JPS61936A - Optical reading device - Google Patents

Optical reading device

Info

Publication number
JPS61936A
JPS61936A JP59120475A JP12047584A JPS61936A JP S61936 A JPS61936 A JP S61936A JP 59120475 A JP59120475 A JP 59120475A JP 12047584 A JP12047584 A JP 12047584A JP S61936 A JPS61936 A JP S61936A
Authority
JP
Japan
Prior art keywords
light
disk
semiconductor laser
light receiving
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59120475A
Other languages
Japanese (ja)
Inventor
Toshiji Takei
利治 武居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP59120475A priority Critical patent/JPS61936A/en
Publication of JPS61936A publication Critical patent/JPS61936A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To make focus control of high accuracy and to obtain a small-sized optical information reading device of good S/N ratio by feeding back proper quantity of light to a semiconductor laser and obtaining out-of-focus signals of good linearity. CONSTITUTION:A ray of light alpha irradiated on a part A shown by a broken line of a beam splitter 3 consisting of three rectangular prism from a semiconductor laser 1 returns to the laser 1, and the laser becomes multiple mode and reduces noise. A ray of light irradiated on a part B shown by solid line is light of P polarization, and made to circular polarized light by 1/4 wavelength wave 6, and irradiated on a disk 5. Light reflected by the disk 5 is made to S polarized light by 1/4 wavelength wave, and enters the beam splitter 3. At this time, reflected luminous flux that passes a half face that makes a plane made by the optical axis and track direction as a boundary and reflected luminous flux that passed another half face enter convergent lenses 7, 7' in the reverse direction to each other. Bisected photoelectric elements 9, 9' having parallel division lines are arranged in the track direction, and so adjusted that outputs of photoelectric elements become equal when in focus. Error output of photo-electric elements 9, 9' become very high in linearity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、VD、CD等に記録さnた情報を、光ビー
ムに依り読み出す光学的情報読み取り装置、或いは、光
ビームに依り情報をディスク等に書き込む光学的情報書
き込み装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical information reading device that reads information recorded on a VD, CD, etc. using a light beam, or an optical information reading device that reads information recorded on a VD, CD, etc. using a light beam. The present invention relates to an optical information writing device for writing information on, etc.

〔従来技術〕[Prior art]

上述した光学的読取装置の光源として半導体レーザを用
いると、レーザ雑音の発生の為、再生信号のB / N
比が低下し、読み取り誤りを引き起した。特に、アナロ
グ記録さnたビデオ信号の再生においては、画質の劣化
を引き起していた。この為、従来より、半導体レーザの
ノイズを低減させる方法として、ハーフミラ−金側いて
、戻り光量を帰還させる方法や、半導体レーザの駆動電
流に高周波電流を重畳させる方法などが、提案さnてい
る。しかしながら、前者の方法では、ハーフミラ−で入
射光量の50チを損失するので、光の利用効率が悪く、
その為、光磁気ディスクや、DRAVなどの書き込みに
は、適さず、再生専用の光学的情報読み取り装置に応用
さnているにすぎない。さらに、種類の異なる媒体では
、反射率が、異なる為、帰還光量が、変化し、そのまま
使用する車はできなかった。又、後者の方法では、高周
波電流を重畳する為の回路を付加しなけ牡ばならない上
、高周波は他のサーボ回路などに飛びつきやすく、サー
ボ信号を乱し悪影響を与えやすいなどの欠点があった。
When a semiconductor laser is used as the light source of the above-mentioned optical reading device, the B/N of the reproduced signal may be affected due to the generation of laser noise.
The ratio decreased, causing reading errors. Particularly, in the reproduction of analog recorded video signals, the image quality deteriorates. For this reason, conventional methods for reducing noise in semiconductor lasers have been proposed, such as using a half-mirror gold side to feed back the amount of returned light, and superimposing a high-frequency current on the semiconductor laser drive current. . However, in the former method, 50 cm of the incident light amount is lost due to the half mirror, so the light utilization efficiency is poor.
Therefore, it is not suitable for writing on magneto-optical disks, DRAV, etc., and is only applied to optical information reading devices for reproduction only. Furthermore, since different types of media have different reflectances, the amount of feedback light changes, making it impossible to create a car that can be used as is. In addition, the latter method requires the addition of a circuit to superimpose the high frequency current, and has the disadvantage that the high frequency tends to jump to other servo circuits, disturbing the servo signal and causing adverse effects. .

又、従来より焦点ずれの検出には、非点収差法、臨界角
法、非対称法等が提案さnている。
Furthermore, conventionally, methods such as an astigmatism method, a critical angle method, and an asymmetric method have been proposed for detecting defocus.

