JPS6194421A - Synchronous satellite international broadcasting system - Google Patents

Synchronous satellite international broadcasting system

Info

Publication number
JPS6194421A
JPS6194421A JP21562984A JP21562984A JPS6194421A JP S6194421 A JPS6194421 A JP S6194421A JP 21562984 A JP21562984 A JP 21562984A JP 21562984 A JP21562984 A JP 21562984A JP S6194421 A JPS6194421 A JP S6194421A
Authority
JP
Japan
Prior art keywords
satellite
frequency
earth
signal
branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21562984A
Other languages
Japanese (ja)
Inventor
Hiroshi Tatezawa
立沢 宏
Seiichi Abe
清一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21562984A priority Critical patent/JPS6194421A/en
Publication of JPS6194421A publication Critical patent/JPS6194421A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/90Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/71Wireless systems
    • H04H20/74Wireless systems of satellite networks

Abstract

PURPOSE:To attain stable international broadcast by transmitting a broadcast program to respective areas on the earth for a specific period at fixed time daily through a synchronous satellite which moves on a circular track in an equator plane. CONSTITUTION:An up link signal received by a receiving antenna 8 is preamplified 9 and branched, and converted to IF by a down converter 10 for every carrier. This IF signal is branched to a switch 12 and the branched signal is demodulated by a demodulator 18 and recorded by a tape recorder 19. The switch 12 disconnects an IF amplifier 11 and connects a modulator 20 to an IF amplifier 13 after the time of transmission from a transmitting station, thereby sending the playback signal of the recorder 19 to a down link. The frequency of each down link is sent from the down link to receiving stations on the basis of the frequency of a pilot oscillator 21.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は同期衛星国際放送方式、特に赤道上の円軌道に
打上げられた同期周回衛星を利用して、地球上の各地点
に対して定時放送を行う同期衛星国際放送方式に関する
[Detailed Description of the Invention] [Technical Field] The present invention utilizes a synchronous satellite international broadcasting system, in particular a synchronous orbiting satellite launched into a circular orbit above the equator, to perform scheduled broadcasting to various points on the earth. Concerning synchronous satellite international broadcasting system.

〔従来技術〕[Prior art]

従来、国際放送は電離層伝搬を利用した短波帯を用いて
行われているが、フェージングや混信のため良好な受信
ができず、はとんど聴取困難な地域も少なくない。一方
、経済および社会の国際化に伴い、母国を離れて海外各
地で活躍する海外在住者の数はますます増大し、その在
住地域も地球全域に及ぶようになり、母国の便りを伝え
る国際放送の重要性は一友と大きくなっている。このた
め、送信電力の増加や、海外中継局の増設などの対策が
考えられているが、多額の建設・運用経費を必要とする
にもかかわらず、長距離伝搬に適した短波帯周波数の絶
対不足と電離層伝搬に伴う伝搬条件の不安定とz5基本
的な問題から、列置本質的な解決策とはなり得ない状況
である。
Conventionally, international broadcasting has been carried out using shortwave bands that utilize ionospheric propagation, but good reception is not possible due to fading and interference, and there are many areas where it is difficult to hear. On the other hand, with the internationalization of the economy and society, the number of people living overseas who have left their home countries and are active in various parts of the world is increasing, and the areas where they live now extend to all parts of the world. The importance of Kazutomo is growing. For this reason, countermeasures such as increasing transmission power and increasing the number of overseas relay stations are being considered, but despite requiring large construction and operating costs, the Due to the shortage, instability of propagation conditions due to ionospheric propagation, and basic problems with z5, alignment cannot be an essential solution.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した現在の国際放送の問題点を解
決し、地球上の任意の地点で毎日一定の時刻に一定時間
母国からの放送を安定に受信することのできる同期衛星
国際放送方式を提供することである。
The purpose of the present invention is to solve the above-mentioned problems of current international broadcasting, and to provide a synchronous satellite international broadcasting system that allows stable reception of broadcasts from one's home country at a certain time every day for a certain period of time at any point on the earth. The goal is to provide the following.

