JPS6190205A - Compensating method of absolute positioning error of robot - Google Patents

Compensating method of absolute positioning error of robot

Info

Publication number
JPS6190205A
JPS6190205A JP21161984A JP21161984A JPS6190205A JP S6190205 A JPS6190205 A JP S6190205A JP 21161984 A JP21161984 A JP 21161984A JP 21161984 A JP21161984 A JP 21161984A JP S6190205 A JPS6190205 A JP S6190205A
Authority
JP
Japan
Prior art keywords
robot
correction
absolute
error
deltac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21161984A
Other languages
Japanese (ja)
Inventor
Yozo Nishi
西 洋三
Eiji Kondo
英二 近藤
Yuji Watanabe
裕司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP21161984A priority Critical patent/JPS6190205A/en
Publication of JPS6190205A publication Critical patent/JPS6190205A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41176Compensation control, position error with data from lookup memory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41207Lookup table with position command, deviation and correction value
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45083Manipulators, robot

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To improve the accuracy of positioning of absolute position of robot, by correcting the positioning error against the absolute coordinates of a robot by detecting the error from a correction table in which each position of robot is specified. CONSTITUTION:The motion range of a robot is divided into gridiron, and a correction table is prepared to each division specifying correction volume of DELTAA-DELTAC, or correction volume for rectangular coordinates system deltax-deltaz. Suppose that the recognition of the present position of robot is P0(x',y',z'), against which the robot is actually positioned at P1(x,y,z) having differences of deltay, deltaz. Denoting that the rotating angle of rotation axis 8 obtained from encoder is A, and angles of 4th and 5th joints are B' and C' respectively, B' and C' should be corrected by DELTAB and DELTAC to make a correct recognition of present position, and B=B'+DELTAB; C=C'+DELTAC are obtained. When (x), (y), (z) coordinates are decided according to these angles A-C, then; x=f(A,B,C); y=g(A,B,C); and z=h(A,B,C), and coincide to the actual position P1(x,y,z).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はロボットの絶対位置決め誤差補償方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for compensating absolute positioning errors of a robot.

〔従来の技術〕[Conventional technology]

一般に、産業用ロボットは、予めオペレータがロボット
アームを動かして教示することによシ、作業順序・位置
およびその他の情報を記憶させ、それを再生することに
よシその作業を繰り返して行なうティーテングプレイパ
、タ方式がとられて、いる。この方式の場合には、口?
ットの絶対座標系での正確な移動機能(絶対精度)は求
められていないが、口&y)言語あるいはCAD (c
omputeraided design)出力に正確
に対応して作業を行なうロボットでは、上記絶対精度が
不可欠である。
In general, industrial robots memorize the work order, position, and other information by having the operator teach the robot by moving the robot arm in advance, and then repeat the work by replaying the memorized information. The playpa, ta method is adopted. In the case of this method, the mouth?
Accurate movement function (absolute precision) in the absolute coordinate system of the cut is not required, but it is
The above absolute precision is essential for a robot that performs work in accordance with the output (computerized design).

絶対座標系での誤差は、直交型ロチ、トの場合には生じ
にくいが、多関節型口?ット、特に垂直のがある。
Errors in the absolute coordinate system are less likely to occur in the case of orthogonal mouths, but multi-jointed mouths? There are some cuts, especially vertical ones.

(1)アーム長さく設計値)と実際のアーム長さが異な
る(製作誤差)。
(1) The actual arm length (designed arm length) is different (manufacturing error).

(2)予設定した口?ットの座標原点の状態と実際のロ
ボットの座標原点の状態が異なる(組立・調整誤差)。
(2) Preset mouth? The state of the robot's coordinate origin differs from the state of the actual robot's coordinate origin (assembly/adjustment error).

(3)演算上の幾何モデルと実際のロボットとの違い(
回転軸のねじれ、製作誤差)。
(3) Differences between the computational geometric model and the actual robot (
twist of the rotating shaft, manufacturing errors).

