JPS6191132A - Separation and purification of human growth hormone releasing factor - Google Patents

Separation and purification of human growth hormone releasing factor

Info

Publication number
JPS6191132A
JPS6191132A JP59212311A JP21231184A JPS6191132A JP S6191132 A JPS6191132 A JP S6191132A JP 59212311 A JP59212311 A JP 59212311A JP 21231184 A JP21231184 A JP 21231184A JP S6191132 A JPS6191132 A JP S6191132A
Authority
JP
Japan
Prior art keywords
acetonitrile
growth hormone
silica gel
human growth
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59212311A
Other languages
Japanese (ja)
Other versions
JPH055839B2 (en
Inventor
Hiroshi Nakazawa
宏 中沢
Masayuki Nagase
長瀬 正之
Akira Doi
土井 侃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP59212311A priority Critical patent/JPS6191132A/en
Publication of JPS6191132A publication Critical patent/JPS6191132A/en
Publication of JPH055839B2 publication Critical patent/JPH055839B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To carry out the separation and purification of human growth hormone-releasing factor, by the high-performance liquid chromatography using a specific silica gel as a reverse-phase partition stationary phase, and using a mixture of an aqueous solution of acetic acid and acetonitrile as an eluting solution. CONSTITUTION:Human growth hormone-releasing factor is separated and purified by high-performance chromatography using a reverse-phase partition stationary phase consisting of a silica gel wherein 3-18C alkyl or cyanopropyl groups are bonded through chemical bonds and the remaining silanol groups are etherified with trimethylsilyl groups (having an average particle diameter of 5-20mum and narrow particle size distribution, and preferably having a pore diameter of 10-30nm), and using an eluting solution consisting of a mixture of an aqueous solution of acetic acid and acetonitrile, or a mixture of ammonium acetate buffer solution and acetonitrile, or their combination. The separated factor is useful as a diagnostic agent for the examination of the growth hormone productivity of the human anterior pituitary or remedy for dwarfism.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ヒト成長ホルモン放出因子(以下Gl?Fと
略称する)の分1Til[tIi製法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing human growth hormone releasing factor (hereinafter abbreviated as Gl?F).

l薇Ju組 GRFは1982年にGuillemin らによりヒ
ト膵臓0瘍より抽出され構造決定および化学合成がなさ
れたアミノ酸44個からなるポリペプチドで(Scie
nce  218. 585  (1982) 、Na
ture、300,276 (1982))、ヒト成長
ホルモン放出活性を持ち、ヒト脳下垂体前葉の成長ホル
モン産生能の検査薬あるいは小人症の治療薬として用い
得る生理活性物質である。
薇Ju group GRF is a polypeptide consisting of 44 amino acids that was extracted from human pancreatic tumor, structurally determined, and chemically synthesized by Guillemin et al. in 1982 (Scie
nce 218. 585 (1982), Na
ture, 300, 276 (1982)), and is a physiologically active substance that has human growth hormone-releasing activity and can be used as a test agent for the growth hormone-producing ability of the human anterior pituitary gland or as a therapeutic agent for dwarfism.

GRFは液相法あるいは固相法により化学的に合成され
得るが、この場合、アミノ酸を一個ずつ縮合させていく
ためその合成工程は長く、不純物の混入の確立が高い。
GRF can be chemically synthesized by a liquid phase method or a solid phase method, but in this case, the synthesis process is long because amino acids are condensed one by one, and there is a high probability of contamination with impurities.

 そのため最終生成物の精製にはゲル濾過、イオン交換
クロマトグラフィー、分配クロマトグラフィーまたはそ
の他の方法を組合せて行うことが必要である。また、場
合によっては、精製操作を繰り返し行う必要がある。
Therefore, purification of the final product requires a combination of gel filtration, ion exchange chromatography, partition chromatography or other methods. In some cases, it may be necessary to repeat the purification operation.

従来、化学的に合成されたペプチド類の分舌1]積製法
としてはオープンカラムによるゲル濾過、イオン交換ク
ロマトグラフィー、分配クロマトグラフィーあるいは向
流分配などが利用されてきたが、これらの方法は一般に
時間がかかる、分離能が高くないため高純度に精製しよ
うとすると回収率が低くなる、微量のペプチドを扱う場
合には精製中にカラム内などへの吸着現象も認められる
などの多くの問題を有していた。
Conventionally, open-column gel filtration, ion-exchange chromatography, partition chromatography, or countercurrent partition have been used to produce chemically synthesized peptides. There are many problems such as it is time consuming, the recovery rate is low when purifying to high purity because the separation power is not high, and adsorption phenomena are observed in the column etc. during purification when dealing with trace amounts of peptides. had.