非点収差法は、ディスクからの反射光に非点収差を生じ
させる光学素子を用いて、焦点ずれ信号′jIc得る事
を特徴とするが、光路が長くなり、焦点検出範囲が狭い
などの欠点があった。
The astigmatism method uses an optical element that causes astigmatism in the light reflected from the disk to obtain a defocus signal 'jIc, but it has drawbacks such as a long optical path and a narrow focus detection range. was there.

臨界角法では、反射光の角度変化を臨界角プリズムを用
いて識別する事で、焦点ずT′L信号を得る事を特徴と
するが、臨界角プリズムの設定が微妙であり、又、感度
が低いなどの欠点があった。
The critical angle method is characterized by obtaining an unfocused T'L signal by identifying angular changes in reflected light using a critical angle prism, but the setting of the critical angle prism is delicate, and the sensitivity There were disadvantages such as low

非対称法では、反射光路中にナイフェツジを置き、ビー
ムの一部をさえぎる1丁で、焦点ずれ信号を得る事を特
徴とするが、ビームの一部をさえぎるので、光を損失が
多く、RF信−号のS / N比が低くなり、その上、
合焦状態の付近のディスクの変位に対するエラー検出曲
線が非線形となりやすく、高精度の焦点制御は不可能で
あるなどの欠点があった。
The asymmetric method is characterized by placing a knife in the reflected optical path and using one knife to block a part of the beam to obtain a defocus signal. The S/N ratio of the - issue becomes low, and in addition,
The error detection curve for disk displacement near the in-focus state tends to be nonlinear, and highly accurate focus control is impossible.

この様なレーザー光の雑音低減法と焦点制御、及び、ト
ラッキング制@金行なう為のハーフミラ−を用いた非対
称法の従来例を次に説明する。
Next, a conventional example of an asymmetric method using a half mirror for performing laser beam noise reduction, focus control, and tracking control will be described.

第1図は、従来の光学的情報読取装置における焦点ず几
検出法に非対称検出法を用いた一例を示す線図でおる。
FIG. 1 is a diagram showing an example of a conventional optical information reading device in which an asymmetric detection method is used as a defocus detection method.

半導体レーザ1から放射さlf″した光は、コリメータ
レンズ2によって平行光とさ扛、ハーフミラ−8、及び
対物レンズ4を介して、ディスク5上に収光さnる。こ
の光束は、凹凸のビット形状を持つ情報トラックにより
反゛射さn1対物レンズ4を介してハーフミラ−8に入
射し、入射光束とは直交する向きに反射さnる。この反
射さ牡た光束の約半分をさえぎるじゃへい板(ナイフェ
ツジ)6と収束レンズ7を介して、反射光束全収光させ
る。合焦状態における結像点Aより適当な距離だけ離し
た非結像点Bに4分割受光素子8を合焦状態で、4分割
受光素子8の各受光素子の出力が同じになる様に、配置
する。第2図に、焦点ずれ状態における光束の軌跡と4
分割受光素子上の光束状態を示す。(α)図は、合焦状
態。ψ)図は、ディスク5が近づいた状態。(C)図は
、ディスク5が遠のいた状態を、表わす。従って、(8
cL+8 d) −(8b + 8 c )より焦点ず
れ信号を得る事ができる。しかし、上述した従来の非対
称法においては、焦点検出範囲が広くとれる反面、ナイ
フェツジ7に依り、光束の半分を犠牲にしているので、
光量損失が多く、RF倍信号B / N比の低下を紹い
た。父、第8図に示す様に、合焦位置からのすn量に対
して、ディスクが近づく場合と遠去かる場合とで、エラ
ー出力が非線形となる。この為、高精度な焦点制御を行
う事は不可能であった。さらに、対物レンズに入射する
光束を全て利用していない為、口径の小さいレンズを用
いたのと同様に、回折現象に依って、小さいデジタルビ
ットが正確に読みと肚ない、という欠点があった。又、
ナイフェツジ7の調整が難しい力どの欠点があった。
The light lf'' emitted from the semiconductor laser 1 is collimated by the collimator lens 2, passes through the half mirror 8, and the objective lens 4, and is converged onto the disk 5. It is reflected by the bit-shaped information track, passes through the objective lens 4, enters the half mirror 8, and is reflected in a direction perpendicular to the incident light flux.This reflected light blocks approximately half of the light flux. The reflected light beam is totally converged through a blinding plate 6 and a converging lens 7.The 4-split light receiving element 8 is focused on a non-imaging point B that is an appropriate distance away from the imaging point A in the focused state. In this state, the four-split light receiving element 8 is arranged so that the output of each light receiving element is the same.
The state of the luminous flux on the divided light receiving elements is shown. (α) The figure shows the in-focus state. ψ) The figure shows the state in which the disk 5 approaches. (C) shows a state in which the disk 5 is far away. Therefore, (8
A defocus signal can be obtained from cL+8d)-(8b+8c). However, in the conventional asymmetric method described above, although the focus detection range can be widened, half of the luminous flux is sacrificed due to the knife lens 7.
We introduced a large amount of light loss and a decrease in the RF multiplier signal B/N ratio. As shown in FIG. 8, the error output becomes non-linear with respect to the amount of n from the in-focus position, depending on whether the disk approaches or moves away. For this reason, it has been impossible to perform highly accurate focus control. Furthermore, since not all of the light beam incident on the objective lens is used, there is a drawback that, similar to using a lens with a small aperture, small digital bits cannot be read accurately due to diffraction phenomena. . or,
The disadvantage of the Naifetsuji 7 was that it was difficult to adjust.

