JPS6191097A - Crystal growth - Google Patents

Crystal growth

Info

Publication number
JPS6191097A
JPS6191097A JP21288284A JP21288284A JPS6191097A JP S6191097 A JPS6191097 A JP S6191097A JP 21288284 A JP21288284 A JP 21288284A JP 21288284 A JP21288284 A JP 21288284A JP S6191097 A JPS6191097 A JP S6191097A
Authority
JP
Japan
Prior art keywords
temperature
layer
crystal growth
layers
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21288284A
Other languages
Japanese (ja)
Other versions
JPH0526760B2 (en
Inventor
Yoshinari Matsumoto
松本 良成
Naotaka Iwata
直高 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21288284A priority Critical patent/JPS6191097A/en
Publication of JPS6191097A publication Critical patent/JPS6191097A/en
Publication of JPH0526760B2 publication Critical patent/JPH0526760B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:When crystalline layers with specific multilayer structures are alternately piled up, the crystal is allowed to grow at a specific low temperature, then growth is effected at a specific temperature to inhibit the mutual diffusion on the heterinterface in the multilayer structure whereby epitaxial crystals of high quality are obtained. CONSTITUTION:When a semiconductive wafer containing crystal layers which have less than 100Angstrom period and a multilayer structure alternately laminating layers of formula I and II (xnot equal to y; x=0.2-1.0 in Al composition), at first the crystal growth is effected at a temperature lower than 520 deg.C on the base, then heat treatment is carried out at 570-630 deg.C. Superlattice layers are formed with high reproducibility. This process inhibits structural disturbance caused by mutual diffusion on the interface between the layers of formulas I and II. Further, the crystal growth can be conducted at lower temperature to reduce contamination on the crystal growth. Further, restriction in the use of refractory materials can be removed to increase freedom to design the crystal growth devices.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は■−v化合物半導体のエピタキシャル結晶成
長技術に関する。この発明の方法を採用することにより
、結晶品質の向上、結晶組成の制御あるいは結晶成長炉
に対する設計自由度の向上がなされる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to epitaxial crystal growth technology for ■-v compound semiconductors. By employing the method of the present invention, it is possible to improve crystal quality, control crystal composition, and increase the degree of freedom in designing a crystal growth furnace.

(従来技術とその問題点) 近年1分子線エピタキシャル成長法(MBE法:Mo1
ecular  Beam  Epitaxy )や有
機金属の熱分解による気相成長法(MOCVD法:Me
talOrganic  Chemical  Vap
our  Deposition)が薄膜エピタキシヤ
ル層の層厚制御に有効なところから盛んに研究がなされ
ている。これらの結晶成長法の虻大の特徴は数lOλ以
下の薄膜エピタキシーの製作を可能としたところにあろ
う。この点から、これらの結晶成長法は超格子や量子井
戸構造等の超薄膜構造のへテロエピタキシーやいわゆる
選択ドーピング結晶を製作する上で最も特徴を発揮する
ものである。
(Prior art and its problems) In recent years, single molecular beam epitaxial growth method (MBE method: Mo1
ecular beam epitaxy) and organic metal thermal decomposition vapor phase growth method (MOCVD method: Me
talOrganic Chemical Vap
Since it is effective for controlling the layer thickness of a thin film epitaxial layer, much research has been carried out on the technique. The most important feature of these crystal growth methods is that they enable the production of thin film epitaxy of several lOλ or less. From this point of view, these crystal growth methods are most effective in producing heteroepitaxy of ultra-thin film structures such as superlattices and quantum well structures, and so-called selective doping crystals.

しかし、これら極薄膜のへテロエピタキシーでは結晶成
長温度を上昇するとヘテロ界面での母体構成元素の相互
拡散が生じたり、選択ドーピングすることを意図した5
椅晶層中からドーピング不純物が隣接層中に拡散し、所
定の構造が得られないといった問題が生じる。また、M
BB法で特に問題となる点であるが結晶成長温度を上昇
すると工ピタキシー室の温度上昇等による器壁からの脱
ガス等が生じ、結晶の純度の低下が生じる。さらζこエ
ピタキシー室内の構成素材は成長温度の上昇と共に耐熱
性素材−こ限られ、エピタキシー量系を構成する素材の
選択をきわめて限定する。
However, in heteroepitaxy of these ultrathin films, when the crystal growth temperature is increased, interdiffusion of host constituent elements occurs at the hetero interface, and 5
A problem arises in that doping impurities from the crystalline layer diffuse into the adjacent layer, making it impossible to obtain a desired structure. Also, M
A particular problem in the BB method is that when the crystal growth temperature is increased, degassing from the vessel wall occurs due to an increase in the temperature of the pitaxy chamber, resulting in a decrease in the purity of the crystal. Furthermore, as the growth temperature increases, the materials constituting the epitaxy chamber are limited to heat-resistant materials, and the selection of materials constituting the epitaxy system is extremely limited.

