JPS619152A - Dc brushless motor - Google Patents

Dc brushless motor

Info

Publication number
JPS619152A
JPS619152A JP59007192A JP719284A JPS619152A JP S619152 A JPS619152 A JP S619152A JP 59007192 A JP59007192 A JP 59007192A JP 719284 A JP719284 A JP 719284A JP S619152 A JPS619152 A JP S619152A
Authority
JP
Japan
Prior art keywords
phase
permanent magnet
coils
coil
magnetic detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59007192A
Other languages
Japanese (ja)
Inventor
Tomoyuki Saito
斉藤 友之
Kenji Nakamura
健治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59007192A priority Critical patent/JPS619152A/en
Publication of JPS619152A publication Critical patent/JPS619152A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To obtain an inexpensive 2-phase DC brushless motor which can be reduced in thickness by providing a current flow controller for switching currents to coils when the output of a magnet detector is inverted to set the current flow- ing periods of the respective phases to half period. CONSTITUTION:Phase coils 7-1-7-4 are annularly disposed on a printed board 5, and magnetic detectors 10-1, 10-2 are respectively mounted at the positions displaced at 45 deg. of an electric angle in the opposite rotation direction from the center line of the coils in the bores of the coils 7-1, 7-2. Further, the currents flowed to the coils 7-1-7-4 are switched when the outputs of the detectors 10-1, 10-2 are inverted, and a logic circuit for setting the current flowing periods of the respective phases to half period is provided. Thus, since the permanent magnet is not necessarily magnetized in a sinusoidal wave, the entire motor can be reduced in thickness.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は直流無刷子電動機に係り、特に、フロッピーデ
ィスクドライブ装置の駆動用電動機に使用して、構造簡
易で安価に製作でき、薄形化可能な二相式直流無刷子電
動機に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a direct current brushless electric motor, and in particular, it can be used as a driving electric motor for a floppy disk drive device, and has a simple structure, can be manufactured at low cost, and can be made thin. The present invention relates to a two-phase DC brushless motor.

〔発明の背景〕[Background of the invention]

各相の通電期間を半周期とする二相直流無刷子電動機と
しては、従来、一般に回転子の永久磁石を正弦波着磁し
て磁気検出器の出力を正弦波状にして、その複数の磁気
検出器の出力を比較して得た信号で各相に流す電流を制
御するという方法が採用されていた。この理由は、永久
磁石に方形波着磁すると、磁気検出器の出力も方形波状
となり各相へ流す電流の切換の最適の位相の前後の比較
する磁気検出器の出力の電位差が小さくなり、雑音等の
影響によって動作が不安定となるためであった。しかし
、正弦波着磁された永久磁石は、方形波着磁された永久
磁石と比較して、同一材質、同一形状の場合、磁束密度
が低く有効磁束が減り、望む誘起電圧定数を得るために
は、パーミアンス係数を高くするため、永久磁石の厚さ
を大きくとる、または、多くの巻数のコイルを必要とし
、また製品間の特性のばらつきを抑えるため正弦波着磁
に精度を要するため永久磁石が高価になるといった欠点
があった。
Conventionally, in a two-phase DC brushless motor in which the energization period of each phase is a half cycle, the permanent magnet of the rotor is generally magnetized in a sine wave to make the output of a magnetic detector into a sine wave. A method was adopted in which the current flowing through each phase was controlled using the signal obtained by comparing the outputs of the devices. The reason for this is that when a permanent magnet is magnetized with a square wave, the output of the magnetic detector also becomes a square wave, and the potential difference between the outputs of the magnetic detector compared before and after the optimal phase for switching the current flowing to each phase becomes small, causing noise. This is because the operation becomes unstable due to the influence of factors such as. However, compared to permanent magnets magnetized by square waves, permanent magnets magnetized by sine waves have lower magnetic flux density and less effective magnetic flux when they are made of the same material and shape, and it is difficult to obtain the desired induced voltage constant. In order to increase the permeance coefficient, permanent magnets require a large thickness or a coil with a large number of turns, and in order to suppress variations in characteristics between products, precision is required for sine wave magnetization. The drawback was that it was expensive.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、より薄形化可能で、より安価な二相式
直流無刷子電動機を提供することにある。
An object of the present invention is to provide a two-phase DC brushless motor that can be made thinner and cheaper.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、従来の二相式直流無刷子電動機の磁気
検出器の位置から、回転子の反回転方向に電気角で45
°ずらした磁気検出器の位置と、磁気検出器の出力から
各コイルの通電の指令信号をつくるための論理回路を設
けた点にある。この磁気検出器の位置と論理回路によっ
て、方形波着磁した永久磁石を用いた、各相の通電期間
が半周期の二相直流無刷子電動機を構成できる。従って
、      磁束密度を高くとれるため、永久磁石の
薄形化および電動機の薄形化が可能になる。
The feature of the present invention is that from the position of the magnetic detector of a conventional two-phase DC brushless motor, the electrical angle is 45 in the counter-rotation direction of the rotor.
The point is that a logic circuit is provided to generate a command signal for energizing each coil from the shifted position of the magnetic detector and the output of the magnetic detector. Depending on the position of the magnetic detector and the logic circuit, it is possible to configure a two-phase direct current brushless motor using square-wave magnetized permanent magnets in which the energization period of each phase is half a cycle. Therefore, since the magnetic flux density can be high, it is possible to make the permanent magnet thinner and the electric motor thinner.

