examples of the present invention will be explained based on one example. f to the first evil
It is a principle block diagram of the t1# car. In this drawing, 1(I
I have 1 single body of sea bream, and at least 1 piece of sea bream 1
! I and at least 1111 #parallel wheels 131 and t are attached to the driving wheel Ill is driven by the attitude motor (by extension, the restraint guiding wheel Ill is driven by the motion motor 161 at least 1111 degrees).几、Each motor 14 height is dog fiber U path 16;
Or, it is controlled by (1).In this both aL!!l path, -j-instruction means (1) in control means (3), based on the finger from 1, the sub- and large The pulse width is also biased to 4@, and this circuit is used for each motor (4 sI! Smoothly 1ii
11-I'm going to do it.

尚、紘IIJIgl路111は速度切換回路(ム)を舖
えて−る。
In addition, the Ko IIJIgl road 111 has a speed switching circuit (mu).

1111は予め定めらrL7を走行路を検知する検知手
段にして、この手段の出力に基−て制ar&4一手段1
畠)から、制御指金が電制回路(7]に与えらn、酵4
卓輪III を予め定めらrした走行路に沿りよりにT
る・この場合に躯MJ−路(1]に含ま九るパルス幅叉
調回w&により、誘尋阜輪1m1か走行路からず几たと
きに1徐4にこの走行路に沿5よ5になる・前記検知手
段tillは、走行路面に植設した鱈尋嶽からの交番磁
11−tag知するエフにして%よく、1九足行路圓に
設けた反#i効皐の14なる繊を光学的に検知するよ5
#cしてもよi。
1111 uses predetermined rL7 as a detection means for detecting the running route, and controls ar&4-means 1 based on the output of this means.
The control finger is applied to the electric control circuit (7) from N, fermentation 4.
The table wheel III is moved along a predetermined running path
In this case, the 9 pulse width adjustment circuits included in the main body MJ-road (1) are used to reduce the distance between 1 m and 4 along this traveling path when the distance is 1 m1 or less from the traveling path.・The above-mentioned detection means till detects the alternating magnetic field 11-tag from the cod base installed on the running road surface, and the anti-#i effect wire 14 installed on the 19th foot path circle. will be detected optically.5
#cI can do it.

110は手助による操fIP部にして、コントロールボ
ックス及びグレーキレパーラ含み、コントロールボック
スは「全自動」−「停点通過」、「ブレーキ解」、「駐
車」、「低速」及び「高速」等のノツチ全セレクタによ
り切換えると共にスタート釦の押圧により各ノツチの作
at開始させるものである。「全自動」及び「停点通過
」ノツチは予め定めらn7’H走行路を誘導走行させる
場合に使用さ几、「ブレーキ解」ノツチは手押し操作に
際して使用さ几る。t7tr低速」及び「高速」ノツチ
は、予め定めらnた走行路外に手動による操舵操縦下に
おりて、電動走行させる場合に使用さnる。この操作部
11(lからの指令、あるいは、九とえば障害物検知等
の第2検知手段圓の指令により、駆動回路il+(7)
及びブレーキ手段azが制御される。
110 is an assisted operation fIP unit, which includes a control box and a gray brake panel, and the control box is ``fully automatic'' - ``passing a stop'', ``release the brake'', ``parking'', ``low speed'', ``high speed'', etc. The operation of each notch is started by switching the notches using the all selector and pressing the start button. The "Full automatic" and "Pass stop" notches are used when guiding the vehicle along a predetermined route, and the "Brake release" notch is used for manual operation. The "t7tr low speed" and "high speed" notches are used when the vehicle is driven by electric power while being manually steered outside a predetermined travel route. In response to a command from the operating unit 11 (l) or a command from the second detection means (for example, obstacle detection), the drive circuit il+ (7)
and brake means az are controlled.