又、トラックずれ信号は、ディスク5のトラック上の凹
凸のピット列に依る一次回折光の方向変化よ′5検出す
る。従来、第1図、第2図に示す様に、トラッキングの
サーボ方向と光軸とのなす平面に垂直な面内にナイフェ
ツジ7を、光束が1分さnる様に配置し、かつ4分割受
光素子の分割線は、正確に、トラック方向とトラッキン
グサーボ方向とに合致させる必要があった。トラックず
れ信号は、(8α+8b)−(8c+8d)よジ得られ
るが、上述の様に、ナイフェツジ7、及び、4分割受光
素子8の調整が大変困難であった。
The track deviation signal is detected as a change in the direction of the first-order diffracted light caused by a row of uneven pits on the track of the disk 5. Conventionally, as shown in Figs. 1 and 2, a knife 7 is arranged in a plane perpendicular to the plane formed by the tracking servo direction and the optical axis so that the light beam is divided into 1 part, and divided into 4 parts. The dividing line of the light-receiving element needs to be precisely aligned with the track direction and the tracking servo direction. A track deviation signal of (8α+8b)-(8c+8d) can be obtained, but as mentioned above, it is very difficult to adjust the knife 7 and the 4-division light receiving element 8.

又、半導体レーザの雑音を低減させる目的で、全光量の
5〜10チ程度、半導体レーザへ光を帰還させる為にハ
ーフミラ−8が使わnている。しかしながら、ハーフミ
ラ−8で、光量の半分を損失する上、さらに、コリメー
タレンズ2、対物レンズ4で光量のケラレが生じるので
、ディスク5に照射される光計は、半導体レーザ出射全
光量の10〜20%程既になってしまう。この為、再生
専用の光ピックアップには使わnても、DRAW用、或
いは、光破気用光ピック了ツブの様に書き込みを行うピ
ックアップには、ハーフミラ−8で光を帰還させる事は
できなかった。又、種類の異なる媒体間では反射率が異
なる為半導体レーザへの帰還光量が変化するので再調整
の必要性があった。
Further, in order to reduce the noise of the semiconductor laser, a half mirror 8 is used to feed back the light to the semiconductor laser by about 5 to 10 inches of the total amount of light. However, half of the light quantity is lost in the half mirror 8, and furthermore, the light quantity is vignetted in the collimator lens 2 and the objective lens 4. It's already about 20%. For this reason, even if it is used for a playback-only optical pickup, it is not possible to return light with the half mirror 8 to a pickup for DRAW or for writing, such as an optical pickup for optical destruction. Ta. Furthermore, since the reflectance differs between different types of media, the amount of light returned to the semiconductor laser changes, necessitating readjustment.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、こnらの欠点を除去し、光学系を非常
に小型に構成できると共に、高精度な焦点制御を行い、
さらに、再生波形のEl/N比が充分良好になる書き込
み用、並びに読み出し用の光学的情報読取装置を提供す
るものである。
The purpose of the present invention is to eliminate these drawbacks, make the optical system extremely compact, and perform highly accurate focus control.
Furthermore, the present invention provides an optical information reading device for writing and reading in which the El/N ratio of the reproduced waveform is sufficiently good.

