JPS6191596A - Arrangement structure of housing for nuclear power plant - Google Patents

Arrangement structure of housing for nuclear power plant

Info

Publication number
JPS6191596A
JPS6191596A JP59212547A JP21254784A JPS6191596A JP S6191596 A JPS6191596 A JP S6191596A JP 59212547 A JP59212547 A JP 59212547A JP 21254784 A JP21254784 A JP 21254784A JP S6191596 A JPS6191596 A JP S6191596A
Authority
JP
Japan
Prior art keywords
building
reactor
turbine
layout
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59212547A
Other languages
Japanese (ja)
Other versions
JPH0315159B2 (en
Inventor
落合 兼寛
新野 毅
児玉 豊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP59212547A priority Critical patent/JPS6191596A/en
Publication of JPS6191596A publication Critical patent/JPS6191596A/en
Publication of JPH0315159B2 publication Critical patent/JPH0315159B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Casings For Electric Apparatus (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は沸騰水型原子炉(以下、単にBWRと云う。)
を利用した原子力発電所施設の建屋の配置計画に係る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a boiling water nuclear reactor (hereinafter simply referred to as BWR).
Concerning the building layout plan of a nuclear power plant facility using

〔発明の背景〕[Background of the invention]

広大で平坦な敷地を容易に確保できる海外プラント、特
にアメリカなどでは、機能ごとに独立した建屋をI型(
クービン軸方向に原子炉建屋を配置したタービン建屋と
原子炉建屋の位置関係を示す略式名称)に配置し、建設
時の接近性を向上させているが、背後に山が迫った狭い
敷地への建設を余儀なくされる我国では、運転性などの
機能を損なわぬ範囲で建屋配置を最適化する工夫が必要
となっている。第4図はその一例を示すものである。
Overseas plants, especially in the United States, where it is easy to secure vast, flat sites, have separate buildings for each function in I-type (
The reactor building is placed in the direction of the Kubin axis (an abbreviated name indicating the positional relationship between the turbine building and the reactor building), improving accessibility during construction, but it is difficult to locate on a narrow site with mountains in the background. In Japan, where construction is inevitable, it is necessary to find ways to optimize the layout of buildings without compromising functionality such as drivability. FIG. 4 shows an example.

lは原子炉建屋、2はタービン建屋、3はサービス建屋
、4はコントロール硯屋を示す。
1 is the reactor building, 2 is the turbine building, 3 is the service building, and 4 is the control inkstone shop.

従来のタービン建屋2を海側に、原子炉建屋lを山側に
配置する方式は、なぎさ線方向の必要長さが短く全体を
コンパクトな配置計画にできる利点をもつが、原子炉圧
力容器などの大物機器を有する原子炉建屋1が、背後の
山とタービン建屋2とに挾まれた形となシ、特に2基が
隣接したツイン型(一つの敷地内の原子炉施設配置にお
いて、2基の原子炉建屋内IRを基準とする配置)プラ
ントでは、建設時の接近性が低下する。このような欠点
がおった。
The conventional method of locating the turbine building 2 on the sea side and the reactor building 1 on the mountain side has the advantage that the required length in the Nagisa line direction is short and the overall layout can be planned compactly. The reactor building 1, which has large equipment, is sandwiched between the mountain behind it and the turbine building 2. Especially, the reactor building 1, which has large equipment, is sandwiched between the mountain behind it and the turbine building 2. (Layout based on IR inside the reactor building) In the plant, accessibility during construction will be reduced. There were such shortcomings.

また、運転員の入退域施設を有するサービス建屋3から
各建屋への運転員用アクセスルートは、図中に示す様な
ダーティアクセス、及びクリーンアクセス8が設けられ
ている。このアクセスの分離は、運転員の入域エリアの
放射線管理エリア及び非管理エリアにおいて、前者はダ
ーティアクセス、後者はクリーンアクセスと一般に表現
されている。第4図に示す従来配置のアクセスルートは
、ダーティ及びクリーン共に、コントロール建屋、ター
ビン建屋を経由している。図中に示すとうりクリーンア
クセスは、コントロール建屋4を経由し隣接する原子炉
建屋1及びタービン建屋2に連絡している。このクリー
ンアクセスは、一部分においてタービン建屋2のダーテ
ィエリア内を貫通するため、放射線管理不利な計画とな
っていた。
Further, the access route for operators from the service building 3, which has access/exit facilities for operators, to each building is provided with dirty access and clean access 8 as shown in the figure. This separation of access is generally expressed as dirty access in the radiation control area and non-control area in the operator's entry area, and clean access in the latter. In the conventional arrangement shown in FIG. 4, both dirty and clean access routes pass through the control building and the turbine building. As shown in the figure, the clean access is connected to the adjacent nuclear reactor building 1 and turbine building 2 via the control building 4. This clean access partially penetrates into the dirty area of the turbine building 2, making the plan unfavorable for radiation management.