〔発明の実施例〕[Embodiments of the invention]

二相式直流電動機の従来例を第1図、第2図によって説
明する。第1図(a)は要部構成を示す断面図である。
A conventional example of a two-phase DC motor will be explained with reference to FIGS. 1 and 2. FIG. 1(a) is a sectional view showing the configuration of main parts.

第1図において、1は回転子軸、2は回転子ヨーク、3
は永久磁石であり、これらのr、2.3で電動機の回転
子を構成する。4は固定子ヨーク、5はプリント基板、
6は軸受部である。第1図(b)は、プリント基板5上
のコイル7−1.7−2.7−3.7−4.および磁気
検出器8−1.8−2の配置図である。これらの7−1
.7−3で電動機の第1相を構成し、7−2゜7−4と
で電動機の第2相を構成する。第1図(c)は永久磁石
3の着磁区分を示すもので、第1図(d)は永久磁石3
の着磁の仕様を示すもので、第1図(d)の(1)の波
形は、着磁が機械角120゜の周期で正弦波状に行なわ
れていることを示す。
In Fig. 1, 1 is the rotor shaft, 2 is the rotor yoke, and 3 is the rotor shaft.
are permanent magnets, and these r, 2.3 constitute the rotor of the electric motor. 4 is a stator yoke, 5 is a printed circuit board,
6 is a bearing section. FIG. 1(b) shows coils 7-1.7-2.7-3.7-4. and a layout diagram of magnetic detectors 8-1 and 8-2. These 7-1
.. 7-3 constitutes the first phase of the motor, and 7-2 and 7-4 constitute the second phase of the motor. FIG. 1(c) shows the magnetization section of the permanent magnet 3, and FIG. 1(d) shows the magnetization section of the permanent magnet 3.
The waveform (1) in FIG. 1(d) shows that magnetization is performed in a sinusoidal manner with a period of 120 degrees in mechanical angle.

第2図は磁気検出器の出力とそれから得る第1相。Figure 2 shows the output of the magnetic detector and the first phase obtained from it.