一方、近年クロマトグラフィーの分野で急速に発展して
きた方法として高速液体クロマトグラフ(以下HPLC
と略称する)法があり、最近になって蛋白、ペプチドの
分析にも利用されるようになってきた。このHPLC法
はペプチドにおける(1キ(体同士の分離能が従来法に
比べて極めて高く、at FJの成分も取り扱うことが
でき、しかも簡便、迅速で再現性も良好なことから、そ
の分析への応用は思連に増加している。
On the other hand, high performance liquid chromatography (HPLC) is a method that has rapidly developed in the field of chromatography in recent years.
(abbreviated as ), which has recently come to be used for the analysis of proteins and peptides. This HPLC method has an extremely high separation ability between peptides (1K) compared to conventional methods, can also handle at FJ components, and is simple, rapid, and has good reproducibility, making it suitable for analysis. Its applications are increasing steadily.

Ri v i c rらは逆相系のカラムを用い、GR
Fを含む合成ペプチド類のHPLCによる分取精製につ
いて報告している(J、 Chromatogr 、、
  288 (1984)   303)。
Using a reversed phase column, Riv i cr et al.
We report on the preparative purification of synthetic peptides containing F by HPLC (J, Chromatogr.
288 (1984) 303).

彼等は主にトリエチルアミン−リン酸緩衝液・アセトニ
トリル系の/8離液を用いているが、本発明者らの検δ
・1の結果では、この系ではGRFの純度および回収率
が低くまた脱塩などの後処理を必要とするため操作も煩
雑であった。さらにペプチド類の分析条件として最もよ
く用いられている水・アセトニトリル・トリフルオロ酢
酸系の溶離液では得られたペプチドの純度は良好なもの
のGRFのような塩基性ペプチドでは塩として結合した
トリフルオロ酢酸の脱塩、塩交換が容易でなく、煩雑な
操作を必要とするなどの欠点を有していることを認めた
。 そこで、本発明者らは、分離能がよく、簡便迅速と
いうHPLC法の特徴を活かし、しかもGRFなどのペ
プチドの製造にも対応しうる再現性、回収率もよい精製
法を開発することができれば、その利用価値は極めて大
きいと考え検討を進めてきた。即ち、分離能を損なうこ
となくより大量の試料をカラムに負荷し得るために、カ
ラムサイズ、カラム充填剤および?8離液の検討を中心
に進めた。特に充填剤については、分離能、試料負荷量
、回収率等に密接に関係するため、担体としてのシリカ
ゲルの形状、粒子径、細孔径、これに化学結合される官
能基、残存シラノール処理などの諸点についても検討を
加えた。
They mainly use triethylamine-phosphate buffer/acetonitrile-based /8 syneresis, but the inventors' test δ
- According to the results of 1, this system had low GRF purity and recovery rate, and required post-treatment such as desalting, making the operation complicated. Furthermore, although the purity of the peptides obtained is good with the eluent of water, acetonitrile, and trifluoroacetic acid, which is the most commonly used analytical condition for peptides, in the case of basic peptides such as GRF, trifluoroacetic acid is bound as a salt. It was recognized that it has drawbacks such as difficulty in desalting and salt exchange and requiring complicated operations. Therefore, the present inventors wish to develop a purification method that takes advantage of the characteristics of the HPLC method, such as good separation ability, simple and rapid method, and also has good reproducibility and recovery rate that can be used for the production of peptides such as GRF. , we have been considering it because we believe that its utility value is extremely large. That is, column size, column packing material, and 8 We focused on examining syneresis. In particular, packing materials are closely related to separation performance, sample load, recovery rate, etc., so the shape of the silica gel used as a carrier, particle size, pore size, functional groups chemically bonded to it, residual silanol treatment, etc. We also considered various points.