〔発明の構成〕[Structure of the invention]

本発明の同期衛星国際放送方式は、情報蓄積装置を有す
るトランスボンダを搭載した通信衛星を赤道上の高度約
36,000Km  、e  20,000Km ;1
4.000Km  ;  10,000Kmのいずれか
の円軌道上に打上げ、毎日一定時刻に前記円軌道の二定
位置を通過するように制御し、地球上の一地点から地球
上の各地点に対してそれぞれ毎日一定の時刻に情報を伝
達するようにして構成される。
The synchronous satellite international broadcasting system of the present invention transmits a communication satellite equipped with a transbonder having an information storage device at an altitude of approximately 36,000 km above the equator, e 20,000 km;
It is launched into a circular orbit of 4,000 km; 10,000 km, and is controlled so that it passes through two fixed positions on the circular orbit at a fixed time every day, from one point on the earth to each point on the earth. Each is configured to transmit information at a fixed time every day.

〔実施例〕〔Example〕

次に図面を参照しχ本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の同期衛星国際放送方式の概念図であり
、1は同期衛星、2は送信局、3は受信局、4は制御局
である。赤道上空をゆっくりと矢印方向に移動する同期
衛星1に対して、送信局2は衛星が通信可能な位置にあ
る一定時間の間に放送プログラムを送信する。同期衛星
1はこのプログラムをテープレコーダに記録し、これを
再生して繰り返し送信しながら移動する。地球上の各地
に散在する多数の受信局3a 、3bは、それぞれ衛星
が通信可能な位置1a、lbにきたときにこの放送プロ
グラムを受信する。同期衛星1は制御局4により毎日一
定時刻に一定の位置に現れるように制御されており、受
信局3は一つの回転軸の周りを時計仕掛けで回転する簡
単な受信アンテナで容易に受信することができる。以下
、衛星軌道、通信可能時間、衛星中継器、送信および受
信地球局の構成につき順次説明する。
FIG. 1 is a conceptual diagram of the synchronous satellite international broadcast system of the present invention, where 1 is a synchronous satellite, 2 is a transmitting station, 3 is a receiving station, and 4 is a control station. A transmitting station 2 transmits a broadcast program to a synchronous satellite 1 that slowly moves in the direction of the arrow above the equator during a certain period of time when the satellite is in a position where it can communicate. The synchronous satellite 1 records this program on a tape recorder, reproduces it, and repeatedly transmits it while moving. A large number of receiving stations 3a and 3b scattered all over the earth receive this broadcast program when the satellite comes to the communicable positions 1a and lb, respectively. The synchronous satellite 1 is controlled by a control station 4 to appear at a fixed position at a fixed time every day, and the receiving station 3 can easily receive it with a simple receiving antenna that rotates clockwise around a single rotation axis. I can do it. The satellite orbit, available communication time, satellite repeater, and configuration of the transmitting and receiving earth stations will be sequentially explained below.

第2図において、地球5かも赤道上の高度35゜786
Kmに東向きに打上げられた円軌道衛星6は、地球の自
転角速度v1と衛星の公転角速度V、とが一致して地球
上からは静止して見え、静止衛星となることはよく知ら
れており、通信衛星としてのみならず気象衛星や放送衛
星としても使われている。これに対し、赤道上の高度3
5,941Kmに打上げた西向きの円軌道衛星7は、公
転角速度V。
In Figure 2, Earth 5 may be at an altitude of 35°786 above the equator.
It is well known that the circular orbit satellite 6 launched eastward at Km appears stationary from the earth because the earth's rotational angular velocity v1 and the satellite's orbital angular velocity V match, making it a geostationary satellite. It is used not only as a communication satellite but also as a weather satellite and a broadcasting satellite. In contrast, altitude 3 above the equator
The westward circular orbit satellite 7 launched at 5,941 km has an orbital angular velocity of V.