第2相への通電区間を示すものである。第2図の(1)
、は磁気検出器8−1の出力波形、図2の(2)9、□
ゆffi!188−2(7)8カあう、□2゜。(1)
”fは(1)の波形を反転した形で得た波形、第2図の
(2)′は、(2)の波形を反転した形で得た波形であ
る。位相Aは波形(1)の電位が波形(2)′の電位よ
り高くなる位相、位相Bは波形(2)の電位が波形(1
)の電位よりも高くなる位相、位相Cは波形(1)′の
電位が波形(2)の電位よりも高くなる位相、位相りは
波形(2)′の電位が波形(1)′の電位よりも高くな
る位相、位相Eは波形(1)の電位が波形(2)′の電
位よりも高くなる位相で、位相Aと同等である。通電区
間A−Bは位相Aと位相Bとの区間、通電区間B−Cは
位相Bと位相Cとの区間、通電区間C−’Dは位相Cと
位相りとの区間、通電区間D−Eは位相りと位相Eとの
区間である。第2相の通電区間を通電区間A−Bと通電
区間C−D、第1相の通電区間を通電区間B−Cと通電
区間D−Eとして、通電区間A−BとC−りで流れる電
流を逆向きに設定し通電区間B−CとC−Dで流れる電
流を逆向きに設定することで二相式無刷子電動機の駆動
が可能となる。しかしながら、この方式においては、第
1相と第2相との通電の切り換えを位相A、B、C,D
、Eといった波形(1)、(2)、(1)’ 、(2)
’より得た位相で行なっている。位相A、B、C,D、
Eの位相を正確にするためには、第1図(c)、(d)
の正弦波状の着磁を精度良く行う必要があり、そのため
、永久磁石3は方形波状の着磁を行なった永久磁石より
も高価になる。また、方形波状の着磁を行った永久磁石
と比較して、同一形状、同一材質ならば有効磁束が少な
くなるため、望む誘起電圧定数を得るためには、コイル
の巻数を増す必要があり、同一のコイルを用いるならば
、有効磁束を得すために、より厚い永久磁石を使用する
必要があるといった欠点があった。
This shows the energization section to the second phase. (1) in Figure 2
, is the output waveform of the magnetic detector 8-1, (2) 9, □ in Fig. 2
Yuffi! 188-2 (7) 8 points, □2°. (1)
``f is the waveform obtained by inverting the waveform in (1), and (2)' in Figure 2 is the waveform obtained by inverting the waveform in (2).Phase A is the waveform obtained by inverting the waveform in (1). Phase B is the phase where the potential of waveform (2)' is higher than the potential of waveform (2)'.
), Phase C is the phase where the potential of waveform (1)' is higher than the potential of waveform (2), and phase C is the phase where the potential of waveform (2)' is higher than the potential of waveform (1)'. Phase E, which is a phase in which the potential of waveform (1) becomes higher than that of waveform (2)', is equivalent to phase A. The energizing section A-B is the section between phase A and phase B, the energizing section B-C is the section between phase B and phase C, the energizing section C-'D is the section between phase C and phase C, and the energizing section D- E is the interval between the phase difference and the phase E. The energized section of the second phase is the energized section A-B and the energized section C-D, and the energized section of the first phase is the energized section B-C and the energized section DE, and the current flows in the energized sections A-B and C-. By setting the currents in opposite directions and setting the currents flowing in the current-carrying sections B-C and CD in the opposite directions, it is possible to drive a two-phase brushless motor. However, in this method, the switching of energization between the first phase and the second phase is carried out in phases A, B, C, and D.
, E waveforms (1), (2), (1)', (2)
' This is done using the phase obtained from '. Phase A, B, C, D,
In order to make the phase of E accurate, Fig. 1(c) and (d)
It is necessary to perform sinusoidal magnetization with high accuracy, and therefore the permanent magnet 3 is more expensive than a permanent magnet magnetized in a square wave. Also, compared to permanent magnets magnetized in a square wave pattern, if the shape and material are the same, the effective magnetic flux will be lower, so in order to obtain the desired induced voltage constant, it is necessary to increase the number of turns of the coil. If the same coil were used, the drawback was that a thicker permanent magnet would have to be used in order to obtain an effective magnetic flux.

上記不都合点を除去した構成とすべく、第3図の構造の
二相式直流無刷子電動機を考案した。
In order to eliminate the above-mentioned disadvantages, we devised a two-phase DC brushless motor having the structure shown in FIG.