これらの(5ミ討結果から、充填剤として炭素数3から
18のアルキル基またはシアノプロピル基をシリカゲル
に化学的に結合させた充填剤を用い溶離液として酢酸水
溶液・アセトニトリルの混合溶媒、酢酸アンモニウム緩
衝液・アセトニトリルの混合溶媒を用いた逆相系のHP
LC法によって、GRFを大計に迅速簡便で再現性、回
収率ともによく、シかも高純度の精製が可能な方法を見
出し本発明を完成した。
Based on the results of these 5 experiments, a filler in which an alkyl group or cyanopropyl group having 3 to 18 carbon atoms was chemically bonded to silica gel was used as the filler, and a mixed solvent of acetic acid aqueous solution/acetonitrile and ammonium acetate were used as the eluent. Reversed-phase HP using a mixed solvent of buffer and acetonitrile
We have completed the present invention by discovering a method that allows GRF to be purified quickly, easily, with good reproducibility and recovery rate, and to a high degree of purity using the LC method.

! ’!+ (7) 3ル成、−男」リユU本発明は、
高速液体クロマトグラフ法において、逆相分配型固定相
として炭素数3から18のアルキル基またはシアノプロ
ピル基を化学的に結合し、残存するシラノールをトリノ
チルシリル基でエーテル化したシリカゲルであり、溶離
液が酢酸水溶液・アセトニトリルの混合溶媒又は酢酸ア
ンモニウム緩ffi ?(ドアセトニトリルの混合溶媒
、またはこれらの2種類の溶媒系の組合せであることを
特徴とするヒト成長ホルモン放出因子の精製法を提供す
るものである。
! '! + (7) 3Rusei, -man "Liyu U This invention is,
In high-performance liquid chromatography, silica gel is used as a reversed-phase partitioning stationary phase to which alkyl groups or cyanopropyl groups having 3 to 18 carbon atoms are chemically bonded, and the remaining silanol is etherified with trinotylsilyl groups. Is the liquid a mixed solvent of acetic acid/acetonitrile or ammonium acetate? (This invention provides a method for purifying human growth hormone-releasing factor, which is characterized by using a mixed solvent of acetonitrile or a combination of these two types of solvent systems.)

本発明の方法において、充填剤は通常の逆相分配用化学
結合型HP L C用充填剤を用いることができるが、
特に好ましいものは、オクタデシル基あるいはオクチル
基等のアルキル基またはシアノプロピル基を化学的に結
合させたH P L C用シリカゲルである。
In the method of the present invention, ordinary chemically bonded HPLC fillers for reverse phase distribution can be used as the filler, but
Particularly preferred is a silica gel for HPLC to which an alkyl group such as an octadecyl group or an octyl group or a cyanopropyl group is chemically bonded.

シリカゲルの形状は球状、平均粒子径は5〜20μmの
間の粒度分布が狭いもの、細孔径は10〜3QnmOも
のが好ましい。 更に、シリカゲルに上記のアルキル基
あるいはシアノプロピル基を化学結合させた後に、シリ
カゲル表面の残存シラノール基を適当なシランカフプリ
ング剤、例えば、トリメチルクロルシラン、ヘキサメチ
ルジシラザンなどでほぼ完全に処理しエーテル化したも
のが、より好ましい。 この処理が為されていない場合
にはGRFはシラノール基との相互作用によりシリカゲ
ル表面への吸着を起こし回収率は低下する。
The silica gel preferably has a spherical shape, an average particle diameter of 5 to 20 μm, and a narrow particle size distribution, and a pore diameter of 10 to 3 Q nmO. Furthermore, after chemically bonding the above alkyl group or cyanopropyl group to the silica gel, the remaining silanol groups on the silica gel surface are almost completely treated with a suitable silane cuffing agent, such as trimethylchlorosilane or hexamethyldisilazane. Etherification is more preferred. If this treatment is not performed, GRF will be adsorbed onto the silica gel surface due to interaction with silanol groups, resulting in a decrease in recovery rate.

このような条件の逆相分配用化学結合型HPLC用充填
剤としては、例えば、Nucleosil  C18(
ナーゲル社製) 、YMC−GEL 00S(山村化学
型)、Develosil ODS  (野村化学製)
YMC−GEL C8(山村化学型) 、5ynchr
opak RP−P  (ジンクローム社製)、YMC
−GEL CN  (山村化学型) 等が挙げられる。
As a packing material for chemically bonded HPLC for reverse phase distribution under such conditions, for example, Nucleosil C18 (
Nagel), YMC-GEL 00S (Yamamura Chemical), Develosil ODS (Nomura Chemical)
YMC-GEL C8 (Yamamura chemical type), 5ynchr
opak RP-P (manufactured by Zinchrome), YMC
-GEL CN (Yamamura chemical type) and the like.