が地球の自転角速度V1 とほぼ同じで逆向きとなるた
め、地球上から見ると周期が丁度12時間の同期衛星と
なる。この衛星は地球上の任意の地点において毎日2回
決まった時刻に決まりた場所に現れてゆっくりと移動す
るので、地上からの追跡も容易で比較的簡単な受信設備
で衛星からの電波を容易に受信することかできる。鮎3
図は地球上の各緯度(0’、20°、40°、60°)
の地点からこの円軌道衛星7を見た仰角を計算したもの
で、横軸は衛星が真雨に来た南中時刻からの時間を分単
位で表している。この図から、例えば北緯約35度の日
本からは毎日2回それぞれ4時間余にわたって10度以
上の仰角でこの衛星を見ることかでき、緯度60度の地
点でも各4時間ずつ仰角5度以上でこの衛星を見ること
かできる仁とが分る。
is almost the same as the earth's rotational angular velocity V1 and in the opposite direction, so it is a synchronous satellite with a period of exactly 12 hours when viewed from the earth. This satellite appears at a fixed location at a fixed time twice a day at any point on the earth and moves slowly, so it is easy to track from the ground and the radio waves from the satellite can be easily received using relatively simple receiving equipment. Is it possible to receive it? Ayu 3
The diagram shows various latitudes on the earth (0', 20°, 40°, 60°)
The elevation angle when looking at the circular orbit satellite 7 from the point is calculated, and the horizontal axis represents the time in minutes from the time when the satellite arrived in the middle of the rain. From this figure, for example, from Japan at about 35 degrees north latitude, this satellite can be seen twice a day at an elevation angle of 10 degrees or more for over 4 hours, and even at a point at 60 degrees latitude, it can be seen at an elevation angle of 5 degrees or more for 4 hours each day. If you can see this satellite, you will know.

そこで、この間約3時間地上から放送プログラムを送信
し、衛星はこれを地上に送り返すと共に−たんテープレ
コーダに録音し、地上からのプログ2ム送信の終了後は
これを繰返し再生し℃送信しなから地球を周回し、元の
位置に戻ると次の放送プログラムを受信録音するように
すれば、地球上のほとんどすべ℃の地点でこの放送プロ
グラムを12時間以内に受信することができる。この方
法は静止衛星による直接放送や衛星通信とは異なり通信
の即時性はないが、一つの衛星を用いて同一の通信内容
を世界中に散在する多数の受信地点に安定に定時に送り
届けるのことができ、国際放送のような用途には適し1
いる。
Therefore, during this period, a broadcast program was transmitted from the ground for about 3 hours, and the satellite sent it back to the ground and recorded it on a tape recorder.After the program transmission from the ground was completed, it was played repeatedly and then sent again. If a satellite orbits the earth from a location and then receives and records the next broadcast program when it returns to its original position, this broadcast program can be received at almost every point on the earth within 12 hours. Unlike direct broadcasting using geostationary satellites or satellite communication, this method does not provide instantaneous communication, but it uses a single satellite to send the same communication content stably and on time to numerous receiving points scattered around the world. This makes it suitable for applications such as international broadcasting.
There is.