第3図(a)は要部構造を示す断面図である。第3図(
b)はプリント基板上のコイル7−1.7−2.7−3
.7−4および磁気検出素子10−1゜10−2の配置
図である。第1図(b)と同様に、コイル7−1と7−
3とで第1相、コイル7−2と7−4とで第2相を構成
する。第3図(b)の磁気検出器10−1と10−2は
第1図(b)の磁気検出器8−1と8−2の位置と比較
して、永久磁石の反回転方向に電気角で45°ずれてい
ることを特徴とする。第3図(e)は永久磁石9の着磁
区分、第3図(d)は永久磁石9の着磁仕様を示す。
FIG. 3(a) is a sectional view showing the main structure. Figure 3 (
b) Coil 7-1.7-2.7-3 on the printed circuit board
.. 7-4 and magnetic detection elements 10-1 and 10-2. Similarly to FIG. 1(b), coils 7-1 and 7-
3 constitutes a first phase, and coils 7-2 and 7-4 constitute a second phase. The magnetic detectors 10-1 and 10-2 in FIG. 3(b) are electrically connected in the counter-rotational direction of the permanent magnet compared to the positions of the magnetic detectors 8-1 and 8-2 in FIG. 1(b). It is characterized by a 45° deviation at the corners. FIG. 3(e) shows the magnetization sections of the permanent magnet 9, and FIG. 3(d) shows the magnetization specifications of the permanent magnet 9.

第3図(d)は波形(1)は、永久磁石9の着磁が機械
角120°の位相で方形波状に行なわれていることを示
す。
In FIG. 3(d), waveform (1) shows that the permanent magnet 9 is magnetized in a square waveform with a phase of 120 degrees in mechanical angle.

第4図は磁気検出器の出力波形から、第1相。Figure 4 shows the first phase from the output waveform of the magnetic detector.

第2相の通電区間を決定する信号をつくるための回路構
成を示す。10−1.10−2は磁気検出器、11−1
.11−2は比較器、12−1゜12−2はインバータ
、13−1,13−2゜13−3.13−4は2人力1
出力、入力負論理、出力正論理のAND回路である。F
、Gは比較器11−1.11−2の出力、H,Iはイン
バータ12−1.12−2の出力、J、に、L9Mは、
       AND回路13−1.13−2,1.3
−3.1.3−4の出力である。第5図は第4図のF、
G、H。
A circuit configuration for generating a signal that determines the second-phase energization section is shown. 10-1.10-2 is a magnetic detector, 11-1
.. 11-2 is a comparator, 12-1゜12-2 is an inverter, 13-1, 13-2゜13-3, 13-4 is a 2-man power 1
It is an AND circuit of output, input negative logic, and output positive logic. F
, G is the output of the comparator 11-1.11-2, H and I are the outputs of the inverter 12-1.12-2, J, and L9M are,
AND circuit 13-1.13-2, 1.3
-3.1.3-4 output. Figure 5 shows F in Figure 4,
G.H.

■、“J、に、L、Mの波形を示したものである。(2) In "J," the waveforms of L and M are shown.

この第5図の通電区間の関係がら、第1相の通電にはM
、にの信号を用い、第2相の通電にはJ。
Due to the relationship between the energizing sections shown in Fig. 5, the first phase is energized by M
, and J to energize the second phase.

Lの信号を用いれば二直式無刷子電動機を駆動できる。If the L signal is used, a two-direction brushless motor can be driven.