(4)  アームの自重、ワークの重さによる減速機、
軸受の変形、アームのたわみ、工作上の誤差、構造上不
可避な原因による回転軸の回転の不均一性。
(4) Reducer based on the weight of the arm and the weight of the workpiece,
Uneven rotation of the rotating shaft due to deformation of the bearing, deflection of the arm, manufacturing errors, or unavoidable structural causes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

すなわち、ロゴ、トが絶対座標系の位置データを受入し
ても、全ての動作空間範囲内でその位置データの示す位
置に正確に位置決めすることはできない。
That is, even if the logo receives position data in an absolute coordinate system, it cannot be accurately positioned at the position indicated by the position data within the entire operating space range.

本発明は上記実情に鑑みてなされたもので、絶対座標に
対する位置決め精度を向上させるようにしたロボットの
絶対位置決め誤差補償方法を提供することを目的とする
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for compensating absolute positioning errors of a robot, which improves positioning accuracy with respect to absolute coordinates.

〔問題点を解決するための手段〕゛ この発明によれば、ロボットの動作範囲を適当な間隔で
区分し、その各区分別に絶対座標に対する位置決め誤差
もしくはこの誤差をロボット各軸の移動量に換算した値
を補正値と1−て記憶する記憶テーブルを準備し、ロボ
ットの絶対座標系での位置に基づく移動指令があった際
には、その位置に対応して前記補正テーブルに記憶した
補正値を用いてロボットの移動位置誤差を補償するよう
にしている。
[Means for solving the problem] [According to the present invention, the operating range of the robot is divided into appropriate intervals, and for each division, the positioning error with respect to the absolute coordinates or this error is converted into the amount of movement of each axis of the robot. A memory table is prepared that stores the value as a correction value, and when there is a movement command based on the position of the robot in the absolute coordinate system, the correction value stored in the correction table corresponding to that position is prepared. is used to compensate for robot movement position errors.

〔作 用〕[For production]

口カットの絶対座標に対する位置決め誤差を補正テーブ
ルよシ読み出してこれを補償するようにしているため、
絶対座標系での誤差が大きいロボットでも、絶対座標に
対する位置決め精度を向上させることができる。
The positioning error with respect to the absolute coordinates of the opening cut is read out from the correction table and compensated for.
Even for robots with large errors in the absolute coordinate system, positioning accuracy with respect to the absolute coordinates can be improved.

〔実施例〕〔Example〕

以下、本発明を添付図面を参照して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は産業用口カットの一例を示す斜視図である。こ
のロボットは第1アーム11第2アーム2の腕と手首3
とを有する垂直多関節ロボットで、この口がットの動作
は、第1アーム1および第27−ム2を傾動させる第1
関節4および第2関節5、手首3のひねルおよび曲げを
行なう第3関節6および第4関節7、ロボット全体を旋
回させる旋回軸8の各単位機構の組み合わせによって構
成される。
FIG. 1 is a perspective view showing an example of an industrial opening cut. This robot has a first arm 11, a second arm 2, and a wrist 3.
This vertically articulated robot has a vertical articulated robot.
It is constituted by a combination of unit mechanisms: a joint 4 and a second joint 5, a third joint 6 and a fourth joint 7 that twist and bend the wrist 3, and a pivot shaft 8 that rotates the entire robot.

上記口&2)で絶対座標に対する位置決めを行なう際に
、アーム、ワークの重さによル生じる誤差を補償する場
合について説明する・ 第2図は第1図の模式図で、アーム、ワークの重さによ
シ、アーム、および関節にモーメントが加わシ、このモ
ーメントによ〕第1関節4はΔB回転し、g 2関節5
はΔC回転し、ロボットが位置決めした位置は理想的な
状態(アーム、関節の剛性が無限大(破線部参照))に
比べてδア、δ2の誤差が生じている場合に関して示し
ている。すなわち、この位置における絶対位置決め誤差
は、δア。
We will explain the case of compensating for errors caused by the weight of the arm and workpiece when positioning with respect to absolute coordinates in step &2) above. Figure 2 is a schematic diagram of Figure 1, and the weight of the arm and workpiece. A moment is applied to the bow, arm, and joint, and due to this moment, the first joint 4 rotates by ΔB, and the second joint 5 rotates by ΔB.
is rotated by ΔC, and the position determined by the robot has an error of δa and δ2 compared to the ideal state (arm and joint stiffness is infinite (see dashed line)). That is, the absolute positioning error at this position is δa.