本発明において用いるカラムは、1lfl常内径lO〜
50mm、長さ250〜500mm程度のものが用いら
れるが、試料負荷量、得るべき純度、カラムの価格など
の目的によって充填剤との適当な組合せが選ばれる。
The column used in the present invention has a normal internal diameter of 1 lfl~
A column having a diameter of about 50 mm and a length of about 250 to 500 mm is used, and an appropriate combination with a packing material is selected depending on the objective such as the amount of sample to be loaded, the purity to be obtained, and the price of the column.

GRFの分析用には内径4.6mm、長さ250mmの
ステンレス管に粒子径5μmの本発明の充填剤を充填し
たカラムが用いられるが、GRFの分取精製のためには
一回の試料負荷量が数mg〜10mgの場合では、内径
I Q m m、長さ25Q m mのステンレス管に
粒子径5〜7μmの本発明の充填剤を充填したカラム、
あるいは−回の試料負荷量が100mg以上であれば、
内径30〜50mm、長さ250〜500mmのステン
レス■に粒子径7〜20μmの本発明の充填剤を充1邑
しだカラムが推奨される。
For GRF analysis, a column packed with the packing material of the present invention with a particle size of 5 μm in a stainless steel tube with an inner diameter of 4.6 mm and a length of 250 mm is used, but for preparative purification of GRF, a single sample loading is required. When the amount is several mg to 10 mg, a column is prepared by filling a stainless steel tube with an inner diameter of IQ mm and a length of 25 Q mm with the packing material of the present invention having a particle size of 5 to 7 μm,
Or, if the sample loading amount is 100 mg or more,
A column made of stainless steel with an inner diameter of 30 to 50 mm and a length of 250 to 500 mm filled with the packing material of the present invention having a particle size of 7 to 20 μm is recommended.

本発明の方法において用いる溶離液は酢酸水溶液・アセ
トニトリルの混合溶媒系または酢酸アンモニウム緩衝液
・アセトニトリルの混合溶媒系でこれらの混合比を適切
に設定し一定組成で溶離するアイソクラティック溶出法
でGRFを良好に分取精製することができる。またアセ
トニトリル濃度について連続的に濃度を高めていくグラ
ジェント溶出法でも分離能、再現性ともに優れGRFを
効果的に分取精製し得る。  アイソクラティック溶出
法の場合に、 酢酸水溶液・アセトニトリルの混合溶媒
系を使用する場合、溶媒の混合比はアセトニトリル濃度
10〜30%(%はV/V%を意味する以下同様)、酢
酸アンモニウム緩衝液・アセトニトリルの場合はアセト
ニトリルの濃度20〜40%程度の範囲が好ましい。 
グラジェント溶出法の場合は、酢酸水溶液・アセトニト
リル混合液を用いるときはアセトニトリル濃度を10〜
30%の範囲で、酢酸アンモニウム・アセトニトリルの
場合はアセトニトリル濃度を20〜40%の範囲で時間
(例えば、30分 〜1.5時間)とともに上げていく
のが好ましい。 本発明の方法において用いる酢酸水溶
液の濃度は1〜5%のもの、#酸アンモニウム緩衝液は
その濃度が0、O1〜0.2モル濃度、pHが3〜5の
範囲のものが望ましい。 これらの溶離液は揮発性であ
り通常の減圧溜去あるいは凍結乾燥法により分取した溶
離液から容易に高純度なGRFを得ることができる。
The eluent used in the method of the present invention is a mixed solvent system of an acetic acid aqueous solution and acetonitrile, or a mixed solvent system of an ammonium acetate buffer solution and acetonitrile, and an isocratic elution method is used in which the mixing ratio is appropriately set and elution is carried out at a constant composition. can be successfully preparatively purified. Furthermore, a gradient elution method in which the acetonitrile concentration is continuously increased has excellent separation performance and reproducibility, and allows effective preparative purification of GRF. In the case of the isocratic elution method, when using a mixed solvent system of aqueous acetic acid and acetonitrile, the mixing ratio of the solvents is acetonitrile concentration of 10 to 30% (% means V/V%, hereinafter the same), ammonium acetate buffer In the case of liquid acetonitrile, the concentration of acetonitrile is preferably in the range of about 20 to 40%.
In the case of the gradient elution method, when using an acetic acid aqueous solution/acetonitrile mixture, the acetonitrile concentration should be
In the case of ammonium acetate/acetonitrile, it is preferable to increase the acetonitrile concentration in the range of 20 to 40% over time (for example, 30 minutes to 1.5 hours). It is preferable that the acetic acid aqueous solution used in the method of the present invention has a concentration of 1 to 5%, and that the #acid ammonium buffer has a concentration of 0, an O of 1 to 0.2 molar concentration, and a pH of 3 to 5. These eluents are volatile, and highly pure GRF can be easily obtained from the eluate separated by conventional vacuum distillation or freeze-drying.