しかるに結晶成長温度をできるだけ下げたいという要求
が生まれる。例えば、厚さ数10λのGaA1層にのみ
Stをドーピングし、やはり厚さ士数人のアンドープA
A!As層とからなる超格子構造は混晶AJGa人$層
中に見られる深い準位の生成がないため2次元電子ガス
で動作する電界効果トランジスタの電子供給層としてき
わめて期待されるものであるが、結晶成長温度としては
550℃程度以下で行なわないと前記超格子構造はその
構造固有の強いフォトルミネッセンス(PI、)強度が
得られない等の現象が観察され、結晶性等に難がある。
However, there is a demand to lower the crystal growth temperature as much as possible. For example, if only one GaA layer with a thickness of several tens of λ is doped with St, and the undoped A layer with a thickness of several tens of
A! Since the superlattice structure consisting of the As layer does not generate the deep levels seen in the mixed crystal AJGa layer, it is extremely promising as an electron supply layer for field effect transistors that operate with two-dimensional electron gas. Unless the crystal growth is performed at a temperature of about 550° C. or lower, phenomena such as the inability to obtain the strong photoluminescence (PI) intensity inherent to the superlattice structure are observed, resulting in problems with crystallinity.

すなわち、要約するならばペテロ界面における相互拡散
、選択ドーピングにおけるドーピング不純物の拡散、あ
るいは残留不純物による汚染等の防止には低温での結晶
成長が望ましいが、低温成長では結晶品質に問題が生じ
る場合が多い。
In other words, to summarize, crystal growth at low temperatures is desirable in order to prevent interdiffusion at the Peter interface, diffusion of doping impurities in selective doping, and contamination by residual impurities, but low-temperature growth may cause problems with crystal quality. many.

(発明の目的) 含んだ半導体ウェーハ結晶成長する場合にこの多層構造
のへテロ界面における相互拡散等の問題を確実番ζ防止
することができ、かつ高品質なエピタキシャル結晶を得
ることのできる結晶成長法を提供することにある。
(Objective of the invention) A crystal growth method that can reliably prevent problems such as interdiffusion at the hetero interface of a multilayer structure when growing crystals on semiconductor wafers that contain them, and that can obtain high-quality epitaxial crystals. It is about providing law.

(発明の構成) 本発明の骨子は周期100又以下で少なくも1周期のG
aAsと人AlGaAs (AI組成X=0.2〜1.
0 )層を交互に積みかさね多MM造を有する結晶層を
含んだ半導体ウェーハ結晶成長する場合にまず、基板温
度として520℃以下の低温で成長すること、しかる後
、570〜630℃の温度で熱処理を行なうことを特徴
とする結晶成長方法にある。
(Structure of the Invention) The gist of the present invention is to provide at least one period of G with a period of 100 or less.
aAs and human AlGaAs (AI composition X=0.2-1.
0) In the case of crystal growth of a semiconductor wafer including a crystal layer having a multi-MM structure in which layers are stacked alternately, the growth must first be performed at a low substrate temperature of 520°C or less, and then at a temperature of 570 to 630°C. A crystal growth method characterized by heat treatment.

(実施例) 以下、この発明を実施例に基づき詳細に説明する。(Example) Hereinafter, this invention will be explained in detail based on examples.

ここでは3iをドーピングしたGaAs Inとアンド
ープAJAs層とからなる超格子構造をエピタキシャル
成長する場合の実施例について示す。
Here, an example will be described in which a superlattice structure consisting of 3i-doped GaAs In and an undoped AJAs layer is epitaxially grown.