第4図は世界標準時(GMT)6時に経度1101の地
点を通過する衛星の位置を示す軌跡図であり、夕刻18
時に経度110+1を通過した衛星は太陽を追いかけて
矢印の方向に東から西に移動して翌朝6時に経度110
gに戻り、次は夜の地球を一周して夕刻18時には又経
度1lO1lK現れる。東経135度の日本(明石)で
は、衛星が南中する時刻A(GMTi時30分、JET
・・・・・・日本標準時・・・・・・10時30分)並
びにB(GMT13時30分、J8T22時30分)を
中心にCとD及びEとFの間、それぞれ約4時間この衛
星を見ることができる。そこで、日本からGMTのO〜
3時オ6よび12〜15時に衛星に対して図に示すよう
に各1時間単位の放送プログラム1.it、I及び11
゜n/ 、 i/を送信する。この放送プログラムは衛
星内のテープレコーダに記憶されると同時に衛星からト
ランスボンダを介して地上に向けて送信される。地上か
らの送信が終了すると、テープレコーダに記憶された放
送プログラムは図に示すように1、n、Hの順序で繰返
し再生され、衛星はこれを地上に向けて送信しながら西
へ移動する。地球の裏側の西経60度の地点(南米南部
地区)ではaで示すGMT6時から10時までの4時間
衛星が見えるので、7時から10時までの3時間の開に
I、II、Iの順序でこの放送プログラムを受信するこ
とができる。西経120度の地点(北米太平洋岸)で(
r−1bで示す4時間衛星が見えるので、II、I、I
又は’I!、I、Ifの順番で順番は入れ替わるが送信
されたすべての放送プログラムを受信することができる
。各放送プログラムの内容は何を受信者が欲するかで決
まるが、音声放送のみならず文字情報などの伝送も可能
であり、特定の受信者のみを対象とした有料放送もでき
る。例えば、■をニュース、音楽などの音声放送、■を
新月ダイジェスト判5株式情報などの文字放送、■を特
定の利用者を対称とする有料放送とするなどの組をゆっ
くりと移動するので、地上の受信設備は地軸にほぼ平行
な回転軸の周りを時計仕掛けでゆっくりと自動回転する
モータ駆動の指向性アンテナと受信機とで構成すること
ができる。地球の半径が衛星の高度に対して無視できな
いので、一つの回転軸の周りをアンテナを等速度で回転
させて衛星を追尾するためには、回転軸は地軸と平行で
なくわずかに傾け、且つ回転速度を12時間1回転より
も若干速くする必要があるが、これらの値を追白に選べ
ば4時間の間の最大追尾方向誤差を±1°以下に収める
ことができる。従って、衛星の軌道上の位置制御を静止
衛星並みの±0.5°程度とすれば、受信アンテナの3
aビ一ム幅は約5゜(上2゜5°)以上となるように選
定すればよい。
Figure 4 is a trajectory diagram showing the position of a satellite passing through a point at longitude 1101 at 6:00 GMT, and at 18:00 in the evening.
The satellite, which passed through longitude 110 + 1, followed the sun and moved from east to west in the direction of the arrow until it reached longitude 110 at 6 the next morning.
Return to g, next time we will go around the earth at night and at 6 pm longitude 1lO1lK will appear again. In Japan (Akashi) at 135 degrees east longitude, the satellite will be heading south at time A (30:30 GMTi, JET
...Japan Standard Time...10:30) and B (13:30 GMT, 22:30 J8T) between C and D and E and F for about 4 hours each. You can see satellites. Therefore, from Japan to GMT O~
As shown in the figure, broadcast programs are broadcast in hourly units to the satellite at 3 o'clock and 6 o'clock and from 12 to 15 o'clock.1. it, I and 11
Send ゜n/, i/. This broadcast program is stored in a tape recorder within the satellite and simultaneously transmitted from the satellite to the ground via a transbonder. When the transmission from the ground is completed, the broadcast program stored in the tape recorder is repeatedly played back in the order of 1, n, and H as shown in the figure, and the satellite moves westward while transmitting this toward the ground. At a point at 60 degrees west longitude on the other side of the earth (southern South America), the satellite indicated by a can be seen for 4 hours from 6:00 to 10:00 GMT, so satellites I, II, and I can be seen during the 3-hour period from 7:00 to 10:00 GMT. You can receive this broadcast program in order. At a point of 120 degrees west longitude (Pacific coast of North America) (
Since the 4-hour satellite indicated by r-1b is visible, II, I, I
Or 'I! , I, If, the order is changed, but all the transmitted broadcast programs can be received. The content of each broadcast program is determined by what the recipient wants, but it is possible to transmit not only audio broadcasts but also text information, and pay broadcasts targeted only to specific recipients are also possible. For example, ■ is an audio broadcast of news, music, etc., ■ is a text broadcast such as Shingetsu Digest 5 Stock Information, etc., and ■ is a paid broadcast targeted at specific users. The terrestrial receiving equipment can consist of a receiver and a motor-driven directional antenna that slowly and automatically rotates in clockwork around a rotational axis approximately parallel to the Earth's axis. Since the radius of the earth cannot be ignored relative to the altitude of the satellite, in order to track the satellite by rotating the antenna at a constant speed around one axis of rotation, the axis of rotation must be not parallel to the earth's axis but slightly tilted, and Although it is necessary to make the rotation speed slightly faster than one rotation per 12 hours, if these values are selected for whitening, the maximum tracking direction error for 4 hours can be kept within ±1°. Therefore, if the position control on the satellite's orbit is about ±0.5°, which is the same as that of a geostationary satellite, the receiving antenna's 3
The width of the a-beam may be selected to be approximately 5° (upper 2°5°) or more.