II3は構出手段にして、走行路に設けた磁力発生源I
からの磁力を検出するものである。この検出手段u3は
検出コイル(+5al&びその検出出力を増幅する増幅
FM (+5b)とt有する。この増幅器出力は制御手
段(4)の波形処理手段(イ)にて波形処理さ九ると共
に基準値と比較さnて、検出手段IJ3の検眼力として
制御指令手段(81に入力さルる。
II3 is a magnetic force generation source I provided on the running path as a construction means.
It detects the magnetic force from the magnetic field. This detection means u3 has a detection coil (+5al & In comparison, the optometric power of the detection means IJ3 is inputted to the control command means (81).

allは感知手段にして、電動車本体IHの走行に応じ
7tタイミングパルスを感知するものである。この感知
手段はgxn車本体1110車輪、九とえば酵導車輪+
xuc1個あるーは複数の永久磁石(16a)を取付け
ると共にこの永久磁石O磁束を感知する磁気センサ(1
6b)k設けてなる。従って電動車本体111の走行V
ci5じて永久磁石(16aC磁!シイミングパルスと
して感知することができる。このタイミングパルスは制
御手段(4)内の計&手段aηにて計数さnる。
All is a sensing means that senses a 7t timing pulse in accordance with the running of the electric vehicle main body IH. This sensing means is the GXN car body 1110 wheels, 9 for example fermentation wheels +
One xuc is equipped with a plurality of permanent magnets (16a) and a magnetic sensor (16a) that senses the magnetic flux of the permanent magnets.
6b) K is provided. Therefore, the traveling V of the electric vehicle body 111
ci5 can be sensed as a shimming pulse by a permanent magnet (16aC magnet). This timing pulse is counted by a meter & means aη in the control means (4).

この計数手段と感知手段−との闇にはダート回路手段Q
樽があり、この手段は検出手段ajからの第1の切換パ
ルスとlX2の切換パルスとが到来する間、タイミング
パルスtltl−故手段αηに入力せしめる。
In the darkness between this counting means and sensing means is a dirt circuit means Q.
There is a barrel, which means inputs a timing pulse tltl into the means αη during the arrival of the first switching pulse from the detection means aj and the switching pulse of lX2.

この計数手段aηの計数出力は制御指令手段(8]に入
力さ几、その計数出力に応じた1lllJ偶指令が一般
的にはこの制御指令手段から、駆動回路+611’71
及びブレーキ手段i12等に出力さn、電動車本体11
1の動作を11J両する。
The count output of this counting means aη is input to the control command means (8), and a 1llllJ even command corresponding to the count output is generally sent from this control command means to the drive circuit +611'71
and output to the brake means i12, etc., and the electric vehicle body 11
Perform the operation 1 for 11J.

次に走行路上に、第2図(−に示すように磁力発生源(
+4t) 、 (14り及び(148)が順次配置さ几
ているとする。この場合の検出手段Ql及び計数手段a
no関連動作七第2図に基いて説明する。
Next, as shown in Figure 2 (-), a magnetic force generation source (
+4t), (14 and (148) are arranged in sequence. In this case, the detection means Ql and the counting means a
No. 7 related operations will be explained based on FIG. 2.

電動車本体111が磁力発生源(141)(14m)p
けた走行路上を矢印方向に走行すると、検出手段aJは
各磁力発生源t9*出し、その検出出力波形12Ilは
同図(b)に示すものとなる。この場合に各磁力発生源
の極性に応じ几横出出力となりニーms時には正gi号
18a時にはjgL(1M号を生ずるものとする。この
凶(四における直流レベル(+V)及び(−マ)の信号
口(2)はノイズを除去する九めの基準レベルであり、
この基準レベル全土あるーは下に越える検出出力七波形
処理手段四で比l!検出し、各磁力発生源ON8に対応
し几矩形g19−と8樵に対応し几矩形信号(至)とt
出力する。こnらO矩形信号′f:第2図(0)及び(
dJに示すΦ 一万、感知手段O@かう誘導車輪(31の回転により、
同eVfeJにボ丁タイミングパルス12[9が感知さ
nる。
The electric vehicle body 111 is a magnetic force generation source (141) (14m)p
When the vehicle travels in the direction of the arrow in the direction of the arrow, the detection means aJ outputs each magnetic force generation source t9*, and its detection output waveform 12Il becomes as shown in FIG. In this case, the output is horizontal depending on the polarity of each magnetic force generation source, and when the knee ms is positive gi, and when it is 18a, it is assumed that jgL (1M) is generated. Signal port (2) is the ninth reference level for removing noise,
This reference level is all over the world, and the detection output exceeds the seven waveform processing means compared to the four! Detects and generates a rectangular signal (to) corresponding to each magnetic force generation source ON8 and a rectangular signal (to) corresponding to g19- and 8
Output. These O rectangular signals 'f: Fig. 2 (0) and (
Φ 10,000 shown in dJ, by the rotation of the sensing means O @ this guide wheel (31,
A timing pulse 12[9 is sensed at the same eVfeJ.