形成しようとする超格子の構造を含んだウェーハの断面
図を第1図に示す。@1図で11はGaAs基板、12
はGaAs基板11からの不純物汚染等を避けるための
バッファ一層と呼ぶことにするAlGaAs層、13は
高純度GaAs層であり、14がGaAsと人lAs極
薄模からなる超格子層である。
FIG. 1 shows a cross-sectional view of a wafer containing a superlattice structure to be formed. @1 In the figure, 11 is a GaAs substrate, 12
1 is an AlGaAs layer which will be referred to as a buffer layer for avoiding impurity contamination from the GaAs substrate 11, 13 is a high-purity GaAs layer, and 14 is a superlattice layer made of GaAs and an extremely thin layer of As.

実施例における各層の厚みはバッファ一層であるAJG
aAs層12が0.5μm、高純度GaAs層13は1
μmおよび超格子層14は0.5μmである。超格子層
14の層構造のほぼ1周期分のバンド図を概念的に第2
図に示す。第2図に示されるように超格子m14の)g
4イ拷造を構成するGaAs M 21の中央部23に
はSiが3xlO”cIIL ドーピングしてあり、こ
れを挾むように作られたアシトープGaAs層24から
なっている。この第2図に示された超格子層14の形成
が520℃以下の低温で行なわれた場合には、8j 、
 Te、 8e等のドナーがドーピングされた人1xG
s1−xkm (k1組成比X ≧0.2)混晶で普遍
的に観測されるDXセンターと呼ばれる深い準位の濃度
は極めて低くなり、よく知られたP P C(Pers
istent Photoconductivity)
と呼ばれる深い準位に相関すると考えられる光伝導現象
も殆ど見られない。こうしたことから混晶AJGaAs
ではドナー不純物をドーピングしても高いキャリア濃度
を持った結晶層が得られないのに反し、前記超格子構造
ではキャリア濃度を容易に高めることができる。
The thickness of each layer in the example is AJG, which is one buffer layer.
The aAs layer 12 has a thickness of 0.5 μm, and the high purity GaAs layer 13 has a thickness of 1 μm.
μm and superlattice layer 14 is 0.5 μm. Conceptually, the band diagram for approximately one period of the layer structure of the superlattice layer 14 is
As shown in the figure. )g of the superlattice m14 as shown in FIG.
The central portion 23 of the GaAs M 21 constituting the four-layer structure is doped with Si to 3xlO''cIIL, and is comprised of acitopic GaAs layers 24 sandwiching this. When the superlattice layer 14 is formed at a low temperature of 520° C. or lower, 8j,
1xG doped with donors such as Te, 8e, etc.
The concentration of deep levels called DX centers, which are universally observed in s1-xkm (k1 composition ratio
Photoconductivity)
There is also almost no photoconduction phenomenon that is thought to be correlated with deep levels called . For these reasons, mixed crystal AJGaAs
In contrast, a crystal layer with a high carrier concentration cannot be obtained even by doping donor impurities, whereas the carrier concentration can be easily increased in the superlattice structure.

一方、520℃より高温での成長ではキャリア濃度の約
1/2以上に相当するDXセンターの発生あるいはPP
Cの発生が観測にかかりはじめ、成長温度の上昇に伴い
、いずれも増加し、ドーピング量を増してもキャリア濃
度が思ったように増加しない。現時点ではDXセンター
、あるいはPPCの起源については不明であるが、これ
ら深い準位の発生は8iドナーがAlAs層22に拡散
するか、あるいはAlAs 層22とGaAs層21と
の界面におけるhlとGaの相互拡散等、さらには両者
が同時進行することにより生じること等、いずれにして
も界面における相互拡散が関係していることは明白であ
る。520℃より高温で成長した超格子は以上の説明で
明らかなように第2図に示したような超格子構造とはな
らずに界面での母体構成元素の相互拡散、あるいはドナ
ー8iの拡散または両者が起こっていると考えられる。
On the other hand, when growing at a temperature higher than 520°C, DX centers or PP
The generation of C begins to be observed, and increases as the growth temperature increases, and even if the amount of doping is increased, the carrier concentration does not increase as expected. At present, the origin of the DX center or PPC is unknown, but the generation of these deep levels is due to the diffusion of 8i donors into the AlAs layer 22, or the formation of hl and Ga at the interface between the AlAs layer 22 and the GaAs layer 21. In any case, it is clear that mutual diffusion at the interface is involved, such as mutual diffusion, or even the simultaneous progress of both. As is clear from the above explanation, the superlattice grown at a temperature higher than 520°C does not have the superlattice structure shown in Figure 2, but rather due to interdiffusion of host constituent elements at the interface, diffusion of donor 8i, or It is likely that both are occurring.