現在、インマルサ、トの海事衛星通信方式では、衛星か
ら船舶へのダウンリンクに1−5 GHz帯の周波数を
用いて80PC−FM方式で音声電話回線を構成してお
り、標準的な船舶局のアンテナには直径1.2mのパラ
ボラアンテナが用いられ、そのビーム幅は約11°であ
る。パラボラアンテナのビーム幅はアンテナの直径に反
比例し、アンテナ利得は直径の自乗に比例するから、5
°ビーム・幅のアンテナでは船舶局アンテナの約4倍の
電力利得があり、放送プログラムの伝送帯域幅を標準の
放送中継回線と同様に電話回線の約3倍の1QkHzと
しても、海事衛星通信方式と同等の衛星送信電力(数W
)で受信可能である。従って、一つの衛星に数十チャン
ネルを搭載することができ、一つの衛星を各国で共用す
るようにすれば、技術的のみならず経済的にも実現可能
である。ダウンリンクの周波数帯として、例えば放送衛
星業務に割当てられた2、5GHz帯を用いれば、地上
の受信アンテナの直径はほぼ1.5mでよいことになる
。受信機の構成は、例えば低雑音のFET増幅器とSC
PC−FM受信機本体とに分け、前者はパラボラアンチ
六グの一次放射ン麺接取り付け、ケーブルで受信機本体
と接続すればよい。受信機本体は通常のSCPC−FM
受信機におけると同様に、衛星からのパイロット信号を
基準として局部発信周波数を発生するように構成すれば
、衛星の発信周波数の変動と共にドツプラー効果による
周波数変化も除去して狭帯域の受信が可能である。
Currently, Inmarsa's maritime satellite communication system uses a frequency in the 1-5 GHz band for downlink from the satellite to the ship, configuring the voice telephone line in the 80PC-FM system, and the standard ship station A parabolic antenna with a diameter of 1.2 m is used as the antenna, and its beam width is approximately 11°. Since the beam width of a parabolic antenna is inversely proportional to the antenna diameter, and the antenna gain is proportional to the square of the diameter, 5
Antenna with a beam width has approximately four times the power gain as a ship station antenna, and even if the transmission bandwidth of the broadcast program is 1QkHz, which is approximately three times that of a telephone line, similar to a standard broadcast relay line, the maritime satellite communication system Satellite transmission power equivalent to (several watts)
) can be received. Therefore, it is possible to carry several tens of channels on one satellite, and if one satellite is shared by each country, it is possible not only technically but also economically. If, for example, the 2.5 GHz band allocated to the broadcasting satellite service is used as the downlink frequency band, the diameter of the receiving antenna on the ground can be approximately 1.5 m. The configuration of the receiver is, for example, a low-noise FET amplifier and an SC
The PC-FM receiver body is divided into two parts, and the former can be connected to the receiver body by attaching a parabolic anti-6G primary radiation connection and using a cable. The receiver body is a normal SCPC-FM
If the receiver is configured to generate a local oscillation frequency using the pilot signal from the satellite as a reference, narrowband reception is possible by eliminating fluctuations in the satellite's oscillation frequency as well as frequency changes due to the Doppler effect. be.

第5図は衛星中継器の一実施例のブロック図で、アップ
リンクにはSHF帯の周波数(例えば14GHz帯)を
使用し、衛星では複数のキャリヤを共通増幅した後各キ
ャリヤごとに復詞し、再び変調し工数波を共通に電力増
幅し、更に複数の電力増幅器の出力を合成してグローバ
ルアンテナから送信するようにした場合を示す。第5図
において受信アンテナ8で受信されたアップリンク信号
は前置増幅器(LNA)9で増幅された後分岐され、各
キャリヤごとにダウンコンバータ(D/C’)10で中
間周波数に変換され、IF増幅器(IFA)11、切替
器(SW)12.IF増幅器(I FA )13を経て
アップコンバータ(U/C)14で2.5 GHz帯に
変換され、進行波管増幅器(TWT)15、合波器(C
OMB)16を経て送信アンテナ17から送信される。
Figure 5 is a block diagram of an embodiment of a satellite repeater. The SHF band frequency (for example, 14 GHz band) is used for uplink, and the satellite commonally amplifies multiple carriers and then repeats them for each carrier. , a case is shown in which the power is amplified in common by modulating the man-hour wave again, and furthermore, the outputs of a plurality of power amplifiers are combined and transmitted from a global antenna. In FIG. 5, an uplink signal received by a receiving antenna 8 is amplified by a preamplifier (LNA) 9, then branched, and converted to an intermediate frequency by a down converter (D/C') 10 for each carrier. IF amplifier (IFA) 11, switch (SW) 12. It is converted to the 2.5 GHz band by an up converter (U/C) 14 through an IF amplifier (I FA) 13, and is then connected to a traveling wave tube amplifier (TWT) 15 and a multiplexer (C
OMB) 16 and is transmitted from the transmitting antenna 17.