以下に実施例を挙げ本発明を更に詳細に説明する。 本
発明の実施態様は以下の実施例のみに限定されるもので
はない。
The present invention will be explained in more detail with reference to Examples below. The embodiments of the present invention are not limited only to the following examples.

叉■亘−± オクタデシル基を導入したシリカゲルを用い、以下に示
した条件で精製を行った。
Purification was carried out under the conditions shown below using silica gel into which an octadecyl group had been introduced.

木精製法により、純度76.0%のGRF粗製品300
mgを用い回収率51.8%及び72゜8%で、純度が
それぞれ98.0%および94゜9%に精製することが
できた。
GRF crude product 300 with purity of 76.0% by wood refining method
With a recovery rate of 51.8% and 72.8%, the purities were able to be purified to 98.0% and 94.9%, respectively.

GRFO分取条件(1)を以下に示す。GRFO preparative separation conditions (1) are shown below.

カラム:  オクタデシル化したHPLC用シリカシリ
カゲルIC−GEL ODS Type A ;山村化
学研究所製。
Column: Octadecylated HPLC silica gel IC-GEL ODS Type A; manufactured by Yamamura Kagaku Kenkyusho.

球状、粒子径1um、孔径10nm)を内径30mm、
長さ250mmのステンレス管に充填したもの。
Spherical, particle size 1um, pore size 10nm) with an inner diameter of 30mm,
Filled in a 250mm long stainless steel tube.

j容;4i?&:     2s  % ア セ ト 
ニ ト リ ル10.05M  酢酸アンモニウム(p
H3,6) j容出方法ニアイソクラティック法 ?*fit:  5.85m6/min温度: 室温 検出器: 紫外線吸収計(測定波長280nm)GRF
粗製品および得られた精製品のクロマトグラムを図1及
び図2に示す。
4i? &: 2s % acet
Nitrile 10.05M Ammonium acetate (p
H3, 6) j Dispense method near isocratic method? *Fit: 5.85m6/min Temperature: Room temperature Detector: Ultraviolet absorption meter (measurement wavelength 280nm) GRF
Chromatograms of the crude product and the purified product obtained are shown in FIGS. 1 and 2.

なお、純度検定は以下に示ずHP L C条件を用いて
行った。
Note that the purity test was performed using HPLC conditions not shown below.

G RFの分析条件(純度検定法)を以下に示す。The analysis conditions (purity assay method) for GRF are shown below.

カラム:  オクタデシル化したHPLC用ンリカゲル
(YMCGEl、 005 Type A M; 白日
化学研究所製、r、Y状、粒子径5 μm、孔径10n
m)を内径4.6mm、長さ250mmのステンレス管
に充填したもの。
Column: Octadecylated HPLC gel (YMCGel, 005 Type A M; manufactured by Hakuichi Kagaku Kenkyusho, r, Y shape, particle size 5 μm, pore size 10n)
m) was filled into a stainless steel tube with an inner diameter of 4.6 mm and a length of 250 mm.

一??:δ1: 八;&0.1%トリフルオロ酢酸のア
セトニトリル・水(20%: 80%)溶液 Bン&0.1%トリフルオロ酢酸の アセトニトリル・水(50%: 50 %) ン毛’n  tj グラジェント条件:B?Pi、を30%から80%まで
50分間で直線的に増加させる。
one? ? :δ1: 8; & 0.1% trifluoroacetic acid in acetonitrile/water (20%: 80%) solution B & 0.1% trifluoroacetic acid in acetonitrile/water (50%: 50%) Gent condition: B? Pi, is increased linearly from 30% to 80% in 50 minutes.

流ffi:  1.Oml/min 温度: 室温 検出″g′jI、  紫外線吸収計(測定波長220r
1m)遺施例2 オクタデシル基を導入したシリカゲルを用い、以下に示
した条件で精製を行った。
Flowffi: 1. Oml/min Temperature: Room temperature detection "g'jI, UV absorption meter (measurement wavelength 220r
1m) Final Example 2 Purification was carried out under the conditions shown below using silica gel into which an octadecyl group had been introduced.