δ2と“なる。It becomes δ2.

そこで、上記誤差δア、δ2t−補償するためには、モ
ーメントによる変形ΔB、ΔCを予め測定等によル求め
ておき、関節又はアクチュエータに取シ付けられた検出
器(エンコーダ等)によシ求めた角度B、Cを補正すれ
ばよい。
Therefore, in order to compensate for the above errors δa and δ2t, the deformations ΔB and ΔC due to the moment are determined in advance by measurement, etc., and then the deformations ΔB and ΔC due to the moment are determined by measurement etc. The obtained angles B and C may be corrected.

いま、口?ットが位置決めした位置の認識は、P@ (
x’、 y’、 z’ )で、実際に位置決めされた位
置P1(x、y、z)に対し、δア、δ2の誤差を生じ
ている。
Mouth now? Recognition of the position determined by the cut is performed using P@(
x', y', z'), an error of δa, δ2 occurs with respect to the actually positioned position P1 (x, y, z).

この現在位置P□(χe7eZ>の正しい認識度をそれ
ぞれB′およびC′とすると B/およびC′をΔB、
ΔCによって補正し、 BミB′+ΔB CミC′+ΔC 角度Aおよび補正した角度B、Cに基づいてxyz座標
位置を求めると、 x==f(A、B、C) y=g(AtB*C) 2ミh(B、() 実際に位置決めされた位置P1(X#7#Z)に一致す
る。
If the correct recognition degrees of this current position P□(χe7eZ> are B' and C', respectively, B/ and C' are ΔB,
Corrected by ΔC, BmiB'+ΔB CmiC'+ΔC Calculate the xyz coordinate position based on angle A and corrected angles B and C. *C) 2mih(B, () Matches the actually positioned position P1 (X#7#Z).

逆に、xyz座標で指定した位置P10C*71りへの
位置決めは、ΔB、ΔC関節が変形することを見込み、
位置決めを第3図に示すようにP@ G” + 7 ’
 yz / )で行なう。すなわち、位置P□(X p
 7 p z)から各角度A、B、Cを求め、 A== f’< X # )’ ) B=g’(X t )’ * Z ) C””h’(X t ”I p Z )この角度のうち
、B、CをΔB、ΔCによって補正し1 B’=B−ΔB C’ =C−ΔC ロボットの各関節がA 、 B’ 、 C’となるよう
に制御する、この結果として、ΔB、ΔC関節が変形し
てB、Cとなシ、位置決めを指定した位置P□(Xsy
、z)にロボットは位置決めされる。
On the contrary, positioning to position P10C*71 specified by xyz coordinates is expected to deform the ΔB and ΔC joints,
Positioning is done by P@G" + 7' as shown in Figure 3.
yz / ). That is, the position P□(X p
Find each angle A, B, and C from 7 p z), A== f'< ) Among these angles, B and C are corrected by ΔB and ΔC, and each joint of the robot is controlled so that it becomes A, B', and C'. , the ΔB and ΔC joints are deformed to B and C, and the position P□ (Xsy
, z).

また、上記ΔB、ΔCはアームの各関節に加わるモーメ
ントによって変わるが、垂直多関節ロボットの場合、口
?ットの姿勢によってモーメントが変わるため、ΔB 
、ΔCは一定ではなく、Bpcの大きさによりて変化す
る。そこで、B、Cを動作範囲内で適当に分割し、B、
Cの2次元マトリクスとして、次表に示す補正テーブル
を作成する。
Also, the above ΔB and ΔC vary depending on the moment applied to each joint of the arm, but in the case of a vertically articulated robot, the mouth? Since the moment changes depending on the posture of the kit, ΔB
, ΔC are not constant, but change depending on the magnitude of Bpc. Therefore, we divided B and C appropriately within the operating range, and
As a two-dimensional matrix of C, a correction table shown in the following table is created.