〔発明の構成〕[Structure of the invention]

本発明の光学的情報読取装置は、半導体レーザから放射
さ牡た光を収束させて、ディスク上に記録されたトラッ
クからの光学的情報を読み出す際、或いは、ディスクに
情報を記録する際の焦点制御において、ディスクで反射
され、対物レンズで集光された反射光束を、1/4波長
板を介し光軸とトラックとが外す平面を境界として光量
の等しい2光束に分ける、直角プリズム3個又は4個よ
り成るビームスプリツタヲ屹1値し、夫々の光り1h上
に、収束レンズ、及びトラック方向と平行な方向に分割
線を有する少なくとも2分割以上の受光素子を1.結像
点より等距離だけ哨して、一方はディスクに近い側に1
他方はディスクから遠い側に配置し、上記2分割受光素
子の一方の、光軸を含む受光素子の出力から、光軸を含
まない受光素子の出力を引いた第1の差成分と、上記2
分割受光素子の他方の、光軸を含まない受光素子の出力
から、光軸を含む受光素子の出力を引いた第2の差成分
との和信号より焦点(If”n信号を得、又、上記両方
の受光素子の差成分からトラッキングずれ信号を得る事
を特徴とする。又上記ビームスプリッタは、半導体レー
ザから出射さnる光軸付近の適描量の光に対しては偏光
ビームスプリッタとして作用し、半導体レーザからの出
射光の光軸より#:nた残りの光に対、してはハーフミ
ラ−又は、全反射ミラーとして作用して、コリメータレ
ンズを介し、半導体レーザに光を帰還させる事を特徴と
する。
The optical information reading device of the present invention converges light emitted from a semiconductor laser to obtain a focal point when reading optical information from a track recorded on a disk or when recording information on a disk. In the control, the reflected light beam reflected by the disk and condensed by the objective lens is divided into two light beams with equal light intensity through a quarter-wave plate, with the plane where the optical axis and the track are separated as the boundary, three or three right-angle prisms are used. The beam splitter consists of 4 pieces, and on each beam 1h, there is a converging lens and at least 2 divided light receiving elements each having a dividing line in a direction parallel to the track direction. One is placed at the same distance from the image point, and one is placed on the side closer to the disk.
The other is disposed on the side far from the disk, and has a first difference component obtained by subtracting the output of the light receiving element that does not include the optical axis from the output of the light receiving element that does not include the optical axis, of one of the two split light receiving elements, and
The focal point (If"n signal is obtained from the sum signal of the second difference component obtained by subtracting the output of the light receiving element including the optical axis from the output of the other light receiving element not including the optical axis of the divided light receiving elements, and It is characterized in that a tracking deviation signal is obtained from the difference component of both of the above-mentioned light-receiving elements.The above-mentioned beam splitter also functions as a polarizing beam splitter for an appropriate amount of light near the optical axis emitted from the semiconductor laser. For the remaining light from the optical axis of the light emitted from the semiconductor laser, it acts as a half mirror or a total reflection mirror to return the light to the semiconductor laser via a collimator lens. characterized by things.

〔実施例〕〔Example〕

以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第4図は、直角プリズム8個より成るビームスプリッタ
を示す線図である。破線A部は、全反射膜、又は、半透
明膜が蒸着さnている。実線B部は、誘電体多層膜が蒸
着されていて、P偏光100%透過、8偏光100%反
射となる。以下、破線A部は、全反射膜が塗布さnてい
るとする。実線A部と破11i1ilB部の比は、半導
体レーザの全光量が約8:2程度、照射さnる様にする
FIG. 4 is a diagram showing a beam splitter consisting of eight right angle prisms. In the broken line A section, a total reflection film or a semi-transparent film is deposited. In the solid line B section, a dielectric multilayer film is deposited, and 100% of the P-polarized light is transmitted and 100% of the 8-polarized light is reflected. Hereinafter, it is assumed that a total reflection film is applied to a portion A of the dotted line. The ratio of the solid line A section to the broken line B section is set so that the total amount of light from the semiconductor laser is about 8:2.

第5図において、半導体レーザ1より出射さnた光は、
コリメータレンズ2によって平行光とさ2t1ヒ−ムス
ブリツタ8に入射する。このビームスプリッタ3は、第
4図に示した構造とする。第4図破線A部に照射さnた
光線αは、全反射膜の作用に依りビームスプリッタB部
を2回反射して、半導体レーザ1に帰還さnる。この帰
還光景は、半導体レーザ出射全光量のかチとなり、単−
縦モード発振の半導体レーザは、多モード化して、雑音
低減が図nる。一方、第4図実線B部に照射さnた光線
すは、P偏光の光で、誘電体多層膜の作用に依り100
%透過し、1/4波長波6で円偏光とさn1対物レンズ
4を介して、ディスク5上に照射さnる。ディスクへの
照射光量は、半導体レーザ出射全光量の80%である。
In FIG. 5, the light emitted from the semiconductor laser 1 is
The collimator lens 2 makes the parallel light 2t1 incident on the Heems blitter 8. This beam splitter 3 has the structure shown in FIG. The light ray .alpha. irradiated onto a portion A of the broken line in FIG. This return scene represents the peak of the total amount of light emitted by the semiconductor laser, resulting in a single
Semiconductor lasers with longitudinal mode oscillation can be made into multiple modes to reduce noise. On the other hand, the light rays irradiated onto the solid line B in FIG.
% transmitted, circularly polarized light with a quarter wavelength wave 6 is irradiated onto the disk 5 through the objective lens 4. The amount of light irradiated onto the disk is 80% of the total amount of light emitted from the semiconductor laser.