同図においては、等速走行時のタイミングパルス列を示
している。
The figure shows a timing pulse train during constant speed running.

さて、各磁力発生源(141)−(140は個々により
大嶺さt即ち走行方向の長さがJ%なるものであり、第
1の磁力発生源(+41)DI極に対応した第1の矩形
信号(241〆よりゲート回路手段賭が開となり、その
後のタイミングパルスが計数手段Oηに入り、8極に対
応し7次M2の矩形侶Jij(51ν;到来すると、ゲ
ート回路手段Iが閑となる。coため内矩形信号(24
凰バ25りが到来する崗(lりのタイミングパルス&を
計歓手段αηが計数する。この場合に磁力発生源(14
すD長さに対応しt内矩形イj号(241)(25りの
文上り時間隔(jりの間で、4個のタイミングノ(ルス
ーtjH−歌する。同一に第20磁力兄生諒(1牟)の
長さに対しては、矩形信”)(24りと(252)の立
上り時rRfa C4M)の闇で、8個のタイミングパ
ルスWを計数する。第6の磁力発生源(1劇β長さに対
しては、矩形信号(24すξ(251)の立上り時間隔
(1りの間で12mのタイミングパルスtmttt数す
る。このよりに矩形18号シ41は第1切換パルスとな
り、矩形f!1号(至)は第1切換パルスtなり、矩形
信号(至)は第2切換パルスとなる。
Now, each of the magnetic force generation sources (141) - (140) has a length t, that is, a length in the running direction, of J%, and the first magnetic force generation source (+41) has a first rectangular shape corresponding to the DI pole. The gate circuit means opens from the signal (241〆), and the subsequent timing pulse enters the counting means Oη, and when the signal (51ν; arrives), the gate circuit means I becomes idle. .co inner rectangular signal (24
The counting means αη counts the timing pulses when the 25th wave arrives.In this case, the magnetic force generation source (14
Corresponding to the length of D, the rectangle I j number (241) within t (25 sentence rising time intervals (j), four timing no (Rusu tjH-singing. Same as the 20th magnetic brother) For a length of 1 m, eight timing pulses W are counted in the darkness of the rectangular signal (rRfa C4M at the rising edge of 24 points (252)).Sixth magnetic force generation source (For the length of one play β, the rising time interval of the rectangular signal (24th ξ (251)) is the number of timing pulses tmttt of 12 m between. The rectangular signal f!1 (to) becomes the first switching pulse t, and the rectangular signal (to) becomes the second switching pulse.

このよりに1個の磁力発生源(141)〜(141)の
長さに対応したタイミングパルスを計数して検出手段I
I3のデジタル出力【なし、こd出力に比例して走行速
度管制御する場合の制御指令手段(8]の70−チャー
トを第5因に示す、この図面に基いて第1の磁力発生源
(141)の長さに対応し之タイミングパルスを#FW
Kする場合をcc麦して説明する。
As a result, the timing pulses corresponding to the length of one magnetic force generation source (141) to (141) are counted and detected by the detection means I.
70-chart of the control command means (8) when controlling the travel speed tube in proportion to the digital output of I3 [d output] is shown as the fifth factor.Based on this drawing, the first magnetic force generation source ( #FW corresponding to the length of 141)
The case of K is explained using cc wheat.