木精製法により、純度76.0%のGRF粗製品100
mgを用い回収率78.1%で、純度が96.2%に精
製することができた。
GRF crude product 100 with purity of 76.0% by wood refining method
It was possible to refine the product to a purity of 96.2% with a recovery rate of 78.1%.

GRFの分取条件(2)を以下に示す。GRF preparative separation conditions (2) are shown below.

1L−yA:  オクタデシル化したHPLC用シリカ
シリカゲルC−GEL ODS Type A ;山村
化学研究新製、球状、粒子径lO〜20μm、孔径10
nm)を内径50mm、長さ500IIIfflのステ
ンレス管に充填したもの。
1L-yA: Octadecylated silica gel for HPLC C-GEL ODS Type A; manufactured by Yamamura Kagaku Kenkyushin, spherical, particle size 1O ~ 20 μm, pore size 10
) filled in a stainless steel tube with an inner diameter of 50 mm and a length of 500IIIffl.

filFIi’t;t :  28 %アセトニトリル
10.05M酢酸アンモニウム(p)t3.6) ?J−嵐1叛ニアイソクラティ・ツク法流量:  22
.5mi!/min 温度: 室温 検出器: 紫外線吸収計(測定波長280nm)実施例
3 オクタデシル基を導入したシリカゲルを用い、以下に示
した条件で精製を行った。
filFIi't;t: 28% acetonitrile 10.05M ammonium acetate (p)t3.6)? J-Arashi 1 Rebellion Flow rate: 22
.. 5 mi! /min Temperature: Room temperature Detector: Ultraviolet absorption meter (measurement wavelength 280 nm) Example 3 Purification was performed under the conditions shown below using silica gel into which an octadecyl group was introduced.

本精製法により、純度8164%のGRF粗製品415
mgを用い回収率43.4%で、純度が98.5%に精
製することができた。
By this purification method, GRF crude product 415 with a purity of 8164% was obtained.
It was possible to refine the product to a purity of 98.5% with a recovery rate of 43.4%.

G RFO分取条件(3)を以下に示す。G RFO preparative separation conditions (3) are shown below.

カラム:  オクタデシル化したH P L C用シリ
カゲル(YMCGEL 005 Type A ;山村
化学研究新製、球状、粒子径7 p m、孔径10nm
)を内径30mm、長さ250mmのステンレス管に充
填したもの。
Column: Octadecylated silica gel for HPLC (YMCGEL 005 Type A; manufactured by Yamamura Kagaku Kenkyushin, spherical, particle size 7 pm, pore size 10 nm)
) filled in a stainless steel tube with an inner diameter of 30 mm and a length of 250 mm.

jfi L’lJ i(1:  A液 3%酢酸水溶液
・アセトニド’J   JLim?’11.   (8
0/   2  0)B液 3%酢酸水溶液・アセトニ
ト リ ルンn ン11  (50150)溶出方法イグラ
ジエント条件)二 B液を5%で10分間流した後、5
%から15%まで70分間で直線的に増加させる。
jfi L'lJ i (1: Solution A 3% acetic acid aqueous solution/acetonide 'J JLim?'11. (8
0/2 0) Solution B 3% acetic acid aqueous solution/acetonitrile Runn 11 (50150) Elution method Igradient conditions) 2 After flowing Solution B at 5% for 10 minutes,
% to 15% in 70 minutes.

流Fif:  9m+2/min 温度: 室温 検出器: 紫外線吸収計(測定波長220nm)J−敬
、(1− オクチル基を導入したシリカゲルを用い、以下に示した
条件で精製を行った。
Flow rate: 9 m+2/min Temperature: Room temperature Detector: Ultraviolet absorption meter (measurement wavelength 220 nm) J-Kei, (1- Purification was performed under the conditions shown below using silica gel into which an octyl group was introduced.

本精製法により、純度80.6%のGRF3mgを用い
回収率94.4%で、純度が99.6%に精製すること
ができた。
According to this purification method, 3 mg of GRF with a purity of 80.6% could be purified to a purity of 99.6% with a recovery rate of 94.4%.

GRFの分取条件(4)を以下に示す。GRF preparative separation conditions (4) are shown below.