なお、旋回軸80回転角Aの場合は、第1アーム1、第
2アーム2の姿勢にはよらないので、Aによる一次元で
補正量ΔAをもつ。補正テーブルは、ある軸の補正量が
他の軸の位置に影響される場合は影響する軸故に応じて
2次元、3次元マトリクスとなる。
Note that in the case of the rotation angle A of the rotation axis 80, since it does not depend on the postures of the first arm 1 and the second arm 2, the correction amount ΔA is one-dimensional due to A. When the correction amount of a certain axis is affected by the position of another axis, the correction table becomes a two-dimensional or three-dimensional matrix depending on the axis that is affected.

また、第4図に示すようにこの口&、トの動作領域を基
盤目状に区分し、各区分別にΔA、ΔB。
In addition, as shown in FIG. 4, the operation area of the opening and opening is divided into basic grid shapes, and ΔA and ΔB are determined for each division.

ΔC(4人は旋回方向修正量)あるいは直交座標系での
誤差(δ工、δア、δ工)をそれぞれ記憶した補゛  
正テーブルを作成するようにしてもよい。
Compensators that each store ΔC (the turning direction correction amount for four people) or errors in the orthogonal coordinate system (δ-work, δ-A, δ-work)
A regular table may also be created.

なお、補正テーブルとしては、第1表に示したように動
作範囲な適当に分割した領域ごとに補正値を記憶するよ
うにしたものの他に、動作範囲を適当に分割した位置ご
とに補正値を記憶するようにしたものが考えられる。後
者の場合は、上記分割した位置以外の位置の補正値は、
その位置の前後の分割した位置における補正値に基づい
てIJ ニヤな内挿法により求めることができる。
In addition to the correction table that stores correction values for each appropriately divided area of the operating range as shown in Table 1, the correction table stores correction values for each appropriately divided area of the operating range. I can think of things that I remember. In the latter case, the correction value for positions other than the above divided positions is
IJ can be determined by a rough interpolation method based on the correction values at the divided positions before and after that position.

また本発明方法は、垂直多関節ロボットに限ららず、他
のタイプの口?ットに対しても適用できるものである。
Furthermore, the method of the present invention is applicable not only to vertically articulated robots but also to other types of mouths. It can also be applied to

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ロケ、トの絶対座
標に対する位置決め誤差を各位置に対応して記憶した補
正テーブルから読み出してその誤差を補正するようにし
ているため、ロボットの絶対位置の位置決め精度の向上
を図ることができる。
As explained above, according to the present invention, the positioning error with respect to the absolute coordinates of the location and the location is read out from the correction table stored corresponding to each position and the error is corrected. It is possible to improve positioning accuracy.