切替器12は■F増幅器11の信号を分岐し、分岐され
た信号は復調器(DEM)18で復調されてテープレコ
ーダ(T・R)19に記録される。送信局からの送信時
間が終了すると、切替器12はIF増幅器11を切り放
して変調器(MOD)20をJP増幅器13に接続し、
テープレコーダ19の再生信号・をダウンリンクに送信
する。各ダウンリンクの周波数はパイロット発振器(P
IL)21の周波数を基準として送信局部発振器(TL
O)22で発生され、パイロット発振器21の周波数は
基準周波数としてダウンリンクから受信局に送られる。
The switch 12 branches the signal from the F amplifier 11, and the branched signal is demodulated by a demodulator (DEM) 18 and recorded on a tape recorder (T/R) 19. When the transmission time from the transmitting station ends, the switch 12 disconnects the IF amplifier 11 and connects the modulator (MOD) 20 to the JP amplifier 13.
The playback signal of the tape recorder 19 is transmitted to the downlink. The frequency of each downlink is determined by the pilot oscillator (P
Transmitting local oscillator (TL) with reference to the frequency of IL) 21
O) 22 and the frequency of the pilot oscillator 21 is sent from the downlink to the receiving station as a reference frequency.

なお、受信局部発振器(RLO)23の各周波数は基準
発振器(08C)24の周波数を基準に発生され、基準
発振器240周波数はパイロット発振器21によって制
御されている。切替器12の切替制御は、あらかじめ制
御局からのコマンドにより設定された時間割に従って行
われ、送信局から定時に送られてくる放送プログラムは
、衛星中継器でヘテロダイン中継されて地上に送り返さ
れると同時はテープレコーダに録音される。地上からの
送信時間が終ると衛星の受信回路は切り放され、テープ
レコーダからの再生プログラムがダウンリンクに送出さ
れる。
Note that each frequency of the receiving local oscillator (RLO) 23 is generated based on the frequency of the reference oscillator (08C) 24, and the frequency of the reference oscillator 240 is controlled by the pilot oscillator 21. The switching control of the switching device 12 is performed according to a timetable set in advance by commands from the control station, and the broadcast program sent from the transmitting station at a fixed time is relayed heterodyne by the satellite repeater and sent back to the ground at the same time. is recorded on a tape recorder. When the transmission time from the ground is over, the satellite's receiving circuit is disconnected and the playback program from the tape recorder is sent to the downlink.

第5囚に示すように、送信局からの送信時には送信波は
衛星中継器で折り返されて送信局で受信することができ
る。従って、送信局は受信周波数が規定の値となるよう
に自局の送信周波数を制御することができ、衛星の周波
数変動およびドツプラー効果の影響を除去することがで
きる。地上からの送信は定期的に繰り返されるので、送
信時間直前の衛星からの受信周波数(またはパイロット
周波数)から送信凡の送信すべき周波数に予測可能であ
り、送信を艶始するときこの周波数で送信するようにす
ればよく、−たん折り返し信号か受信されれは厳密なル
ープ制御が可能となる。なお、衛星が鼠接した周波数の
チャンネルで同時に地上からの放送プログラムを受信し
ないように周波数割当を行えは、送伯酷始時の周波数が
多少違って〜いても、隣接チャンネルに妨害を与えるこ
とはない。従って、衛星の送信および受信の各局部発振
器は必ずしも第5図のように同期されていなくてもよい
As shown in Figure 5, when transmitting from a transmitting station, the transmitted wave is looped back by the satellite repeater and can be received by the transmitting station. Therefore, the transmitting station can control its own transmitting frequency so that the receiving frequency is a specified value, and the influence of satellite frequency fluctuations and the Doppler effect can be eliminated. Since the transmission from the ground is repeated periodically, it is possible to predict the frequency to be transmitted from the reception frequency (or pilot frequency) from the satellite just before the transmission time, and it is possible to transmit at this frequency when starting the transmission. Strict loop control is possible if the return signal is received. Frequency allocation should be done so that broadcast programs from the ground will not be received at the same time on the same frequency channels that the satellites are in close contact with.Even if the frequencies at the beginning of the mission are slightly different, it may cause interference to adjacent channels. There isn't. Therefore, the satellite's transmitting and receiving local oscillators do not necessarily have to be synchronized as shown in FIG.