またダーティアクセスにおいても、コントロール建屋4
を経由し各建屋へ連絡することから、コントロール建屋
4のクリーンエリア内を貫通するために同様な問題とし
て取シ上けられていた。
Also, for dirty access, control building 4
A similar problem was also raised because it penetrates the clean area of the control building 4, since it communicates with each building via the .

一方従来の主蒸気配管(以下、単にMS配管と云う。)
9のルートは、タービン建屋z内のタービン軸に対し直
角にタービン建屋2へ接続し連絡先のタービン建屋2内
で90’曲げて高圧タービ/及び低圧タービンへ蒸気を
送っていた。そこでこれらのMS配管9のルートと、原
子炉建屋内の付属棟に配置される原子炉安全系設備(原
子炉非常用炉心冷却系設備)は、安全上の系統分離対策
から隔離することが要求されておシ、現状ではMS配管
エリアに対し原子炉炉心からその左右部に系統分離をし
た配置としている。これらの安全系の設備としては、特
に大型機器としてディーゼル発電機設備及び非常用炉心
冷却設備等があシ、これらの安全系の設備においては、
保守・点検さらに機器の交換が要求されている。
On the other hand, conventional main steam piping (hereinafter simply referred to as MS piping)
Route 9 was connected to the turbine building 2 at right angles to the turbine axis in the turbine building z, bent 90' within the connected turbine building 2, and sent steam to the high pressure turbine/and the low pressure turbine. Therefore, it is required that the route of these MS piping 9 and the reactor safety system equipment (reactor emergency core cooling system equipment) located in an annex inside the reactor building be isolated from system separation measures for safety. Currently, the MS piping area is separated from the reactor core to the left and right sides. These safety systems include especially large equipment such as diesel generator equipment and emergency core cooling equipment.
Maintenance, inspection, and equipment replacement are required.

このため特にディーゼル発電機設備については発電所の
連間後の機器分解及び搬出も容易に行なえる様計画する
必要がある。このことから、ディーゼル発電機の設備に
ついては、配置計画上の自由度がエヤ要求されることと
なる。しかし、従来”配置においては、MS配管9の配
置ルートからタービン建屋2に対し直角方向の配置計画
を唯一の配置計画としており、そのため、配置の自由度
は一方向設置だけに限られていた。
For this reason, especially for diesel generator equipment, it is necessary to plan so that the equipment can be easily disassembled and transported after the power plant is installed. For this reason, a high degree of freedom in layout planning is required for diesel generator equipment. However, in the conventional arrangement, the only arrangement plan was a direction perpendicular to the turbine building 2 from the arrangement route of the MS piping 9, and therefore, the degree of freedom in arrangement was limited to installation in only one direction.

また、従来配置のコントロール建屋は、中央制御室を内
設することから、耐震設計上Aクラス建屋とされ、原子
炉建屋と同等の安全上重要な建屋構造を要求されている
。この結果、コントロール建屋は耐震性を考慮した大規
模な建屋構造を特徴としている。その中で特に中央制御
室の位置は、原子炉建屋1及びその他の各主要建屋への
離間距離が短く、中央制御室を取りまく管理区域を明確
に区分可能なものであること、非常時の換気の確保が可
能なこと、滞留能力及び遮蔽を十分に保有し、サービス
施設からの距離が短いこと及び耐震性を十分に有する配
置構造強度を有する等の要求に十分満足するものでなけ
ればならない。
In addition, because the conventional control building has a central control room inside, it is classified as an A-class building in terms of seismic design, and is required to have a building structure that is as important for safety as a nuclear reactor building. As a result, the control building features a large-scale building structure with earthquake resistance in mind. In particular, the location of the central control room must be such that the distance to reactor building 1 and other major buildings is short, the control area surrounding the central control room can be clearly separated, and ventilation in the event of an emergency is required. It must fully satisfy the requirements such as being able to secure storage space, having sufficient retention capacity and shielding, being short in distance from service facilities, and having structural strength with sufficient seismic resistance.