カラム:  オクチル化したH P L C用シリカゲ
ル<YMC−GEL Cs   Type A ;山村
化学研究新製、球状、粒子径5. p m、孔径10n
m)を内径10mm、長さ250+++mのステンレス
管に充填したもの。
Column: Octylated silica gel for HPLC <YMC-GEL Cs Type A; manufactured by Yamamura Kagaku Kenkyushin, spherical, particle size 5. p m, pore diameter 10n
m) filled in a stainless steel tube with an inner diameter of 10 mm and a length of 250+++ m.

?@: 1tUL:  へ液 20%アセトニトリル/
80%0.1M酢酸アンモニウム緩衝液 (pH,4,3> B液  50%了セ、トニトリル150%0.1M酢酸
アンモニウム緩衝液 (pl!4.31 溶出方法(グラジェント条件):B?liを30%から
40%まで40分間で直線的に増加させる。
? @: 1tUL: Helium 20% acetonitrile/
80% 0.1M ammonium acetate buffer (pH, 4,3> B solution 50% complete, tonitrile 150% 0.1M ammonium acetate buffer (pl! 4.31) Elution method (gradient conditions): B?li is increased linearly from 30% to 40% over 40 minutes.

流量:  3.Omj!/min 温度: 室温 検出器: 紫外線吸収計(測定波長220nm)上、較
例 オクタデシル基を導入したシリカケルを用い、以下に示
した条件で精製を行った。
Flow rate: 3. Omj! /min Temperature: Room temperature Detector: Purification was carried out under the conditions shown below using a comparative octadecyl group-introduced silica gel on an ultraviolet absorption meter (measurement wavelength: 220 nm).

木精製法により、純度72.1%のGRF粗製品180
mgを用い回収重石8.5%で、純度が88.1%に精
製することができた。
GRF crude product 180 with purity 72.1% by wood refining method
It was possible to refine the product to a purity of 88.1% using 8.5% recovered weight.

しかし、本実験例におけるトリエチルアミン−燐酸系の
溶All液では、純度が低〈実施例1〜4程度の純度に
するには、回収率はかなり低下する(40%以下)。 
 また、溶離液に用いたトリエチルアミン−燐酸塩が残
存してくるため、脱塩操作が必要となるなど操作が煩雑
であった。
However, the purity of the triethylamine-phosphoric acid-based dissolved Allium solution in this experimental example is low (to reach the purity level of Examples 1 to 4, the recovery rate is considerably reduced (40% or less).
Furthermore, since the triethylamine-phosphate used in the eluent remains, the operation is complicated, such as requiring desalting.

GRFの分取条件(5)を以下に示す。GRF preparative separation conditions (5) are shown below.

カラム:  オクタデシル化したHPLC用シリカシリ
カゲルC−GEL ODS Type A ; 山村化
学研究新製、球状、粒子径7μm、孔径Ions)を内
径3’ Omm、長さ250mmのステンレス管に充填
したもの。
Column: Octadecylated HPLC silica gel C-GEL ODS Type A; manufactured by Yamamura Kagaku Kenkyushin, spherical, particle size 7 μm, pore size Ions) packed in a stainless steel tube with an inner diameter of 3' Omm and a length of 250 mm.

溶8【イ夜:  28%アセトニトリル10.25M燐
酸−トリエチルアミン(pH2,3) 溶出方法:アイソクラティノ多法 流量:  22.5m17m1n 温度: 室温 検出器: 紫外線吸収計(測定波長280nm)
Elution 8: 28% acetonitrile 10.25M phosphoric acid-triethylamine (pH 2,3) Elution method: Isocratic polymethod Flow rate: 22.5ml 17ml Temperature: Room temperature Detector: Ultraviolet absorption meter (measurement wavelength 280nm)

【図面の簡単な説明】[Brief explanation of drawings]

図1は、GRF粗製品のクロマトグラムを示す回である
。 図2は、GRF精製品のクロマトグラムを示す図である
。 以    上 図  1 図2 ム
FIG. 1 shows a chromatogram of the GRF crude product. FIG. 2 is a diagram showing a chromatogram of a GRF purified product. Figure 1 Figure 2 above

Claims (1)