ここで、第1図(b)の磁気検出器8−1゜8−2の位
置のままで、第4図の回路を適用すると第1相と第2相
における通電区間と誘起電圧の位相関係は第6図(a)
のようになる。特に、一部分を抜き出したものが第6図
(b)であるが、このような位相関係でのコイルへの通
電では、第6図(c)の位相関係による通電よりも電流
が大きく、トルクも有効に発生しない。第6図(c)の
ような位相関係にするためには、通電区間を電気角で4
5°進めれば良い。そのためには磁気検出器8−1.8
−2’の位置を回転子の反回転方向に電気角で45°ず
らずことになる。永久磁束の極数は第3図(c)のよう
に6極であるから、この実施例では機械角で15″だけ
ずらすことで第6図(c)の位相関係が得られる。  
                押ヤ8□ヶ□1.。
Here, if we apply the circuit in Figure 4 while keeping the position of the magnetic detector 8-1 and 8-2 in Figure 1(b), the phase relationship between the energized section and the induced voltage in the first and second phases will be Figure 6(a)
become that way. Particularly, as shown in Fig. 6(b), a portion of the coil is extracted, and when the coil is energized with such a phase relationship, the current is larger and the torque is smaller than when energized with the phase relationship shown in Fig. 6(c). Does not occur effectively. In order to obtain the phase relationship as shown in Figure 6(c), the energized section must be 4 electrical degrees.
It is enough to advance by 5 degrees. For that purpose, magnetic detector 8-1.8
-2' position is shifted by 45 degrees in electrical angle in the counter-rotational direction of the rotor. Since the number of poles of the permanent magnetic flux is six as shown in FIG. 3(c), in this embodiment, the phase relationship shown in FIG. 6(c) can be obtained by shifting by 15'' in mechanical angle.
Pusher 8□□1. .

お。17.1□、。、イア、ヶ4,2     プ個と
なっているが、第7図のように4個でも構成可能である
。コイル1.4−1.14−3.IL−5,14−7で
第1相を構成し、1472.14−仁 14−6.14
−8で第2相を構成する。
oh. 17.1□. , ear, 4,2 pu, but it can also be configured with 4 as shown in FIG. Coil 1.4-1.14-3. IL-5, 14-7 constitutes the first phase, 1472.14-jin 14-6.14
-8 constitutes the second phase.

磁気検出器15−1はコイル14−1の中心線から電気
角で45″回転子の反回転方向にずれた位置にあり、磁
気検出器15−2はコイル14−2の中心線から電気角
で45″回転子の反回転方向にずれた位置にある。第7
図(b)は(a)の構成を用いる場合の永久磁石16で
あり、着磁区分を示4す。第7図(c)は永久磁石16
の着磁仕様を示し、第7図(C)の波形(1)は機械角
の周期60°で方形波状に着磁されていることを示す。
The magnetic detector 15-1 is located at a position offset from the center line of the coil 14-1 by 45 inches in electrical angle in the counter-rotational direction of the rotor, and the magnetic detector 15-2 is located at a position offset by an electrical angle of 45 inches from the center line of the coil 14-2. It is located at a position offset in the counter-rotation direction of the 45" rotor. 7th
Figure (b) shows the permanent magnet 16 when the configuration of (a) is used, and shows magnetization sections 4. FIG. 7(c) shows the permanent magnet 16
The waveform (1) in FIG. 7(C) shows that the magnet is magnetized in a rectangular waveform with a mechanical angle period of 60°.

第7図(b)かられかるように永久磁石の極数は12極
であるから電気角456は機械角で7.5°となる。
As can be seen from FIG. 7(b), since the number of poles of the permanent magnet is 12, the electrical angle 456 is 7.5 degrees in mechanical angle.