ディスク5で反射さ几た光は、対物レンズ4を介し、1
/4波長波6の作用に依り、S偏光となり、ビームス7
” IJフッタに入射する。この時、ビームスプリッタ
80作用に依り、光軸とトラック方向とがなす平面を境
界とした半面を通過した反射光束と、他の半面を通過し
た反射光束とは、お互い逆向きに、入射光束とは直交す
る向きに分けらn1収束レンズ7′、71に夫々入射す
る。両収束レンズの焦点距離を、はぼ等しくしておくと
、結像点A、AIは、はぼビームスプリッタから等距離
の点にくる。再結像点A、Alよりほぼ等距離だけ離し
て、一方は、ビームスプリッタより遠い非結像点Bに 
The light reflected by the disk 5 passes through the objective lens 4 and
Due to the action of /4 wavelength wave 6, it becomes S-polarized light, and beams 7
” is incident on the IJ footer. At this time, due to the action of the beam splitter 80, the reflected light beam that has passed through one half of the plane bordered by the plane formed by the optical axis and the track direction, and the reflected light flux that has passed through the other half are different from each other. In the opposite direction, it is divided into directions orthogonal to the incident light beam and enters the n1 converging lenses 7' and 71, respectively.If the focal lengths of both converging lenses are made approximately equal, the imaging points A and AI are as follows. The two come to a point equidistant from the beam splitter.The re-imaging point A is approximately equidistant away from Al, and the non-imaging point B, which is further away from the beam splitter.
.

、他方は、ビームスプリッタに近い非結像点BIに、ト
ラック方向に平行な分割線を有する2分割受光素子9.
9”i配置し、夫々の半光束を入射させ、合焦時に各受
光素子の出力が、同じになる様に、2分割受光素子9″
g+を調整する。
, the other is a two-part light receiving element 9. having a dividing line parallel to the track direction at a non-imaging point BI near the beam splitter.
The two-split light-receiving elements 9"
Adjust g+.

第6図は、反°射光束を同一の光軸上で表わし、1/4
波長板6、ビームスプリッタ8t−省略した光路図と各
受光素子9,91上のビーム状態を表わした図である。
Figure 6 shows the reflected light flux on the same optical axis, 1/4
FIG. 6 is a diagram showing a wavelength plate 6, a beam splitter 8t--omitted optical path diagram, and a beam state on each light receiving element 9, 91.

(α)図は、合焦時、(b)図は、ディスク5が近づい
た状態、(C)図は、ディスク5が遠のいた状態を示す
。実際には、レンズの上側と下III を通過する半光
束は、ビームスプリッタ8で、第5図に示す様に、左右
に分かnて反射するので、お互いが、影響を与える事は
ない。さて、合焦時には、(α)図に示す様に、各受光
素子出力α、b、 c 、 dld−全て同じとなる。
The figure (α) shows the state in focus, the figure (b) shows the state in which the disc 5 is approaching, and the figure (C) shows the state in which the disc 5 is far away. In reality, the half-light beams passing through the upper and lower parts of the lens are reflected by the beam splitter 8 into left and right parts as shown in FIG. 5, so that they do not affect each other. Now, at the time of focusing, the outputs of each light receiving element α, b, c, dld- are all the same, as shown in figure (α).

ディスクが近づくと、受光素子9の状態は、第2図にお
けるディスクが遠のいた状態(C)と同じになり、受光
素子91の状態は、第2図におけるディスクが近づいた
状態(b)と同じになる。一方、ディスクが遠のくと、
受光素子9の状態は、第2図におけるディスクが近づい
た状態ψンと同じになり、受光素子91の状態は、第2
図におけるディスクが遠のいた状態(C)と同じになる
。従って、C9a  9h) 十(9’d−9’c)よ
り焦点ずれ信号を得る事ができる。
When the disk approaches, the state of the light receiving element 9 is the same as the state (C) when the disk is far away in FIG. 2, and the state of the light receiving element 91 is the same as the state (b) when the disk approaches in FIG. become. On the other hand, when the disc moves away,
The state of the light receiving element 9 is the same as the state ψ when the disk approaches in FIG.
The state is the same as the state (C) in which the disc is far away in the figure. Therefore, a defocus signal can be obtained from C9a 9h) (9'd-9'c).