【図面の簡単な説明】 第1図は産業用口がットの一例を示す斜視図、第2図お
よび第3図はそれぞれ本発明方法を説明するために用い
た第1図の口?、トの模式図、第4図は第1図のロボッ
トの垂直平面内における動作範囲と本発明に係る補正テ
ーブルを作成する際の該動作範囲の区分の一例を示す図
である。 1・・・第1アーム、2・・・第2アーム、3・・・手
首、4・・・第1関節、5・・・第2関節、6・・・第
3′関節、第1図 第2図 第3図  2 第4図
[Brief Description of the Drawings] Fig. 1 is a perspective view showing an example of an industrial gutter, and Figs. 2 and 3 are the grate of Fig. 1 used to explain the method of the present invention. FIG. 4 is a diagram showing an example of the motion range of the robot shown in FIG. 1 in a vertical plane and the classification of the motion range when creating a correction table according to the present invention. 1... 1st arm, 2... 2nd arm, 3... wrist, 4... 1st joint, 5... 2nd joint, 6... 3' joint, Fig. 1 Figure 2 Figure 3 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] ロボットの動作範囲を適当な間隔で区分し、その各区分
内におけるロボットの絶対座標系で教示した位置とその
位置によって実際にロボットが位置決めされた際の位置
との誤差もしくはこの誤差をロボット各軸の移動量に換
算した値を補正値として前記各区分別に記憶した補正テ
ーブルを準備し、ロボットの絶対座標系での位置に基づ
く移動指令があった際には、その位置に対応して前記補
正テーブルに記憶した補正値を用いてロボットの移動位
置誤差を補償するようにしたことを特徴とするロボット
の絶対位置決め誤差補償方法。
The robot's operating range is divided into appropriate intervals, and the error between the position taught in the robot's absolute coordinate system within each division and the position when the robot is actually positioned based on that position, or this error, is calculated for each axis of the robot. A correction table is prepared in which the value converted to the amount of movement is stored as a correction value for each category, and when there is a movement command based on the position in the absolute coordinate system of the robot, the correction is performed in accordance with the position. A method for compensating absolute positioning errors of a robot, characterized in that errors in the movement position of the robot are compensated for using correction values stored in a table.
JP21161984A 1984-10-09 1984-10-09 Compensating method of absolute positioning error of robot Pending JPS6190205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21161984A JPS6190205A (en) 1984-10-09 1984-10-09 Compensating method of absolute positioning error of robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21161984A JPS6190205A (en) 1984-10-09 1984-10-09 Compensating method of absolute positioning error of robot

Publications (1)

Publication Number Publication Date
JPS6190205A true JPS6190205A (en) 1986-05-08

Family

ID=16608760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21161984A Pending JPS6190205A (en) 1984-10-09 1984-10-09 Compensating method of absolute positioning error of robot

Country Status (1)

Country Link
JP (1) JPS6190205A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222302A (en) * 1988-03-01 1989-09-05 Yoshiaki Kakino Numerical controller
EP0565737A1 (en) * 1991-10-16 1993-10-20 Fanuc Ltd. Method of correcting position of forward end of tool
JP2008036733A (en) * 2006-08-02 2008-02-21 Shiga Yamashita:Kk Trajectory control device of articulated link mechanism
JP2013052496A (en) * 2011-09-06 2013-03-21 Toyota Motor Corp Robot arm control device, control method and program
JP2014065097A (en) * 2012-09-25 2014-04-17 Canon Inc Robot device, robot control method, program and recording medium
US9586321B2 (en) 2014-06-02 2017-03-07 Seiko Epson Corporation Robot, control method of robot, and control device of robot
JP2017113867A (en) * 2015-12-25 2017-06-29 株式会社ダイヘン Robot control device
JP2017119342A (en) * 2015-12-25 2017-07-06 株式会社ダイヘン Robot control device
WO2017130286A1 (en) * 2016-01-26 2017-08-03 富士機械製造株式会社 Job creation device, work system and work robot control device
WO2018092243A1 (en) * 2016-11-17 2018-05-24 株式会社Fuji Working-position correcting method and working robot
WO2018092236A1 (en) * 2016-11-17 2018-05-24 株式会社Fuji Work robot and work position correction method
JP2020066083A (en) * 2018-10-24 2020-04-30 国立大学法人広島大学 Motion accuracy measuring method and position correction method for robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968183A (en) * 1972-11-07 1974-07-02
JPS5263578A (en) * 1975-11-20 1977-05-26 Fanuc Ltd Error correction system by means of numerical control
JPS60205713A (en) * 1984-03-30 1985-10-17 Hitachi Ltd Correcting device of operation positioning error of industrial robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968183A (en) * 1972-11-07 1974-07-02
JPS5263578A (en) * 1975-11-20 1977-05-26 Fanuc Ltd Error correction system by means of numerical control
JPS60205713A (en) * 1984-03-30 1985-10-17 Hitachi Ltd Correcting device of operation positioning error of industrial robot