以上の要求事項に関し従来配置では、コントロール建屋
4を独立建屋としたことによシ施設全体の建屋配置規模
の大型化を招き、前述の如く各部屋内機器設備へのアク
セス距離を長く複雑にしており、さらに建屋間の配管・
グー2プル及び電線管等の物量も多くなっていた。
Regarding the above requirements, in the conventional layout, the control building 4 was made into an independent building, which led to an increase in the size of the building layout of the entire facility, and as mentioned above, the access distance to the equipment in each room was long and complicated. In addition, piping and piping between buildings
There was also an increase in the amount of goo 2 pulls and electrical conduits.

〔発明の目的〕[Purpose of the invention]

本発明の目的はMS配管を原子炉建屋内において90°
曲げてタービン建屋に接続する建屋配置構造に関し、原
子炉施設の占有敷地面積が少なくなぎさ線方向の短いコ
ンパクト配置設計を提供し、さらに建屋間アクセス計画
の最短化及び原子炉安全系設備の配置計画として自由度
を有する等の特徴を持つ原子力発電所配置の最適配置計
画を提供することにある。
The purpose of the present invention is to install MS piping at 90° in the reactor building.
Regarding the building layout structure that connects to the turbine building by bending, we provide a compact layout design that occupies less site area for the reactor facility and is short in the Nagisa line direction, and also minimizes the access plan between buildings and the layout plan for reactor safety equipment. The purpose of this study is to provide an optimal layout plan for nuclear power plant layout, which has features such as having a degree of freedom.

〔発明の概要〕[Summary of the invention]

本発明は、主蒸気配管の格納容器部出口ノズル方向をタ
ービンの軸方向と平行にし、原子炉建屋内で主蒸気配管
を90′曲げてタービン建屋内のタービン軸と直角方向
からこの主蒸気配管をタービン建屋に接続することを特
徴とする原子力発電所建屋配置構造である。
The present invention makes the direction of the containment vessel outlet nozzle of the main steam piping parallel to the axial direction of the turbine, bends the main steam piping 90' inside the reactor building, and approaches the main steam piping from a direction perpendicular to the turbine axis inside the turbine building. This is a nuclear power plant building layout structure characterized by connecting the turbine building to the turbine building.

〔発明の実施例〕[Embodiments of the invention]

本発明はMS配管を原子炉建屋内にて90°曲げて、タ
ービン建屋内のタービン軸に直角方向に接続する各主伐
建屋配置構造に関し、従来の配置計画に比ベアクセス性
の向上及び原子炉建屋内の原子炉安全系設備の配置の自
由度を増した配置特有の利点を有することを最大限に引
き出すことが可能となった配置計画を提供する。
The present invention relates to a main cutting building arrangement structure in which MS piping is bent by 90 degrees inside the reactor building and connected to the turbine shaft in the turbine building in a direction perpendicular to the turbine shaft in the turbine building. To provide a layout plan that makes it possible to maximize the advantages peculiar to a layout that increases the degree of freedom in arranging nuclear reactor safety equipment in a building.

従来配置と本発明による配置計画の比較から構造設計上
耐震クラスの高い建屋の数が少ない本発明による配置系
が有利となっている。さらに、経済性の観点からは、中
央制御室からの距離が短いことから、ケ、−プル、電線
管及び配管長さ等の物量の低減が予想され、本発明によ
る配置が有利となる。又、従来においては、建屋間のア
クセスルートとして建屋間を経由した配置ルートが考え
られていたが各建屋と隣接した本発明によれば、アクセ
ス距離及びアクセスルートは向上しプラントのメンテナ
ンス管理計画上有利なものとなっている。
A comparison of the conventional layout and the layout plan according to the present invention shows that the layout system according to the present invention is advantageous because it has fewer buildings with a high earthquake resistance class in terms of structural design. Furthermore, from the viewpoint of economy, since the distance from the central control room is short, it is expected that the amount of materials such as cables, pulleys, electrical conduits, and piping lengths will be reduced, making the arrangement according to the present invention advantageous. In addition, in the past, the access route between buildings was considered to be a layout route that went through the buildings, but according to the present invention, which is adjacent to each building, the access distance and access route are improved, and it is easier to plan maintenance management of the plant. It has been advantageous.