【特許請求の範囲】[Claims] (1)、高速液体クロマトグラフ法によりヒト成長ホル
モン放出因子を精製するに際し、逆相分配型固定相とし
て炭素数3から18のアルキル基またはシアノプロピル
基を化学的に結合し、残存するシラノールをトリメチル
シリル基でエーテル化したシリカゲルを用い、溶離液が
酢酸水溶液・アセトニトリルの混合溶媒又は酢酸アンモ
ニウム緩衝液・アセトニトリルの混合溶媒、またはこれ
らの2種類の溶媒系の組合せであることを特徴とするヒ
ト成長ホルモン放出因子の精製法
(1) When purifying human growth hormone-releasing factor using high-performance liquid chromatography, alkyl groups or cyanopropyl groups having 3 to 18 carbon atoms are chemically bonded as a reversed-phase partitioned stationary phase to remove residual silanol. A human growth method using silica gel etherified with a trimethylsilyl group, and characterized in that the eluent is a mixed solvent of acetic acid aqueous solution and acetonitrile, a mixed solvent of ammonium acetate buffer and acetonitrile, or a combination of these two types of solvent systems. Purification method of hormone releasing factor
JP59212311A 1984-10-09 1984-10-09 Separation and purification of human growth hormone releasing factor Granted JPS6191132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212311A JPS6191132A (en) 1984-10-09 1984-10-09 Separation and purification of human growth hormone releasing factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212311A JPS6191132A (en) 1984-10-09 1984-10-09 Separation and purification of human growth hormone releasing factor

Publications (2)

Publication Number Publication Date
JPS6191132A true JPS6191132A (en) 1986-05-09
JPH055839B2 JPH055839B2 (en) 1993-01-25

Family

ID=16620455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212311A Granted JPS6191132A (en) 1984-10-09 1984-10-09 Separation and purification of human growth hormone releasing factor

Country Status (1)

Country Link
JP (1) JPS6191132A (en)

Also Published As

Publication number Publication date
JPH055839B2 (en) 1993-01-25

Similar Documents

Publication Publication Date Title
Kraak et al. Solvent-generated ion-exchange systems with anionic surfactants for rapid separations of amino acids
Hancock et al. Use of mixed-mode, high-performance liquid chromatography for the separation of peptide and protein mixtures
JP5148484B2 (en) Chromatographic matrix regeneration
Janzen et al. Evaluation of advanced silica packings for the separation of biopolymers by high-perforamnce liquid chromatography: V. Performance of non-porous monodisperse 1.5-μm bonded silicas in the separation of proteins by hydrophobic-interaction chromatography
Janson et al. Introduction to chromatography
Schafer et al. Chromatographic characterization of a phosphate-modified zirconia support for bio-chromatographic applications
PT1571208E (en) Novel factor ix purification methods
Kundu et al. Low-molecular-weight displacers for high-resolution protein separations
Hearn et al. Application of Reversed Phase High Performance Liquid Chromatography in Solid Phase Peptide Synthesis: High Pressure Liquid Chromatography of Amino Acids Peptides and Proteins XIII. Part XII Ref. 2
Subramanian et al. Displacement chromatography of proteins under elevated flow rate and crossing isotherm conditions
JPS5832591B2 (en) Purification method of urokinase
JPH0774797B2 (en) Packing agent for liquid chromatography and method for producing and using the same
Subramanian et al. Displacement chromatography of biomolecules with large particle diameter systems
JPS6191132A (en) Separation and purification of human growth hormone releasing factor
Haginaka et al. Separation of enantiomers on a chiral stationary phase based on ovoglycoprotein: I. Influences of the pore size of base silica materials and bound protein amounts on chiral resolution
JPS59231097A (en) Manufacture of homogeneous human immunological interferon subtype 26k and 21k
Giri [31] Chromatofocusing
Yokosawa et al. The effective use of immobilized anhydrotrypsin for the isolation of biologically active peptides containing L-arginine residues in C-termini
AU756932B2 (en) Method for separating and/or isolating plasma proteins by annularchromatography
JP3216436B2 (en) Basic protein adsorbent
JP2792038B2 (en) Analysis method and pretreatment method for sample in which water-soluble polymer substance and low-molecular component coexist, and filler for chromatography
Kang et al. Effects of ionic strength and pH on endotoxin removal efficiency and protein recovery in an affinity chromatography
Hjertén et al. High-performance adsorption chromatography of proteins on 2-μm spherical beads of hydroxyapatite
Schwarz Five‐membered mercaptoheterocyclic ligands for thiophilic adsorption chromatography
Tanaka et al. Development of a novel octadecyl-bonded silica column and evaluation of its reliability in chromatographic analysis

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term