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222302A (en) * 1988-03-01 1989-09-05 Yoshiaki Kakino Numerical controller
EP0565737A1 (en) * 1991-10-16 1993-10-20 Fanuc Ltd. Method of correcting position of forward end of tool
EP0565737A4 (en) * 1991-10-16 1994-07-27 Fanuc Ltd Method of correcting position of forward end of tool
JP2008036733A (en) * 2006-08-02 2008-02-21 Shiga Yamashita:Kk Trajectory control device of articulated link mechanism
JP2013052496A (en) * 2011-09-06 2013-03-21 Toyota Motor Corp Robot arm control device, control method and program
JP2014065097A (en) * 2012-09-25 2014-04-17 Canon Inc Robot device, robot control method, program and recording medium
US9586321B2 (en) 2014-06-02 2017-03-07 Seiko Epson Corporation Robot, control method of robot, and control device of robot
JP2017113867A (en) * 2015-12-25 2017-06-29 株式会社ダイヘン Robot control device
JP2017119342A (en) * 2015-12-25 2017-07-06 株式会社ダイヘン Robot control device
WO2017130286A1 (en) * 2016-01-26 2017-08-03 富士機械製造株式会社 Job creation device, work system and work robot control device
JPWO2017130286A1 (en) * 2016-01-26 2018-11-22 株式会社Fuji Job creation device, work system, and work robot control device
CN108698228B (en) * 2016-01-26 2022-03-15 株式会社富士 Task creation device, work system, and control device for work robot
CN108698228A (en) * 2016-01-26 2018-10-23 株式会社富士 The control device of task creation device and operating system and Work robot
WO2018092243A1 (en) * 2016-11-17 2018-05-24 株式会社Fuji Working-position correcting method and working robot
CN109952178A (en) * 2016-11-17 2019-06-28 株式会社富士 Work robot and job position modification method
CN109996653A (en) * 2016-11-17 2019-07-09 株式会社富士 Job position bearing calibration and Work robot
JPWO2018092236A1 (en) * 2016-11-17 2019-07-18 株式会社Fuji Work robot and work position correction method
JPWO2018092243A1 (en) * 2016-11-17 2019-07-18 株式会社Fuji Work position correction method and work robot
US11173608B2 (en) 2016-11-17 2021-11-16 Fuji Corporation Work robot and work position correction method
WO2018092236A1 (en) * 2016-11-17 2018-05-24 株式会社Fuji Work robot and work position correction method
US11285609B2 (en) 2016-11-17 2022-03-29 Fuji Corporation Working position correcting method and working robot
JP2020066083A (en) * 2018-10-24 2020-04-30 国立大学法人広島大学 Motion accuracy measuring method and position correction method for robot

Similar Documents

Publication Publication Date Title
CN107443382B (en) Industrial robot structure parameter error identification and compensation method
US4613943A (en) Operation teaching method and apparatus for industrial robot
CN100547614C (en) A kind of scaling method of industrial robot
JPS6190205A (en) Compensating method of absolute positioning error of robot
JP5030653B2 (en) Numerical control machine tool and numerical control device
JPH0553587B2 (en)
JP2694669B2 (en) Robot motion control method
WO1992012473A1 (en) Method of correcting deflection of robot
US4816733A (en) Tool position compensation method
JPH0768480A (en) Method for controlling articular angle of manipulator
JPH052168B2 (en)
Yun et al. A geometric postprocessing method for 5-axis machine tools using locations of joint points
JPH11277469A (en) Method and device for controlling parallel link mechanism
JPH0774964B2 (en) Robot positioning error correction method
JP2001022418A (en) Method for correcting teaching data for work robot
JPS62199383A (en) Control system of robot
JP2520324B2 (en) Automatic correction method for robot constants
JPH0446714B2 (en)
WO1991004521A1 (en) A method for the control of the path of a robot cell
JPS60118478A (en) Controller for position of joint type robot
JP2002215211A (en) Numerical controller
JPH074781B2 (en) How to reproduce the posture of the robot jig
JPH0731536B2 (en) Teaching data correction robot
JPH0417351Y2 (en)
JP2750635B2 (en) Drive control method for cylindrical coordinate robot