また第8図のように、第1相をコイル14−1゜14−
3.14−5、第2相をコイル14−2゜14−4.1
4.6とそれぞれ1相当りのコイルを3個とすることも
可能である。この場合も永久磁石は図7(b)の永久磁
石16を用いる。
Also, as shown in Fig. 8, the first phase is connected to the coil 14-1゜14-
3.14-5, 2nd phase coil 14-2゜14-4.1
4.6, it is also possible to use three coils, each having one equivalent. In this case as well, the permanent magnet 16 shown in FIG. 7(b) is used.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この構造の二相式直流無刷子電動
機は、第1相と第2相の通電の切り換えを磁気検出器の
出力波形の反転によって行うことで各相に半周期の通電
期間を与えることができるため、永久磁石を正弦波状に
着磁する必要がなくなり、方形波状の着磁をした永久磁
石の使用が可能となるため、電動機の薄形化が可能とな
る。
As detailed above, the two-phase DC brushless motor with this structure switches the energization of the first and second phases by reversing the output waveform of the magnetic detector, thereby energizing each phase for half a cycle. Since the period can be given, it is no longer necessary to magnetize the permanent magnet in a sinusoidal waveform, and it is possible to use a permanent magnet magnetized in a square waveform, so that the electric motor can be made thinner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1項(a)〜(d)と第2図は従来例を示すもので、
第1図(a)は要部構成を示す断面図、(b)はコイル
と磁気検出器の配置図、(c)は永久磁石の着磁区分図
、(d)は永久磁石の着磁仕様図、第2図は磁気検出器
の出力波形とコイルへの通電区間の位相関係図、第3図
(a)〜(d)から第8図は本発明の実施例を示すもの
で、第3図(a)は要部構成を示す断面図、(b)はコ
イルと磁気検出器の配置図、(c)は永久磁石の着磁区
分図、(d)は永久磁石の着磁仕様図、第4図は、磁気
検出器の出力からコイルへの通電指令信号をつくる回路
図、第5図は第4図の回路タイムチャート、第6図(a
)は磁気検出器が第1図(b)の位置にあって、第4図
の回路を適用したときの通電区間と誘起電圧のタイムチ
ャート、第6図(b)は第6図(a)の一部を抜き出し
示した図、第6図(e)は本実施例の通電区間と誘起電
圧との位相関係を示す図、第7図(a)(b)(c)は
−相に4コイル使用したもので、(a)はコイルと磁気
検出器の配置図、(b)は永久磁石の着磁区分図、(c
)ま永久磁石の着磁仕様図、第8図は一相に3コイルを
使用した場合のコイルと磁気検出器の配置図である。 1・・・回転子軸、2・・・回転子ヨーク、3・・・永
久磁石、4・・・固定子ヨーク、5・・・プリント基板
、6・・・軸受部、7−.1.7−2.7−3.7−4
・・・コイル、8−1.8−2・・・磁気検出器、9・
・・永久磁石、10−1.10−2・・・磁気検出器、
11−1゜11−2・・・比較器、12−1.12−2
・・・インバータ、13−1.13−2.13−3.1
3−4沓        ・・・AND回路、14−1
.14−2.14−3゜14−4.14−5.14.−
6.14−7.14−8・・・コイル、15−1.15
−2・・・磁気検出器。
Sections 1 (a) to (d) and FIG. 2 show conventional examples,
Figure 1 (a) is a sectional view showing the main part configuration, (b) is a layout diagram of the coil and magnetic detector, (c) is a diagram of the magnetization division of the permanent magnet, and (d) is the magnetization specification of the permanent magnet. 2 is a phase relationship diagram of the output waveform of the magnetic detector and the energized section to the coil, and FIGS. 3(a) to 8(d) to 8 show embodiments of the present invention. Figure (a) is a sectional view showing the main part configuration, (b) is a layout diagram of the coil and magnetic detector, (c) is a diagram of the magnetization division of the permanent magnet, (d) is a magnetization specification diagram of the permanent magnet, Figure 4 is a circuit diagram for creating a energization command signal to the coil from the output of the magnetic detector, Figure 5 is the circuit time chart of Figure 4, and Figure 6 (a
) is a time chart of the energization period and induced voltage when the magnetic detector is in the position of Fig. 1(b) and the circuit of Fig. 4 is applied, and Fig. 6(b) is a time chart of the induced voltage in Fig. 6(a). FIG. 6(e) is a diagram showing the phase relationship between the energized section and the induced voltage in this embodiment, and FIG. 7(a), (b), and (c) are diagrams showing a part of the A coil is used, (a) is a layout diagram of the coil and magnetic detector, (b) is a diagram of the magnetization division of the permanent magnet, (c
) Figure 8 is a diagram showing the magnetization specifications of a permanent magnet, and an arrangement diagram of the coils and magnetic detector when three coils are used in one phase. DESCRIPTION OF SYMBOLS 1... Rotor shaft, 2... Rotor yoke, 3... Permanent magnet, 4... Stator yoke, 5... Printed circuit board, 6... Bearing part, 7-. 1.7-2.7-3.7-4
...Coil, 8-1.8-2...Magnetic detector, 9.
...Permanent magnet, 10-1.10-2...Magnetic detector,
11-1゜11-2... Comparator, 12-1.12-2
...Inverter, 13-1.13-2.13-3.1
3-4 shoes...AND circuit, 14-1
.. 14-2.14-3゜14-4.14-5.14. −
6.14-7.14-8...Coil, 15-1.15
-2...Magnetic detector.