検出手段Q3の出力として第1矩形信号(241)が到
来すると、第1の矩形信号(241)の立上りか否かt
ステップ■で判別し、rYl18Jならばステップ■で
ゲート回路手段a@wrMいて、感知手段O・からのタ
イミングパルス(2itll′l−欽手段a′IJに入
力せしめ、この手段が計数を開始する。ステップ■で「
NO」ならば、ステップ■に進み、第2の矩形信号(2
51)の立上りか否を判別するが、第1の矩形信号(2
41)に対しては、ステップ■は「NO」であり、上述
の計数状急にある。
When the first rectangular signal (241) arrives as the output of the detection means Q3, it is determined whether the first rectangular signal (241) rises or not.
It is determined in step (2), and if rYl18J, then in step (2), the gate circuit means a@wrM inputs a timing pulse (2itll'l−kin) from the sensing means O to the sensing means a'IJ, and this means starts counting. In step ■,
If “NO”, proceed to step ■ and output the second rectangular signal (2
51) is the rising edge of the first rectangular signal (2
For 41), step (2) is "NO", and the above-mentioned counting condition is sudden.

次に第2の矩形g1号(251)が到来するとtその文
上り時にステップ■では「MOJであり、ステップ■で
rYIA8Jとなるから、ステップ■I/c移行してグ
ー)11M回路手kli圓を閑じる。この九め計数手段
αηによるタイミングパルスの計数が社了する。この計
数鑞が磁力発生d(141)のkさに対応した検出手段
113のデジタル出力となり、この出力に比内した速度
データか、スフ−7プαで4鯛Ig回路1−)O速度切
換回路(6龜)にセットさル、!1Jm1]CAJの2
1m度meとする。Ccomめ、−鯛車本体1ムJはそ
の速度指令に応じ次速度で走行する。
Next, when the second rectangle g1 (251) arrives, at step ■, it is MOJ, and at step ■ it becomes rYIA8J, so it moves to step ■I/c and goes) 11M circuit hand kli circle The counting of timing pulses by this ninth counting means αη is completed.This counting becomes the digital output of the detecting means 113 corresponding to k of the magnetic force generation d(141), and the ratio within this output is Set the speed data to the 4 sea bream Ig circuit 1-) O speed switching circuit (6 pins) in Suf-7pu α, !1Jm1] CAJ's 2
1m degree me. Ccom, - The sea bream car body 1muJ travels at the following speed in response to the speed command.

ステップ■からステップ■に進み、計数手段αη0#1
−政瀘tクリヤーし、初期状mに復層する。
Proceed from step ■ to step ■, counting means αη0#1
- Clear the government and return to the initial state.

M2の磁力発生源(14ffi)を構出手段t+aが検
出する場合にも、その磁力発生源の城さに比列し2を速
度で題鯛単本体111を建行することになる。
Even when the configuration means t+a detects the magnetic force generation source (14ffi) of M2, the main body 111 of the main sea bream is erected at a speed of 2 in proportion to the strength of the magnetic force generation source.

以上の実施例は1伽の磁力発生源N4i)(14λ)(
1m)の大きさt″儀出るものでめj7.その磁力持生
源Io両毬の憧性を慣出丁ゐことによEInrPするも
のであるが、2鰯の磁力発生源1次とえば(14五)と
(14りの1司崗t。
The above embodiment has one magnetic force generation source N4i)(14λ)(
1m), the size of the magnetic force generating source Io is to be EInrP by extracting the admiration of both the magnetic force generating source Io and the magnetic force generating source, for example, ( 145)

両磁力発生源の同一極性の検出を利用して、検出するよ
りにしてもよく、この場合の7四−チャードを第4凶に
示し、代表として磁力発生源(+41)と(14g)の
ttIJ隔を検出することについて説明する。この例に
おいては各磁力発生源(141)N42)のN極を検出
するものとする。
It may be possible to detect the same polarity of both magnetic force generating sources, and in this case, 74-chard is shown as the fourth negative, and as a representative, ttIJ of magnetic force generating sources (+41) and (14g) Detecting the distance will be explained. In this example, it is assumed that the N pole of each magnetic force generation source (141) N42) is detected.

横出手段賭の出力として、第1番目の矩形信号(241
1が到来すると、その信号の2上Flfか否か全ステッ
プ■で判別し、rNOJのときは初期状總iC復帰する
が、「YIca」のときはステップ■でグー)f!l!
回路手段ll5l′?:閉じ、計数手段aηにタイミン
グパルス(至)が入るのt阻止するが、計数手段Oηの
計数1は所定の高速度に対応する計数値より大きく、定
速走行指令であり、ステップ■の速度切換回路(6a)
への速度データのセットは価値がなく、4a車本体11
+は定速走行して−る。
The first rectangular signal (241
When 1 arrives, it is determined in all steps (■) whether the signal is Flf or not, and if it is rNOJ, the initial state returns to iC, but if it is "YIca", it is determined at step (■)f! l!
Circuit means ll5l'? : Closed to prevent the timing pulse (to) from entering the counting means aη, but the count 1 of the counting means Oη is larger than the count value corresponding to a predetermined high speed, which is a constant speed running command, and the speed of step ■ Switching circuit (6a)
Setting speed data to is worthless, 4a car body 11
+ is running at a constant speed -.