従りて、第2図で示したような超格子構造の製作には5
20℃以下の低温での結晶成長を行なう必要がある。と
ころがこうした低温でエピタキシャル成長した場合には
必ずしも良好な結晶性が得られない。例えば超格子構造
に固有と考えられる強いPL強度は得られず、またPL
強度の経時変化がしばしば観測され、結晶の安定性に問
題があることがわかる。また、超格子構造ではキャリア
濃度を容易に高めることができると前記したがこれも十
分ではない。
Therefore, the fabrication of the superlattice structure shown in Figure 2 requires 5 steps.
It is necessary to perform crystal growth at a low temperature of 20° C. or lower. However, when epitaxial growth is performed at such low temperatures, good crystallinity is not necessarily obtained. For example, strong PL intensity, which is considered to be unique to superlattice structures, cannot be obtained, and PL
Changes in intensity over time are often observed, indicating problems with crystal stability. Moreover, although it was mentioned above that the carrier concentration can be easily increased with a superlattice structure, this is also not sufficient.

すなわち、第3図および第4図化は520℃以下の基板
温度でMBE成長した第1図の構造を持ったエピタキシ
ャルウェーハをH1中で30分間、各種温度で熱処理し
−た場合における超格子層の物性の変化を示した。第3
図はフォトルミネッセンス(PL)スペクトルを示した
ものであるが650℃以上の熱処理を受けた場合にはP
Lピーク波長が変化しており、かつPL強度が著しく減
少していることがわかる。800℃での熱処理試料での
PL強度は同様な旧ドーピングを行なって作られた混晶
AJGaAsと同等となっており、650℃以上の熱処
理ではhlとGaの相互拡散が進行することは明瞭であ
る。
That is, Figures 3 and 4 show the superlattice layers obtained when an epitaxial wafer with the structure shown in Figure 1, grown by MBE at a substrate temperature of 520°C or less, is heat-treated in H1 at various temperatures for 30 minutes. showed changes in physical properties. Third
The figure shows the photoluminescence (PL) spectrum, but when heat treated at 650℃ or higher, P
It can be seen that the L peak wavelength has changed and the PL intensity has decreased significantly. The PL intensity of the sample heat-treated at 800°C is equivalent to that of mixed crystal AJGaAs made with similar old doping, and it is clear that interdiffusion of hl and Ga progresses with heat treatment above 650°C. be.

さらに、第3図では600℃以下の熱処理によっては熱
処理温度の上昇に伴うPL強度の増加があることは注目
に値する。第4図はキャリア濃度、DXセンター濃度(
(a)図)、および77にで測定したPPC濃度”77
 K )および77におよび300にで測定したキャリ
ア濃度、それぞれn776およn a o o x((
b)図)の熱処理温度(T′)依存性を示したものであ
るが、熱処理温度(T)の上昇に伴うキャリア濃度の増
加が約650℃以下でも見られる。但し、第4図(b)
でそれぞれのキャリア濃度は添加8iの量CCs1 )
で規格化しである。このように650℃以下の低温でも
DXセンター濃度およびPPC濃度共に増加してはいる
が、この量はキャリア濃度の1/10以下であり実用上
問題とならない。第4図における650℃未溝の低温熱
処理でのPPC濃度の僅かな減少およびキャリア濃度の
増加は第3図で示した低温熱処理におけるPL強度の増
加傾向によく対応するものである。以上の結果から、こ
うした低温熱処理により、結晶性の改善あるいは不活性
であるドーピング不純物の活性化が生じていることを示
している。
Furthermore, in FIG. 3, it is noteworthy that depending on the heat treatment at 600° C. or lower, the PL strength increases as the heat treatment temperature increases. Figure 4 shows carrier concentration, DX center concentration (
(a) Figure), and the PPC concentration measured at 77
K) and the carrier concentrations measured at 77 and 300, respectively, n776 and naoox ((
b) shows the dependence on heat treatment temperature (T') in Figure 1), and an increase in carrier concentration with increase in heat treatment temperature (T) can be seen even below about 650°C. However, Fig. 4(b)
The respective carrier concentration is the amount of addition 8i (CCs1)
It is standardized. Although both the DX center concentration and the PPC concentration increase even at a low temperature of 650° C. or lower, this amount is less than 1/10 of the carrier concentration and does not pose a practical problem. The slight decrease in PPC concentration and increase in carrier concentration in the low-temperature heat treatment at 650°C without grooves in FIG. 4 correspond well to the tendency of increase in PL intensity in the low-temperature heat treatment shown in FIG. The above results indicate that such low-temperature heat treatment improves crystallinity or activates inactive doping impurities.