次に従来配置計画に関する欠点に基づき、下記の2項目
について改善を検討した配置計画図を第2図及び第3図
に示す。
Next, Figures 2 and 3 show layout plans in which improvements were considered in the following two items based on the shortcomings of conventional layout plans.

■アクセス計画の改善 ■原子炉建屋内安全設備配置の自由度の拡大第2図は、
各建屋間のアクセス性を改善するために姉屋の集中化を
図ったものである。
■Improving access planning■Increasing the degree of freedom in placing safety equipment inside the reactor building Figure 2 shows the following:
The aim was to centralize the older buildings in order to improve accessibility between each building.

この配置系では、従来配置のコントロール建屋4に内股
されていた中央制御室を原子炉建屋lの付楓棟に内蔵さ
せている。第2図に示す計画案によれば、サービス建屋
3から各建屋へのアクセス距離の最短化がOT能となる
上に、それぞれのアクセスルートの干渉及び複雑に建屋
の中の経由をすることがなく、直接に目的の建屋へアク
セスが可能となる。さらに建屋内に中央制御室及関連電
気盤等を設置することにより、耐Ishクラス建屋の集
中化が図られ建屋の建築設計上合理的な配置計画が可能
となっている。また、建屋の集中化によシ各建屋間を連
絡する配管・ケーブル・電線管等の物量も最短化が可能
となることから経済性の高い配置計画案の特徴を有して
いる。
In this arrangement, the central control room, which was previously housed in the control building 4, is built into the attached maple building of the reactor building l. According to the plan shown in Figure 2, the shortest access distance from the service building 3 to each building can be achieved through OT functionality, and the interference of each access route and complicated routes inside the buildings can be minimized. It is possible to directly access the target building. Furthermore, by installing a central control room and related electrical panels within the building, the Ish-resistant class building can be centralized and a rational layout plan can be made in terms of the building's architectural design. In addition, by centralizing the buildings, it is possible to minimize the amount of piping, cables, conduits, etc. that connect each building, making it a highly economical layout plan.

しかし、本案については、タービン建屋に接続するMS
配管9のルートと原子炉建屋1内の中央制御室エリアが
接近することから原子炉安全設計の機能維持の関係から
十分なる安全性゛の保証が確保できない等の問題を有す
る。
However, regarding the main proposal, the MS connected to the turbine building
Since the route of the piping 9 and the central control room area in the reactor building 1 are close to each other, there are problems such as the inability to ensure sufficient safety from the standpoint of maintaining the functionality of the reactor safety design.

一方、第3図は原子炉建屋1内の安全系設備に関する配
置として、タービン軸と平行に安全系の設備配置を可能
とする配置計画案を示す。本図に示すとうシ、原子炉建
屋lの配置を従来の配置計画に比べ90°回転させてい
る。このことから、従来では原子炉安全系の設備として
タービン軸に対し直角方向だけに配置出来なかった計画
範囲に加え、本配置計画によれば、原子炉安全系設備の
配置計画として配置計画選定エリアが増すこととなる(
配置計画上の自由度増)。
On the other hand, FIG. 3 shows a proposed layout plan for the safety equipment in the reactor building 1, which allows the safety equipment to be placed parallel to the turbine axis. The arrangement of the cylinder and reactor building l shown in this figure has been rotated by 90 degrees compared to the conventional arrangement plan. For this reason, in addition to the planning range where reactor safety equipment could not previously be placed only in the direction perpendicular to the turbine axis, this layout plan also allows for the layout plan selection area to be used as a layout plan for reactor safety equipment. will increase (
(Increased freedom in layout planning)

しかし、本案についてのアクセス計画では、従来系と同
様にダーティ・クリーンアクセスの適切な配置計画とは
なっておらず、さらに各建屋への通路距離も大となるこ
とから、アクセス性の点で問題点を有している。
However, the access plan for this project does not have an appropriate layout plan for dirty and clean access like the conventional system, and furthermore, the passage distance to each building is long, so there are problems in terms of accessibility. It has points.