即ち、合焦時には、0となり、ディスクが近いた時には
、負となり、ディスクが遠のいた時には、正となる。さ
らに、受光素子9.91の各々の出力特性としては、第
8図に示す様なディスクのすn量に対して、エラー出力
が非謙形となるが、上記した様な相補的な信号の取り方
をする事で、エラー出力は、第7図に示す様に、ディス
クのすn量に対し、極めて線形性の良いエラー出力が得
らnる。
That is, when the disc is in focus, it becomes 0, when the disc is close, it becomes negative, and when the disc is far away, it becomes positive. Furthermore, as for the output characteristics of each of the light-receiving elements 9 and 91, the error output is non-conforming with respect to the amount of disc as shown in FIG. As shown in FIG. 7, by selecting this method, an error output with extremely good linearity can be obtained with respect to the amount of disk.

トラッキングずれ信号は、第5図に示す様に、(9α+
9b)   (9’ 6+91 d) より得る事がで
きる。なぜならば、トラックで発生した一次回折光は、
トラックずrLVc伴い、トラック方向に垂直な方向に
偏向するので、受光素子9,91に異なる強度で入射す
る為である。又、RF信号は、各受光素子の出力の和、
即ち、(9α+96)+ (9’ c+9 ’ d)よ
り得る事ができる。
The tracking deviation signal is (9α+
9b) It can be obtained from (9' 6+91 d). This is because the first-order diffracted light generated by the track is
This is because the light is deflected in a direction perpendicular to the track direction due to the track deviation rLVc, and therefore enters the light receiving elements 9 and 91 with different intensities. In addition, the RF signal is the sum of the outputs of each light receiving element,
That is, it can be obtained from (9α+96)+(9'c+9'd).

尚、上記実施例で用いた収束レンズ7.71は。Incidentally, the converging lens 7.71 used in the above embodiment is as follows.

、焦点距離が異っても良い。又、第8図に示す様に、ビ
ームスプリッタと一体整形しても良い。
, the focal length may be different. Alternatively, as shown in FIG. 8, it may be formed integrally with the beam splitter.

又、上記実施例で用いたビームスプリッタ8は、適当量
だけ光量を半導体レーザ1へ帰還させ、再生時のレーザ
雑音を低減させ、さらに、トラック方向と光軸とがなす
平面を境界にして、光束を光量の等しい2光束に分ける
ものであnば、どんな構造のものでも良い。例えば、第
9図に示す様に、反射光束をお互いに直交する向きに分
け、入射9にミラーを付けたもの、或いは、全反射膜を
蒸着させて、入射光束の一部全半導体レーザに帰還させ
ても良い。
In addition, the beam splitter 8 used in the above embodiment returns an appropriate amount of light to the semiconductor laser 1 to reduce laser noise during reproduction, and furthermore, uses the plane defined by the track direction and the optical axis as a boundary. Any structure may be used as long as it divides the luminous flux into two luminous fluxes with equal light intensity. For example, as shown in Fig. 9, the reflected light beam is divided into directions perpendicular to each other, and a mirror is attached to the input 9, or a total reflection film is deposited, and a portion of the incident light beam is returned to the entire semiconductor laser. You can let me.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明に依nば、適当な光量を半導体
レーザへ帰還させ、半導体レーザの雑音に依る再生信号
の8/N比劣化を低減させているので媒体の反射率が異
なるディスクに対しても再調整の必要がない上、残りの
光量を4き込み等に有効に利用できる。又、トラック方
向と光軸を含む平面を境界に、反射光束を光量の等しい
2光束に分けて、夫々の結像点より等距離だけ離した2
つの2分割受光素子からの相補的な信号より、極めて線
形性の良い焦点ずれ信号を得る事ができるので、高精度
な焦点制御を実施する事ができる。
As described above, according to the present invention, an appropriate amount of light is returned to the semiconductor laser, and the deterioration of the 8/N ratio of the reproduced signal due to the noise of the semiconductor laser is reduced. There is no need to readjust the amount of light, and the remaining light amount can be used effectively for 4-way recording, etc. In addition, the reflected light beam is divided into two light beams with equal light intensity using a plane including the track direction and the optical axis as a boundary, and two light beams are separated from each other by the same distance from the respective imaging points.
Since a focus shift signal with extremely good linearity can be obtained from complementary signals from the two two-split light receiving elements, highly accurate focus control can be performed.