さらに、詳細な熱処理温度の依存性を検討した結果によ
れば熱処理温度の上限としては約630℃付近にあり、
熱処理が有効に働く熱処理温度の下限は570℃である
。もちろん、熱処理時間を増加するならば570°GJ
抹下でも結晶性改善の効果が見られることは当然の’I
J:である。また、上限の温度としても700’Ca度
の10秒曲程度の瞬時熱処理では超格子構造の物性を大
きく変化することはない。しかし、通常の熱処理時間と
して考えられる30分福度では約570℃から630℃
の範囲の温度で熱処理すれば超格子構造の物性を損なう
ことなく、しかも結晶性の改善を計ることができる。
Furthermore, according to the results of a detailed study of the dependence on heat treatment temperature, the upper limit of heat treatment temperature is around 630°C.
The lower limit of the heat treatment temperature at which heat treatment is effective is 570°C. Of course, if you increase the heat treatment time, it will be 570°GJ.
It is natural that the effect of improving crystallinity can be seen even under the skin.
J: Yes. In addition, instantaneous heat treatment at an upper limit temperature of 700'Ca degrees for about 10 seconds does not significantly change the physical properties of the superlattice structure. However, at a temperature of 30 minutes, which is considered to be a normal heat treatment time, the temperature ranges from about 570℃ to 630℃.
If heat treatment is performed at a temperature in the range of , it is possible to improve the crystallinity without impairing the physical properties of the superlattice structure.

以上に述べた結果をまとめるならば、周期100λ以下
で少なくも1周期のAlyGa 1−yAsとAJxG
ap−xAs (x % y * AA!組成X=0.
2〜1.0)層を交互に積みかさね多層構造すなわち超
格子構造を有する結晶層を含んだ半導体ウエーノ1結晶
成長する場合に超格子構造の製作には520℃以下の温
度で結晶成長を行ない、後に570〜630℃で熱処理
を行なうという方法をとることにより、優れた物性を示
す超格子構造が再現性良く得られることを示した。
To summarize the results described above, AlyGa 1-yAs and AJxG with at least one period with a period of 100λ or less
ap-xAs (x % y * AA! Composition X=0.
2-1.0) When growing a semiconductor waeno 1 crystal containing crystal layers having a multilayer structure, that is, a superlattice structure, in which layers are stacked alternately, the superlattice structure is produced by performing crystal growth at a temperature of 520°C or less. It was shown that a superlattice structure exhibiting excellent physical properties can be obtained with good reproducibility by using a method in which a heat treatment is subsequently performed at 570 to 630°C.

本発明は100又以下の周期を持った超格子に効果が顕
著であり、これ以上の周期を持った超格子を作る場合に
本発明のごとく、低温成長とG)う手段を用いる必要が
あまりない。しかし、こうした100λ以上の長周期の
M’fr子を作成したり、たとえ周期は長くとも超格子
層を43成する一方の材料層が数10又といった100
^以下の場合には本発明が有効であることはいうまでも
ない。
The present invention has a remarkable effect on superlattices with a period of 100 or less, and when creating a superlattice with a period of more than 100, it is not necessary to use low-temperature growth and G) means as in the present invention. do not have. However, it is difficult to create an M'fr element with a long period of 100λ or more, and even if the period is long, one material layer forming the 43 superlattice layer has several tens of layers.
It goes without saying that the present invention is effective in the following cases.