以上の配置計画2案からアクセス性の向上及び原子炉建
屋内の原子炉安全系設備の配置の自由度を増した配置計
画として本発明の主旨とする配置図を第1図に示す。本
配置においては、中央制御m1lf、原子炉建屋1内に
配置する。2基の原子炉建屋1の配置を基準とする発電
所では、隣号機間の中央制御室の隣接配置が可能となる
。一方原子炉安全系設備10の配置は、MS配管9のル
ート及び中央制御室11の位置と干渉を解決したタービ
ン軸に平行に原子炉建屋1の付属棟内に設置される。こ
の為、タービン建屋の配置位置に関しては、1rA子炉
建屋1間の連絡物量の低減に有効で、合理的なL型配置
1t(タービン軸方向に対し直角方 向に原子炉建屋を
配置した原子炉建屋とタービン建屋の位置関係を示す略
式名称)を採用している。
FIG. 1 shows a layout plan based on the above two layout plans, which is the gist of the present invention, as a layout plan that improves accessibility and increases the degree of freedom in arranging reactor safety equipment in the reactor building. In this arrangement, the central control m1lf is located within the reactor building 1. In a power plant based on the arrangement of two reactor buildings 1, it is possible to arrange the central control rooms between adjacent units adjacent to each other. On the other hand, the reactor safety equipment 10 is installed in the annex of the reactor building 1 parallel to the turbine axis, which eliminates interference with the route of the MS piping 9 and the position of the central control room 11. For this reason, regarding the placement position of the turbine building, it is effective to reduce the amount of communication between the 1rA reactor buildings 1, and a rational L-shaped arrangement 1t (a nuclear reactor building arranged perpendicular to the turbine axis direction) is adopted. (abbreviated name indicating the positional relationship between the furnace building and turbine building).

このL型装置を特徴とする配置計画により、従来配置に
比べMS配管9の長さが多少長くなる傾向にある。但し
、MS配管9については、蒸気を原子炉からタービンへ
送る配管として、タービントリップや負荷遮断等の事象
を想定する必要がある。この際に、MS配管9内の圧力
は急上昇し、高温状態となる。MS配管9の容積と圧力
急上昇時の熱的余裕においては、相関関係があシMS配
管内容積を大きくするほど圧力上昇速度が抑制されるた
めに、熱的余裕の観点から、MS配管内容積は大きいほ
ど望ましく、そのMS配管容積は沸騰水型炉における最
低限度値では約80m”71本とされている。これらの
理由から、本発明のMS配管ルート増に係わる配管内容
積にかかる問題は少ないと思われる。尚、第1図中で、
12は原子炉圧力容器5を囲う格納容器で6.DMS配
管9は、この格納容器12から出口ノズル13部で外へ
出されて原子炉圧力容器5からタービン6側へ連なる。
Due to the layout plan featuring this L-shaped device, the length of the MS piping 9 tends to be somewhat longer than the conventional layout. However, regarding the MS piping 9, as a piping that sends steam from the nuclear reactor to the turbine, it is necessary to assume events such as turbine tripping and load shedding. At this time, the pressure inside the MS piping 9 rises rapidly, resulting in a high temperature state. There is a correlation between the volume of the MS piping 9 and the thermal margin when the pressure suddenly rises.The larger the internal volume of the MS piping, the more the pressure rise rate is suppressed. The larger the MS piping volume is, the more desirable it is, and the minimum value for the MS piping volume in a boiling water reactor is approximately 80m"71.For these reasons, the problem regarding the internal volume of the piping related to increasing the MS piping route of the present invention is solved. It seems that there are few.In addition, in Figure 1,
12 is a containment vessel surrounding the reactor pressure vessel 5; 6. The DMS piping 9 is taken out from the containment vessel 12 at an outlet nozzle 13 and continues from the reactor pressure vessel 5 to the turbine 6 side.

本発明をより実際的な例として第5図によ)説明する。The present invention will be explained by way of a more practical example (see FIG. 5).

第5図は本発明のMS配管9のルートを原子炉建屋1の
中で90′曲げる構造を有する原子炉建屋とタービン建
屋2及びサービス建屋3の配置図を示す。第5図におい
ては、第1図と同様に原子炉建屋1とタービン建屋2と
はL型装置となっており、原子炉建屋1は、隣接号機が
隣接配置となっている。また中央制御室11は、原子炉
建屋1の中に設置されておシこの山側にサービス建屋3
が設置爆れている。
FIG. 5 shows a layout of a reactor building, a turbine building 2, and a service building 3 having a structure in which the route of the MS piping 9 of the present invention is bent by 90' within the reactor building 1. In FIG. 5, similarly to FIG. 1, the reactor building 1 and the turbine building 2 are an L-shaped device, and the reactor building 1 has adjacent units adjacent to each other. In addition, the central control room 11 is installed inside the reactor building 1, and the service building 3 is located on the mountain side of the reactor building.
The installation is exploding.