以上12時間周期の西周り円軌道同期衛星を使用した一
実施例について説明したが、衛星を高度13.917K
mに東向きに打上げると衛星の公転角速度が地球の自転
角速度の約3倍となり、上述の実施例とは逆向きに西か
ら東へ移動する12時間同期衛星が得られ、同様な国際
放送が可能となる。この場合には、衛星高度が低くなる
ため自由空間伝搬損失が減少する点は有利となるが、衛
゛ 星のグローバルビームアンテナのビーム幅が広くな
るので利得が低下して相殺され衛星の送信電力に大きな
相違はない。地上側では高綽度地域での受信がやや困難
となり、−軸回転の受信アンテナによる追尾方向誤差が
増えるので受信アンテナのビーム幅を若干広くする必要
がある。同様に東向きに打上げた高度20,208に’
mの円軌道衛星は公転角速度が地球の自転角速度の約2
倍となり、24時間同期衛星となる。この場合は1日1
回の送受信となるが各回の通信可能時間は延びて約6時
間半となる。上記以外にも周期8時間、6時間等の衛星
が考えられ、又、逆に2日に1回定時に現われる48時
間周期の衛星も考えられる。第1表はこれらの衛星の移
動力向および高度を計算し第1表 た結果の一覧表である。これらの衛星のうち、その周期
が48時間以上のものは毎日定時に放送する目的のため
には利用できず、西周りの24時虜」同期衛星は@道高
度が豊すぎて使用できない。又高度が約10,000K
mに足りないものは通信可能地域か狭く一軸回転の受信
アンテナの追尾方向誤差が大きく、周期6時…j未満の
ものは1回当りの利用時間が短くて共に実用主には問題
が多い。
An example using a synchronized satellite in a circular westward orbit with a 12-hour cycle has been described above.
If the satellite is launched eastward at a time of becomes possible. In this case, the lower satellite altitude reduces free-space propagation loss, which is advantageous, but the beam width of the satellite's global beam antenna becomes wider, which reduces the gain and compensates for this by reducing the satellite's transmission power. There is no big difference. On the ground side, reception in high visibility areas becomes somewhat difficult, and the tracking error due to the -axis rotating receiving antenna increases, so the beam width of the receiving antenna needs to be made slightly wider. Similarly, it was launched eastward at an altitude of 20,208.
The orbital angular velocity of a circular orbit satellite of m is approximately 2 of the earth's rotational angular velocity.
It will double and become a 24-hour synchronous satellite. In this case, 1 per day
The communication time for each transmission and reception will be approximately 6 and a half hours. In addition to the above, satellites with a period of 8 hours, 6 hours, etc. can be considered, and conversely, a satellite with a period of 48 hours that appears once every two days can also be considered. Table 1 is a list of the results of calculating the direction of movement and altitude of these satellites. Among these satellites, those with a period of more than 48 hours cannot be used for the purpose of broadcasting at a fixed time every day, and the 24-hour synchronized satellites around the west cannot be used because the altitude is too high. Also, the altitude is about 10,000K
Those lacking in m have a narrow communication area and the error in the tracking direction of the uniaxially rotating receiving antenna is large, and those with a cycle of less than 6 o'clock...j have short usage time per use, both of which are problematic for practical users.

なお、赤道面内以外の傾斜円軌道衛星についても同様な
利用法が考えられるが、地球上の極以外の場所に受信不
能地域があること、及υ・衛星の位置制御が難しくなる
ため実用的な価値は高くないと思われる。
Note that similar usage can be considered for satellites in inclined circular orbits other than those in the equatorial plane, but it is not practical because there are areas where reception is not possible in places other than the poles of the earth, and it becomes difficult to control the position of the satellite. It seems that the value is not high.

〔発明の効果〕 以上詳細に説明したように、本発明の同iv3衛星国際
放送方式によれば、赤道面内の円軌道を周回する同期衛
星により、毎日定時I/C一定時+ijの放送6   
プログラムを地球上のほとんどすベマニの地域に送るこ
とができ、受信包では一1%1回転の時計制@j力式の
簡単なアンテナで受信すること〃・でき、従来の短波帯
の国際放送では期待できなかった安定な国際放送を提供
できる効果がある。
[Effects of the Invention] As explained in detail above, according to the iv3 satellite international broadcasting system of the present invention, the synchronous satellite orbiting in a circular orbit in the equatorial plane broadcasts the I/C constant time + ij broadcast 6 every day.
Programs can be sent to almost any area on earth, and can be received using a simple clock-type antenna that rotates once every 1%. This has the effect of providing stable international broadcasting that could not be expected otherwise.