なお、実施例ではGaAsとAlAsからなる超格子層
の例について述べたが、本発明は一般にAJ y Ga
 1− yAsとAlx0a 1−xAs (x 〜y
 l/〆0.2≦X≦1.0)からなる超格子層にも有
効である。また他の材料の組み合わせによる超格子l−
に対しても材料に応じて成長温度および後の熱処理温度
が異なるものの本発明の低温成長後にそれよりも筒い温
度で熱処理する方法が適用され有効である。
In addition, in the embodiment, an example of a superlattice layer made of GaAs and AlAs was described, but the present invention generally applies to AJ y Ga
1-yAs and Alx0a 1-xAs (x ~ y
It is also effective for superlattice layers consisting of l/〆0.2≦X≦1.0). In addition, superlattice l- by combination of other materials
Although the growth temperature and the subsequent heat treatment temperature differ depending on the material, the method of the present invention of heat treatment at a lower temperature after low-temperature growth is applicable and effective.

(発明の効果) この発明を適用することにより、周期100X以下で少
なくも1周期のAlyGa 1−yAsとA7.Ga 
1−yAs(x’2y、AI組成X=0.2〜1.0)
層を交互に積みかさね多層構造を有する結晶層、すなわ
ち超格子層を再現性良く製作することができる。
(Effect of the invention) By applying the present invention, A7. Ga
1-yAs (x'2y, AI composition X=0.2-1.0)
A crystal layer having a multilayer structure by stacking layers alternately, that is, a superlattice layer, can be manufactured with good reproducibility.

すなわち、(1)超格子層を製作する場合に問題上なつ
ていたkl yGa 1− yAsとAA!xGal−
xAs(k1組成X=0.2〜1.0)層の界面におけ
る、…互拡散にもとづく構造の乱れが防止される。しか
も(2)相互拡散の問題を防止するために低温成長法が
取られるが、この場合の低い結晶品質の問題をも回避す
ることができる。さらlこ(3)超格子層を実作する場
合には低温成長ができるために結晶成長時の汚染が少な
く、かつ成長装置内の耐熱材料等に対する制約が解かれ
るため成長装置の設計自由度が増す。
That is, (1) klyGa 1- yAs and AA!, which were problematic when producing a superlattice layer. xGal-
At the interface of the xAs (k1 composition X=0.2 to 1.0) layer...disturbance of the structure based on interdiffusion is prevented. Moreover, (2) a low-temperature growth method is used to prevent the problem of interdiffusion, and the problem of low crystal quality in this case can also be avoided. (3) When actually producing a superlattice layer, low-temperature growth is possible, so there is less contamination during crystal growth, and restrictions on heat-resistant materials in the growth equipment are lifted, so there is greater freedom in the design of the growth equipment. increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の効果を示した実験に用いた超格子層を
含むウェーハの断面構造をしめず模式図、第2図は第1
図中の超格子層のほぼ1周期に相当する模式的バンド図
、第3図は熱処理前後でのフォトルミネッセンススペク
トルを示すグラフ、第4図(a)は超格子層の正味イオ
ン化不純物濃度とDXセンター一度の熱処理温度(T)
依存性を示すグラフ、第4図(b)は添加8131度(
C,、)で規格化したキャリア濃度とPPC濃度の熱処
理温度(’r)依存性を表わす図。 11 ; GaAs基板 12;バッフy  AlGaAs層 13;高純度GaAs 層 14;超格子層 21;超格子層を形成するGaAs 22;超格子層を形成するAA!As 23;超格子層を形成するGaAsのうちSiが添加さ
れた領域 24;超格子層を形成するGaAsのうち不純物が無添
加の領域 オ  l 図 第4図(a) +000/T  (K”) 第4図(b) +000/T  (K  )
Figure 1 is a schematic diagram showing the cross-sectional structure of a wafer containing a superlattice layer used in experiments to demonstrate the effects of the present invention, and Figure 2 is a schematic diagram of the cross-sectional structure of a wafer containing a superlattice layer used in experiments to demonstrate the effects of the present invention.
A schematic band diagram corresponding to approximately one period of the superlattice layer in the figure, Figure 3 is a graph showing photoluminescence spectra before and after heat treatment, and Figure 4(a) is a graph showing the net ionized impurity concentration and DX of the superlattice layer. Center heat treatment temperature (T)
The graph showing the dependence, Figure 4(b), shows the addition of 8131 degrees (
FIG. 3 is a diagram showing the dependence of carrier concentration and PPC concentration on heat treatment temperature ('r) normalized by C, . 11; GaAs substrate 12; buffer y AlGaAs layer 13; high purity GaAs layer 14; superlattice layer 21; GaAs forming superlattice layer 22; AA forming superlattice layer! As 23; region 24 of the GaAs forming the superlattice layer to which Si is added; region 24 of the GaAs forming the superlattice layer to which no impurities are added Figure 4(a) +000/T (K” ) Figure 4(b) +000/T (K)