しかも、焦点検出範囲を広くとnると共に、光量損失を
伴う事がなくなり、再生時のRF倍信号S/N比は、極
めて大幅に改善できる。さらに、光学系は、小型でおり
、又、簡素である。
Moreover, by widening the focus detection range, there is no loss of light quantity, and the S/N ratio of the RF multiplied signal during reproduction can be greatly improved. Furthermore, the optical system is small and simple.

【図面の簡単な説明】[Brief explanation of the drawing]

t81図 従来の非対称性焦点ずれ検出法の晩図第2図
 従来の非対称性焦点ずれ検出法における光路図と4分
割受光素子上のビーム 状態図 (ロ))合焦時 <b)ディスクが近づいた時 (、)ディスクが遠のいた時 第3図 従来の非対称焦点ずれ検出法における焦点ずれ
量とエラー量の関係を示した 図 第4図 本発明に係るビームスプリッタの紳図第5図 
本発明に係る光学系の線図 卯、6図 本発明に係る焦点ずれ検出法における光路図
と2分割受光素子−ヒのビーム状態図1 (a)合焦時 (b)ディスクが近づいた時 (clディスクが遠のいた時 々1.7M 本発明に係る焦点ずれ検出法における焦点
ずれ量とエラー量との1ツ」係を示した図 ?i%8図 本発明に係るビームスプリッタと収束レン
ズを一体化した例を示した立体図 第9図 本発明に係るお互い治交する向きに光束を2分
し、入射光の一部を半導体レ ーザへ帰還させる例を示した立体図 1:半導体レーザ 2:コリメータレンズ 3:ビームスプリッタ 4:対物レンズ 5:ディスク 6:1/4波長板 7:収束レンズ 8:4分割受光素子 9、9’:  2分割受光素子 以上 出願人 セイコー1JI子工゛?゛株式会社代理人 弁
理士 /Iジ 上   務 第3図 第4図 第5図
Figure t81 A late diagram of the conventional asymmetric defocus detection method Figure 2 Optical path diagram and beam state diagram on the 4-split light receiving element in the conventional asymmetric defocus detection method (b) When in focus <b) When the disk approaches Figure 3: A diagram showing the relationship between the amount of defocus and the amount of error in the conventional asymmetric defocus detection method. Figure 4: A diagram of the beam splitter according to the present invention.
Diagram of the optical system according to the present invention, Figure 6. Optical path diagram in the defocus detection method according to the present invention and beam state diagram of the two-split light receiving element.1 (a) When in focus (b) When the disk approaches (Sometimes when the cl disk was far away, it was 1.7M) A diagram showing the relationship between the amount of defocus and the amount of error in the defocus detection method according to the present invention?i%8 diagram The beam splitter and converging lens according to the present invention FIG. 9 is a three-dimensional diagram showing an example of integration. Three-dimensional diagram 1 is a three-dimensional diagram showing an example of dividing a light beam into two in mutually healing directions and returning a part of the incident light to the semiconductor laser according to the present invention. 1: Semiconductor laser 2 : Collimator lens 3: Beam splitter 4: Objective lens 5: Disk 6: 1/4 wavelength plate 7: Converging lens 8: 4-split light-receiving element 9, 9': 2-split light-receiving element or more Applicant: Seiko 1JI Co., Ltd. Agent Co., Ltd. Patent Attorney/Iji Senior Affairs Figure 3 Figure 4 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)ディスクに記録された情報を光学的に非接触で検
出する装置、又は、デイスクに情報を光学的に記録する
事を目的とする装置において、半導体レーザとディスク
間に、半導体レーザより、光路上に、少なくともコリメ
ータレンズ、ビームスプリッタ、1/4波長板、対物レ
ンズを有し、受光素子とディスク間に、ディスクより、
光路上に、少なくとも、対物レンズ、1/4波長板、反
射光束を光軸とトラックとがなす平面を境界として光量
の等しい2光束に分け、さらに一部の入射光を半導体レ
ーザに帰還させるビームスプリッタ、及び、夫々の光軸
上に、収束レンズ、トラック方向と平行な方向に分割線
を有する少なくとも2分割以上の受光素子を、結像点よ
り等距離だけ離して、一方はデイスクに近い側に、他方
はディスクから遠い側に配置する事を特徴とする光学的
読取装置。
(1) In a device that optically detects information recorded on a disk in a non-contact manner, or in a device that aims to optically record information on a disk, a semiconductor laser is placed between the semiconductor laser and the disk. On the optical path, there is at least a collimator lens, a beam splitter, a quarter wavelength plate, and an objective lens, and between the light receiving element and the disk, from the disk,
On the optical path, there is at least an objective lens, a quarter-wave plate, a beam that divides the reflected light beam into two light beams with equal light intensity using the plane defined by the optical axis and the track as a boundary, and further returns a part of the incident light to the semiconductor laser. A splitter, and on each optical axis, a converging lens, and a light receiving element divided into at least two parts, each having a dividing line in a direction parallel to the track direction, separated by the same distance from the image forming point, one on the side closer to the disk. An optical reading device characterized in that the other is placed on the side far from the disk.
(2)焦点ずれ信号は、上記2分割受光素子の一方の、
光軸を含む受光素子の出力から、光軸を含まない受光素
子の出力を引いた第1の差成分と、上記2分割受光素子
の他方の、光軸を含まない受光素子の出力から、光軸を
含む受光素子の出力を引いた第2の差成分との和信号と
り得る事を特徴とする特許請求範囲(1)項記載の光学
的読み取り装置。
(2) The defocus signal is transmitted from one of the two split light receiving elements.
A first difference component obtained by subtracting the output of the light receiving element that does not include the optical axis from the output of the light receiving element that includes the optical axis, and the output of the other of the two split light receiving elements that does not include the optical axis. The optical reading device according to claim 1, wherein the optical reading device can obtain a sum signal of a second difference component obtained by subtracting the output of the light receiving element including the axis.
(3)トラッキングずれ信号は、上記両方の受光素子の
お互いの差成分より得る事を特徴とする特許請求範囲(
1)項記載の光学的読み取り装置。
(3) The tracking deviation signal is obtained from the difference components of both of the light receiving elements.
1) The optical reading device described in item 1).
(4)上記ビームスプリッタは、直角プリズム3個、又
は、4個より成り、半導体レーザからの出射光の光軸付
近の適当量の光に対しては偏光ビームスプリッタとして
作用し、半導体レーザからの出射光の光軸より離れた残
りの光に対してはハーフミラー又は、全反射ミラーとし
て作用しコリメータレンズを介して、半導体レーザに光
を帰還させる事を特徴とする特許請求範囲(1)項記載
の光学式読み取り装置。
(4) The beam splitter is made up of three or four right-angle prisms, and acts as a polarizing beam splitter for a suitable amount of light near the optical axis of the light emitted from the semiconductor laser. Claim (1) characterized in that the remaining light away from the optical axis of the emitted light acts as a half mirror or a total reflection mirror and returns the light to the semiconductor laser via a collimator lens. Optical reader as described.
JP59120475A 1984-06-12 1984-06-12 Optical reading device Pending JPS61936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59120475A JPS61936A (en) 1984-06-12 1984-06-12 Optical reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120475A JPS61936A (en) 1984-06-12 1984-06-12 Optical reading device