Claims (1)

【特許請求の範囲】[Claims] 1、中空円板形状に作られその半周はN極に残り、の半
周はS極に着磁された永久磁石と、この永久磁石を回転
自在に支持する回転ハブとで形成される回転子と、板状
の固定子ヨークと、この固定子ヨーク上に配置されたプ
リント基板と、このプリント基板上に配置された複数の
コイルと、このプリント基板上に配置され永久磁石の回
転位置を検出する複数の磁気検出器と、固定子ヨークに
取り付けられた軸受部と、前記磁気検出器出力を受けて
各コイルに流す電流を制御して回転子を一定方向に駆動
制御する通電制御回路とを備えたものにおいて、各コイ
ルに流す電流の切り換えを磁気検出器の出力の反転時に
行い、各相の通電期間を半周期とする通電制御回路を備
えたことを特徴とする直流無刷子電動機。
1. A rotor formed of a permanent magnet made in the shape of a hollow disk, with half the circumference remaining as the N pole and half the circumference magnetized as the S pole, and a rotating hub that rotatably supports this permanent magnet. , a plate-shaped stator yoke, a printed circuit board placed on this stator yoke, a plurality of coils placed on this printed circuit board, and a permanent magnet placed on this printed circuit board that detects the rotational position. It includes a plurality of magnetic detectors, a bearing section attached to a stator yoke, and an energization control circuit that receives the output of the magnetic detector and controls the current flowing through each coil to drive and control the rotor in a fixed direction. A direct current brushless motor, characterized in that it is equipped with an energization control circuit that switches the current flowing through each coil when the output of a magnetic detector is reversed, and makes the energization period of each phase half a cycle.
JP59007192A 1984-01-20 1984-01-20 Dc brushless motor Pending JPS619152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59007192A JPS619152A (en) 1984-01-20 1984-01-20 Dc brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59007192A JPS619152A (en) 1984-01-20 1984-01-20 Dc brushless motor

Publications (1)

Publication Number Publication Date
JPS619152A true JPS619152A (en) 1986-01-16

Family

ID=11659170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59007192A Pending JPS619152A (en) 1984-01-20 1984-01-20 Dc brushless motor

Country Status (1)

Country Link
JP (1) JPS619152A (en)

Similar Documents

Publication Publication Date Title
US4211963A (en) Brushless, permanent magnet d-c pulse current controlled, essentially uniform torque dynamo electric machine, particularly motor
JP2875529B2 (en) Drive device for sensorless brushless motor
US4912379A (en) Multi-phase brushless motor with increased starting torque and reduced torque ripple
US4565956A (en) Fast-acting servo drive system
JPH0667258B2 (en) Brushless motor
KR19980703722A (en) Switch-mode sine wave driver for multiphase brushless permanent magnet motors
US4950960A (en) Electronically commutated motor having an increased flat top width in its back EMF waveform, a rotatable assembly therefor, and methods of their operation
JPS619152A (en) Dc brushless motor
JPS6227621B2 (en)
JPH0336237Y2 (en)
JPH03277158A (en) Flat brushless motor
JPH11146680A (en) Driver for multiphase motor
JPH03277155A (en) Flat type brushless motor
JPS60204248A (en) Brushless motor
JPS62285686A (en) Brushless motor
JPS6087692A (en) Drive circuit in dc brushless motor
KR940010813B1 (en) Driving circuit of dc motor with plastic magnet
JPH05130800A (en) Dc drive control system for stepping motor
JPH0965679A (en) Brushless motor controller
JPS6349469B2 (en)
JPH0767309A (en) Dc brushless motor and driving device
JPS6022797Y2 (en) DC brushless motor
JPH04190697A (en) Driving method for pm type stepping motor
JPS6219118Y2 (en)
JPH01218398A (en) Motor controller