Claims (1)

【特許請求の範囲】[Claims] 周期100Å以下で少なくとも1周期のAl_yGa_
1_−_yAsとAl_xGa_1_−_xAs(x≠
y,Al組成x=0.2〜1.0)層を交互に積みかさ
ね多層構造を有する結晶層を成長する場合にまず、基板
温度として520℃以下で成長すること、しかる後、5
70〜630℃の温度で熱処理を行なうことを特徴とす
る結晶成長法。
At least one period of Al_yGa_ with a period of 100 Å or less
1_-_yAs and Al_xGa_1_-_xAs (x≠
y, Al composition
A crystal growth method characterized by performing heat treatment at a temperature of 70 to 630°C.
JP21288284A 1984-10-11 1984-10-11 Crystal growth Granted JPS6191097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21288284A JPS6191097A (en) 1984-10-11 1984-10-11 Crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21288284A JPS6191097A (en) 1984-10-11 1984-10-11 Crystal growth

Publications (2)

Publication Number Publication Date
JPS6191097A true JPS6191097A (en) 1986-05-09
JPH0526760B2 JPH0526760B2 (en) 1993-04-19

Family

ID=16629818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21288284A Granted JPS6191097A (en) 1984-10-11 1984-10-11 Crystal growth

Country Status (1)

Country Link
JP (1) JPS6191097A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312222A (en) * 1989-05-26 1990-12-27 Nec Corp Manufacture of germanium-gallium arsenide junction
US6099640A (en) * 1997-09-03 2000-08-08 Nec Corporation Molecular beam epitaxial growth method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312222A (en) * 1989-05-26 1990-12-27 Nec Corp Manufacture of germanium-gallium arsenide junction
US6099640A (en) * 1997-09-03 2000-08-08 Nec Corporation Molecular beam epitaxial growth method

Also Published As

Publication number Publication date
JPH0526760B2 (en) 1993-04-19

Similar Documents

Publication Publication Date Title
US4404265A (en) Epitaxial composite and method of making
US9799737B2 (en) Method for forming group III/V conformal layers on silicon substrates
CN108352306B (en) Epitaxial substrate for semiconductor element, and method for manufacturing epitaxial substrate for semiconductor element
JPH0562452B2 (en)
JP2560562B2 (en) Epitaxial growth compound semiconductor crystal
US9543392B1 (en) Transparent group III metal nitride and method of manufacture
JPS6191097A (en) Crystal growth
JPS6394615A (en) Manufacture of vertical type semiconductor super lattice
JPH07312350A (en) Crystal growth method of gallium nitride-based compound semiconductor
JPH0458439B2 (en)
JPS61232606A (en) Epitaxial crystal
JP2747823B2 (en) Method for producing gallium arsenide layer and method for producing gallium arsenide / aluminum gallium arsenide laminate
JPS63122210A (en) Structure of crystal
JP3106526B2 (en) Compound semiconductor growth method
JPS62219614A (en) Method for growth of compound semiconductor
RU2064541C1 (en) Method of preparing heterostructures on the basis of semiconducting compounds a*991*991*991b*99v
JPH04133316A (en) Vapor phase epitaxy
JPH01261300A (en) Heteroepitaxial growth of al2o3 single crystal film on si substrate by reduce pressure vapor growth
JPS58223319A (en) Vapor growth method for semiconductor
JPH02237109A (en) Manufacture of semiconductor device
JP2006080503A (en) Semiconductor epitaxial substrate
JPS62234335A (en) Forming method for zinc selenide
JPH02228027A (en) Manufacture of compound semiconductor substrate
JPS6258616A (en) Arsenide galium epitaxial wafer and manufacture thereof
JPH02257616A (en) Vapor growth of compound semiconductor