Publications (1)

Publication Number Publication Date
JPS61936A true JPS61936A (en) 1986-01-06

Family

ID=14787092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120475A Pending JPS61936A (en) 1984-06-12 1984-06-12 Optical reading device

Country Status (1)

Country Link
JP (1) JPS61936A (en)

Similar Documents

Publication Publication Date Title
US5084850A (en) Apparatus for detecting focus error signal
JPH0757271A (en) Optical information reproducing device
JPS60253027A (en) Optical information processor
JP2751899B2 (en) Optical pickup device
JPS61936A (en) Optical reading device
JP3044667B2 (en) Optical reader
JPH056741B2 (en)
JP2978269B2 (en) Optical disk drive
JP2580987B2 (en) Optical writing and reading device
JPS63197045A (en) Optical pick-up device for magneto-optical disk
JPS6093647A (en) Reproducing optical system control means of optical type disc player
JPH05151593A (en) Optical pickup
JP2594929B2 (en) Optical information processing device
JP2644110B2 (en) Optical recording / reproducing device
JPS6142743A (en) Optical information reader
JPH0863778A (en) Optical pickup
JPH0845127A (en) Optical head
JPS63257929A (en) Optical information recording and reproducing device
JP2566036B2 (en) Optical information recording / reproducing method
JP2594957B2 (en) Optical recording / reproducing device
JPS639038A (en) Optical system for optical information
JPS6063749A (en) Photoelectro-magnetic pickup device
JPH05266500A (en) Optical pickup device
JPS6223373B2 (en)
JPH06349082A (en) Optical pickup device