本発明によるMS配管9は、図中に示す配置ルートを辿
り原子炉圧力容器5から蒸気をタービン6へ送っている
The MS piping 9 according to the present invention sends steam from the reactor pressure vessel 5 to the turbine 6 following the arrangement route shown in the figure.

このMS配管9は原子炉建屋内で90′曲げて、タービ
ン建屋へ導いである。
This MS pipe 9 is bent 90' inside the reactor building and led to the turbine building.

本配If?図に示す実施例は、建屋の概念配置を示すも
のでおるが、主要建屋の海山距離が短く海山方向の距離
が少ない狭い敷地の多い我国のサイトでは有効な配置概
念となっている。さらに原子炉建屋1内の中央制御室1
1は、隣接ユニットとの距離も短く、管理施設として共
用化の可能性も大きく配置効率は良い。さらにサービス
建屋3を中央制御室11に近く設置することにニジ中央
制御室11へのアクセス性も良い。
Honai If? The embodiment shown in the figure shows the conceptual layout of the buildings, but it is an effective layout concept for sites in Japan where there are many narrow sites with short distances from the seamount and short distances in the direction of the seamount between the main buildings. Furthermore, the central control room 1 in the reactor building 1
1 has a short distance to adjacent units, has a high possibility of being shared as a management facility, and has good layout efficiency. Furthermore, since the service building 3 is installed close to the central control room 11, the accessibility to the central control room 11 is also good.

また、原子炉建屋1内の原子炉安全系設備10について
も、MS配管9の設置エリア及び中央制御室11を含む
電気品設置エリアに対して分離したエリアに設置されて
いる。このため、原子炉安全系設備10は、タービン軸
と平行に配置されている。
Further, the reactor safety equipment 10 in the reactor building 1 is also installed in an area separate from the electrical equipment installation area including the MS piping 9 installation area and the central control room 11. Therefore, the reactor safety system equipment 10 is arranged parallel to the turbine axis.

以上の利点を特徴とする実際的な例においては、原子炉
建屋1とタービン建屋2がなぎさ線方向に配置されるこ
とから大物機器が搬入される海側に移動式の大型揚重機
が自由に動き回ることも可能なつシ込みスペースを有し
、この大型揚重機によシ原子炉建屋及びタービン建屋の
大物機器の搬入が同一場所で行なえることから、建設性
も良く原子力発電所の建設期間の短縮化も可能である。
In a practical example characterized by the above advantages, the reactor building 1 and the turbine building 2 are arranged in the direction of the Nagisa line, so a large mobile lifting machine can be freely moved to the sea side where large equipment is brought in. It has a storage space that allows it to move around, and this large lifting machine allows large equipment for the reactor building and turbine building to be brought into the same place, which improves construction efficiency and saves time during the construction period of a nuclear power plant. Shortening is also possible.

また、機器の搬入が同一場所で行なえることによシ廻シ
の建築工事との干渉も少なくすることができる。
Furthermore, since equipment can be brought in at the same location, interference with construction work can be reduced.

ただし、本実際的な例による配置では、従来の配置に比
べなぎさ線方向の敷地占有長さは、多少長くなるが、敷
地造成時の切土量に影響の大きい山海方向の敷地占有長
さは短縮される。これらの理由からサイト特有の地形に
よっては魅力のあるものになっている。
However, in the layout according to this practical example, the length of the site occupied in the direction of the Nagisa line is somewhat longer than in the conventional layout, but the length of the site occupied in the direction of the mountains and sea, which has a large effect on the amount of cutting during site preparation, is be shortened. For these reasons, the site's unique topography makes it attractive.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明によれば、原子力発電所の各建屋レ
イアウトを合理的にととのえることができるという効果
が得られる。
As described above, according to the present invention, it is possible to achieve the effect that the layout of each building of a nuclear power plant can be arranged rationally.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原子力発電所建屋レイアウト図、第2
図は、各主要建屋間のアクセス性を改善するために建屋
の集中化を図ったL型配置概念図、第3図は、原子炉建
屋内の原子炉安全系設備に関するタービン軸と平行に安
全系の設備配置を可能とするL型配置概念図、第4図は
、従来の沸騰水型原子炉建屋の一般的なL型配置概念図
、第5図は、本発明による沸騰水型原子炉建屋の実施例
を説明する為の配置概念図である。
Figure 1 is a nuclear power plant building layout diagram of the present invention, Figure 2
The figure is a conceptual diagram of an L-shaped layout that centralizes buildings to improve accessibility between each main building. Figure 3 shows safety parallel to the turbine axis related to reactor safety equipment inside the reactor building. Figure 4 is a conceptual diagram of a general L-shaped layout of a conventional boiling water reactor building, and Figure 5 is a conceptual diagram of a boiling water reactor according to the present invention. It is a layout conceptual diagram for explaining an example of a building.