4、図面のf+?i14?、な説明 第1図は本発明のシステム概念図、第2図は不発明の一
実施例の衛星軌道を説明する軌道説明図、第3図は本発
明の一実施例の衛星仰角と可視時間の関係図、第4図は
本発明の一実施例の衛星位置と放送プログラムの関係の
説明図、第5図は衛星中継器の一実施例のブロック図で
ある。
4. f+ in the drawing? i14? Fig. 1 is a system conceptual diagram of the present invention, Fig. 2 is an orbit explanatory diagram explaining the satellite orbit of an embodiment of the present invention, and Fig. 3 is a satellite elevation angle and visible time of an embodiment of the present invention. FIG. 4 is an explanatory diagram of the relationship between a satellite position and a broadcast program according to an embodiment of the present invention, and FIG. 5 is a block diagram of an embodiment of a satellite repeater.

1・・・・・・同期衛星、2・・・・・・送信局、3・
・・・・・受信局、4・・・・・・制御局、5・・・・
・・地球、6.7・・・・・・円軌道術革 1  図 へ\−−一/− 第 2  図
1...Synchronized satellite, 2...Transmitting station, 3.
...Receiving station, 4...Control station, 5...
...Earth, 6.7...Circular Orbit Technique 1 Go to Figure \--1/- Figure 2

Claims (1)

【特許請求の範囲】[Claims] 情報蓄積装置を有するトランスボンダを搭載した通信衛
星を赤道上の高度約36,000Km;20,000K
m;14,000Km;10,000Kmのいずれかの
円軌道上に打上げ、毎日一定時刻に前記円軌道の一定位
置を通過するように制御し、地球上の一地点から地球上
の各地点に対してそれぞれ毎日一定の時刻に情報を伝達
するように構成されたことを特徴とする同期衛星国際方
式。
A communication satellite equipped with a transbonder with an information storage device is placed at an altitude of approximately 36,000 km above the equator; 20,000 K.
It is launched into a circular orbit of either m; 14,000 km; A synchronous satellite international system characterized by being configured to transmit information at a fixed time every day.
JP21562984A 1984-10-15 1984-10-15 Synchronous satellite international broadcasting system Pending JPS6194421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21562984A JPS6194421A (en) 1984-10-15 1984-10-15 Synchronous satellite international broadcasting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21562984A JPS6194421A (en) 1984-10-15 1984-10-15 Synchronous satellite international broadcasting system

Publications (1)

Publication Number Publication Date
JPS6194421A true JPS6194421A (en) 1986-05-13

Family

ID=16675565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21562984A Pending JPS6194421A (en) 1984-10-15 1984-10-15 Synchronous satellite international broadcasting system

Country Status (1)

Country Link
JP (1) JPS6194421A (en)

Similar Documents

Publication Publication Date Title
EP1022867B1 (en) System of inclined eccentric geosynchronous orbiting satellites
US6223019B1 (en) Efficient high latitude service area satellite mobile broadcasting systems
US20010012759A1 (en) Elliptical satellite system which emulates the characteristics of geosynchronous satellites
US6851651B2 (en) Constellation of spacecraft, and broadcasting method using said constellation
US6678519B2 (en) Elliptical satellite system which emulates the characteristics of geosynchronous satellites
RU2160963C2 (en) Radio communication system using geostationary and non- geostationary satellites
Evans New satellites for personal communications
CA2086304A1 (en) Communication satellite network
US8339309B2 (en) Global communication system
JPS6194421A (en) Synchronous satellite international broadcasting system
JP4472240B2 (en) Communication satellite system
Schaire Near Earth Network (NEN) CubeSat Communications
Dhawan et al. INSAT-I--A Multipurpose Domestic Satellite System for India
Seumahu Exploration of the equatorial LEO orbit for communication and other applications
Hanson et al. NBS time to the western hemisphere by satellite
Almond Commercial communication satellite systems in Canada
WO2002039616A2 (en) Virtual geostationary satellite constellation and method of satellite communications
Almond et al. The initial design of the Canadian domestic satellite communication system
Zillig et al. Demand access service for TDRSS users
KLEIN et al. The AMSAT-OSCAR-B series of radio amateur satellites
Prasada et al. ACME-A hybrid airborne satellite television and communications system for India
Nupponen Satellite Communications
Umapathy SATELLITE COMMUNICATION
Mohanavelu et al. Basic Considerations in the Planning of a Broadcasting Satellite System
Jasim et al. Satellite communication channel