ステップ■からステップ■に進み、計1ll一手段αη
のItl′奴11[をクリヤーし、ステップ■でゲート
回路手段μ樽七開とする。このため計数手段αηはタイ
ミンろ−kf玖しqoゐ一ζr(aる中温 2番目の矩形gi号(24冨)か到来し、ステップ■で
rY18Jならば、ステップ■でゲート回路手段賭を閉
じて、タイミングパルス(至)か計炊手段αηに入るの
’118Ii止する。この計奴頃ri磁刃先生!(14
1)(14m)間の喝間距罐(112)に対応し比もの
となり、gt出手段■のデジタル出力となる。この出力
データは速度切換I!!l賂(ヒ)にセントさ几、副彌
手段囚の速度指令となる。この沈め、第5図の場合と同
様に、嘔―車本体(川は、その速度指令に応じ比速度で
走行する。ステップ■において、#1−1手段α力の計
wK憾tクリヤーし、ステップ■でダート−路手段Q#
t′開にね(、計数手段aηがタイミングパルスの′#
f−故tII!坩することになり、たとえばその改に定
速走行させる場合に框、定塙蓮度に対応した位置に次の
磁力発生源を設置してもよく、又は、 @tI述の即く
高速度に対応する#数値以上になる即く、次の磁力発生
掠を設直してもよい、したかつてこの場合には、第2番
目の矩形91号(241以硬は定速走行となる。後刻に
前述と11様の第1番目及び第2番目の矩形16号を慣
用するとき、その離間距1111に対応し比検出出力に
Lり・対応する走行速度VCなる。
Proceed from step ■ to step ■, total 1ll one means αη
11 [is cleared, and the gate circuit means μ barrel is opened seven times in step ①. For this reason, the counting means αη is determined by the timing R - kf q o 2 1 ζr (a) If the second rectangle gi (24 tow) arrives at the middle temperature, and if rY18J at step 2, then the gate circuit means is closed at step 2. Then, the timing pulse (to) or the meter cooking means αη will stop.
1) (14 m) corresponding to the gap distance can (112), and becomes the digital output of the GT output means (2). This output data is speed switching I! ! The bribe was given to the prisoner and the deputy was given the speed command. During this sinking, as in the case of Fig. 5, the vehicle body (river) travels at the specific speed according to the speed command. Dirt-road means Q# with step ■
t' open (, the counting means aη is the timing pulse '#
f-late tII! For example, when running at a constant speed, the next magnetic force generation source may be installed at a position corresponding to the stile or fixed sill degree, or, as described in @tI, immediately at high speed. As soon as the number exceeds the corresponding # value, you may reinstall the next magnetic force generating hole. When the first and second rectangles 16 of 11 are commonly used, the ratio detection output corresponds to the distance 1111 and the corresponding traveling speed VC.