Claims (1)

【特許請求の範囲】[Claims] 1、主蒸気配管の格納容器部出口ノズル方向をタービン
の軸方向と平行にし、原子炉建屋内で主蒸気配管を90
°曲げてタービン建屋内のタービン軸と直角方向からこ
の主蒸気配管をタービン建屋に接続することを特徴とす
る原子力発電所建屋配置構造。
1. The direction of the containment vessel outlet nozzle of the main steam piping is parallel to the axial direction of the turbine, and the main steam piping is
A nuclear power plant building arrangement structure characterized in that this main steam piping is bent to connect to the turbine building from a direction perpendicular to the turbine axis inside the turbine building.
JP59212547A 1984-10-12 1984-10-12 Arrangement structure of housing for nuclear power plant Granted JPS6191596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212547A JPS6191596A (en) 1984-10-12 1984-10-12 Arrangement structure of housing for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212547A JPS6191596A (en) 1984-10-12 1984-10-12 Arrangement structure of housing for nuclear power plant

Publications (2)

Publication Number Publication Date
JPS6191596A true JPS6191596A (en) 1986-05-09
JPH0315159B2 JPH0315159B2 (en) 1991-02-28

Family

ID=16624488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212547A Granted JPS6191596A (en) 1984-10-12 1984-10-12 Arrangement structure of housing for nuclear power plant

Country Status (1)

Country Link
JP (1) JPS6191596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187563A1 (en) * 2016-04-27 2017-11-02 三菱日立パワーシステムズ株式会社 Turbine building and nuclear power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187563A1 (en) * 2016-04-27 2017-11-02 三菱日立パワーシステムズ株式会社 Turbine building and nuclear power plant

Also Published As

Publication number Publication date
JPH0315159B2 (en) 1991-02-28

Similar Documents

Publication Publication Date Title
CN103850483B (en) A kind of nuclear power plant main building group's method for arranging
JP6621335B2 (en) Nuclear power plant and 3D-CAD system for design
CN108868219B (en) Multi-loop nuclear power unit factory building arrangement structure
JPS639889A (en) Nuclear power device
JPS6191596A (en) Arrangement structure of housing for nuclear power plant
CN110689985B (en) Arrangement method and structure of Tokamak magnetic constraint substation main plant group
Cabell Summary description of the Fast Flux Test Facility
Cinotti et al. The inherently safe immersed system (ISIS) reactor
CN112746758A (en) Nuclear island plant layout structure
CN117457240B (en) Magnetic confinement fusion reactor
CN210422055U (en) Steam turbine room, cooling tower and distribution device's of thermal power plant optimization integrated configuration
JPS59120992A (en) Nuclear power plant
Vinayagamoorthy et al. Lessons and Strategies from PFBR to Future Fast Breeder Reactors
Chianese et al. Toroidal field coil design concept and structural support system for CTHR
Yamaki et al. Overall plant concept for a tank-type fast reactor
Wearne et al. Logical design of power reactor plant layout
JPS5860290A (en) Shielding structure of atomic power turbine
Serpantie et al. Progress in LMFBR design: the European fast reactor compact primary system
CN115798758A (en) Nuclear power plant layout
JPH0416602B2 (en)
CN117073236A (en) Power area arrangement method of tower type photo-thermal energy source station and tower type photo-thermal energy source station
Shannon et al. Oak Ridge Tokamak experimental power reactor study. Part 5. Engineering
Thomson et al. ITER [International Thermonuclear Experimental Reactor] reactor building design study
Brown The TPX configuration
JP2592888B2 (en) Reactor containment vessel