(トン 発明の効果 未発明による゛1鯛車の速度制御装置は、電動車本体の
走行路に設けらnる複数の磁力発生源と、この磁力発生
源を検出する検出手段と、この検出手段の出力の大きさ
に比例しに速度指令を発する制御手段とt具備してなる
ものであるから、複数の磁力発生源の長さあるいは間隔
庭^にすることVcより、複数種類の設置位置に応じ次
多種類の信号′f:険出することができ、しかもその信
号の大きさに比例し九走行速度に制御するので、FFr
望の走行速度を侍る几めの磁力発生源の長さあるいは間
隔の設置が容易となる。
Effects of the Invention A speed control device for a sea bream car according to an uninvented invention comprises: a plurality of magnetic force generation sources provided on the running path of the electric vehicle body; a detection means for detecting the magnetic force generation sources; and a detection means for detecting the magnetic force generation sources. Since it is equipped with a control means that issues a speed command in proportion to the magnitude of the output of Accordingly, various kinds of signals 'f' can be detected, and the traveling speed is controlled at nine speeds in proportion to the magnitude of the signals, so FFr
It becomes easy to set the length or spacing of the magnetic force generating sources precisely to meet the desired running speed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は未発明による袋1IIft示し、第1図は電動車
の原理構成囚、第2図は磁力発生源の位置に対応した1
6号波形図、第6図及び第4図は14なる実j例の7C
I−チャートである。 (1)−電動車本体、+141・・・(14五)(44
2)(14峠・・磁力発生源・α3−検出手段、(4)
−制御手段。
The drawings show an uninvented bag 1IIft, Figure 1 shows the basic structure of an electric vehicle, and Figure 2 shows the position of the magnetic force generation source.
No. 6 waveform diagram, Figures 6 and 4 are 7C of the 14th example.
This is an I-chart. (1) - Electric vehicle body, +141... (145) (44
2) (14 Pass...Magnetic force generation source/α3-detection means, (4)
- Control means.

Claims (1)

【特許請求の範囲】[Claims] (1)電動車本体の走行路に設けられる複数の磁力発生
源と、この磁力発生源を検出する検出手段と、この検出
手段の出力の大きさに比例した速度指令を発する制御手
段とを具備してなる電動車の速度制御装置。
(1) Equipped with a plurality of magnetic force generation sources provided on the running path of the electric vehicle body, a detection means for detecting the magnetic force generation sources, and a control means for issuing a speed command proportional to the magnitude of the output of the detection means. A speed control device for electric vehicles.
JP59215907A 1984-10-15 1984-10-15 Speed control device for guided vehicles on golf course Expired - Lifetime JP2681122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59215907A JP2681122B2 (en) 1984-10-15 1984-10-15 Speed control device for guided vehicles on golf course

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59215907A JP2681122B2 (en) 1984-10-15 1984-10-15 Speed control device for guided vehicles on golf course

Publications (2)

Publication Number Publication Date
JPS6194503A true JPS6194503A (en) 1986-05-13
JP2681122B2 JP2681122B2 (en) 1997-11-26

Family

ID=16680223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59215907A Expired - Lifetime JP2681122B2 (en) 1984-10-15 1984-10-15 Speed control device for guided vehicles on golf course

Country Status (1)

Country Link
JP (1) JP2681122B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548542U (en) * 1977-06-20 1979-01-20
JPS57130200A (en) * 1981-02-04 1982-08-12 Shingijutsu Kaihatsu Jigyodan Automatic running control system for vahicles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548542U (en) * 1977-06-20 1979-01-20
JPS57130200A (en) * 1981-02-04 1982-08-12 Shingijutsu Kaihatsu Jigyodan Automatic running control system for vahicles

Also Published As

Publication number Publication date
JP2681122B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
JP4218403B2 (en) Vehicle door control device
US5983567A (en) Safety device for automatic window opening and closing
JPS58110778A (en) Control apparatus of automatic opening and closing door
CN102482057A (en) Door device of elevator
CN103282300A (en) Door control system for elevator
JPS6194503A (en) Speed controller of motor driven vehicle
US3937431A (en) Postioning apparatus for tracked transport vehicles with linear motor propulsion
US6430872B1 (en) Position and speed determination for moving glass panel
KR850000237B1 (en) The method of speed instruction generating device
JP2003054864A (en) Control device of passenger conveyer
JPH0522928B2 (en)
JP2000181540A (en) Automatic traveling vehicle
JP2000127764A (en) Slide control method for vehicle slide door
JPS61106003A (en) Controller of motor driven vehicle
JPS61106004A (en) Controller of motor driven vehicle
JPH0423285B2 (en)
JP2530304Y2 (en) Vehicle detection device
JPH0736403Y2 (en) Train position prediction device
JPS61192694A (en) Speed controller for man conveyor
JPS59194217A (en) Run controlling method of unmanned vehicle
JPH0122680B2 (en)
KR830000949B1 (en) Elevator control
JPH02246707A (en) Stop controller for magnetic levitation carrier
JPH0379724B2 (en)
JPH0140598B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term