JPS6189903A - Thermal impact structure for ceramic stationary blade - Google Patents

Thermal impact structure for ceramic stationary blade

Info

Publication number
JPS6189903A
JPS6189903A JP21139084A JP21139084A JPS6189903A JP S6189903 A JPS6189903 A JP S6189903A JP 21139084 A JP21139084 A JP 21139084A JP 21139084 A JP21139084 A JP 21139084A JP S6189903 A JPS6189903 A JP S6189903A
Authority
JP
Japan
Prior art keywords
ceramic
segment
vane
segments
stationary blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21139084A
Other languages
Japanese (ja)
Inventor
Toshio Abe
俊夫 阿部
Hiroshi Ishikawa
浩 石川
Noboru Hisamatsu
暢 久松
Hiroshi Miyata
寛 宮田
Shiro Iijima
飯島 史郎
Ryoichiro Oshima
大島 亮一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Hitachi Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Hitachi Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP21139084A priority Critical patent/JPS6189903A/en
Publication of JPS6189903A publication Critical patent/JPS6189903A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce thermal stresses by deviding a wing section of a ceramic stattionary blade chordwise into more than two segments. CONSTITUTION:A wing section of a ceramic stationary blade is devided chordwise into more than two segments: a leading edge section 11 and a trailing edge section 12. This enables each of the segments to deform freely in expansion or contraction allowing thermal stresses to be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高温ガスタービンのセラミック製静翼に係り、
特に耐熱衝撃性に優れた静翼構造に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a ceramic stator blade for a high-temperature gas turbine;
In particular, it relates to a stator blade structure with excellent thermal shock resistance.

〔発明の背景〕[Background of the invention]

従来のガスタービン静翼は耐熱超合金製であり、積極的
な空気冷却等が実施されているが、現状の耐熱超合金を
使用する限シにおいては、該合金の温度を800C程度
に抑えることがその耐熱性から要求されてお9、その結
果タービン入口の燃焼ガス温度は高々1300C程度が
限度であると言われている。
Conventional gas turbine stationary blades are made of heat-resistant superalloys, and active air cooling is carried out, but in the current range where heat-resistant superalloys are used, the temperature of the alloy must be kept at around 800C. is required for its heat resistance9, and as a result, the combustion gas temperature at the turbine inlet is said to be limited to about 1300C at most.

しかしながら、さらにガスタービンの効率向上には燃焼
ガス温度の上昇が不可欠であり、この実現の喪めには高
温ガス流に直接曝される部分のセラミック化が不可欠で
あると言われている。ところでこの耐熱性に優れたセラ
ミックスは金属材料に比べて熱衝撃強度において著しく
劣ることも知られている。しfcがって、従来の金属材
料からなる静翼構造をそのままセラミック化するのみで
は、ガスタービンの使用条件に対して十分な耐熱衝撃信
頼性を確保できな匹ことを示している。
However, in order to further improve the efficiency of a gas turbine, it is essential to increase the temperature of the combustion gas, and it is said that in order to achieve this, it is essential to make the parts directly exposed to the high-temperature gas flow ceramic. However, it is also known that ceramics, which have excellent heat resistance, are significantly inferior in thermal shock strength compared to metal materials. Therefore, it is shown that sufficient thermal shock resistance reliability cannot be ensured under the usage conditions of a gas turbine by simply converting the conventional stator vane structure made of a metal material into a ceramic material.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、本来セラミックスが有する優れた耐熱
性を活かし、本来有する低い耐熱衝撃強度を補うに、同
じ使用条件に対し発生熱衝撃応力を抑えることによって
達成する産業用ガスタービンのセラミック静翼を提供す
ることにある。
The purpose of the present invention is to create a ceramic stator vane for an industrial gas turbine, which takes advantage of the excellent heat resistance inherent in ceramics and suppresses the thermal shock stress generated under the same operating conditions, in order to compensate for the inherent low thermal shock resistance. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

ガスタービンの効率向上のためには、高温燃焼ガス流中
に冷却空気を放出しないことも大きな効果がある。そこ
で、セラミックス自体の耐熱性を考慮して、静翼を構成
し直接高温ガスに曝されるセラミックスからなる部分の
積5甑的な冷却を省いた。次に、セラミックス自体の脆
性すなわち破壊までに許容される伸びが小さい欠点に着
目し、過渡的な温度変動に対したとえ各部に大きな温度
差が生じても、各部分が互いに大きく拘束し合うことな
く自由に膨張、収縮できるような構造とした。
In order to improve the efficiency of gas turbines, it is also very effective not to release cooling air into the high-temperature combustion gas flow. Therefore, in consideration of the heat resistance of the ceramic itself, we omitted the extensive cooling of the ceramic portion that constitutes the stationary blade and is directly exposed to high-temperature gas. Next, we focused on the flaw in the brittleness of ceramics itself, that is, the allowable elongation before breaking. It has a structure that allows it to expand and contract freely.

このような構造は、従来金属製の静翼で採用されていた
該静翼表面の温度分布に対応したきめ細かな冷却構造の
実現とは招入れないもので、該静翼をセラミック化する
ことによって初めて可能となったものである。
Such a structure does not allow for the realization of a fine-grained cooling structure that corresponds to the temperature distribution on the surface of the stator blade, which was conventionally adopted with metal stator blades, and by making the stator blades ceramic. This is the first time this has become possible.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図〜第10図により説明す
る。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 10.

第1図は本発明による一実施例を含んだ全体構成を示す
ものである。本発明は特に翼部1に関するものであるが
、該翼部は数個のセグメントに分割されたものから構成
され、これらは嵌合結合により一体となり、セラミック
側板4および5、サイドウオール2.3を介して該翼部
の内部を貫通して該サイドウオーム同志を堅固に締結し
ている部材6によシ固定支持される。翼部1の詳細な実
施例を第2図〜第10図に示す。第2図〜第4図はそれ
ぞれ上記翼部を長手方向に該翼部の前縁部を1つのセグ
メントとして分割したことを特徴とするものである。ガ
スタービンの静翼は起動あるいは停止時に急激な温度変
化を受ける。特にセラミックスは一般に熱伝導特性が良
くないため、前縁部とそれ以外の残りの領域では大きな
温度差が生じるが、これらの実施例ではそれぞれのセグ
メント11及び12が自由に膨張、収縮でき、各該セグ
メントには互いの変形の拘束がもたらされない。
FIG. 1 shows the overall configuration including one embodiment of the present invention. The invention relates in particular to the wing 1, which consists of several segments that are joined together by means of a mating connection, and includes ceramic side plates 4 and 5, side walls 2.3. The side worms are fixedly supported by a member 6 which penetrates the inside of the wing section and firmly fastens the side worms together. Detailed embodiments of the wing section 1 are shown in FIGS. 2 to 10. 2 to 4 are each characterized in that the wing section is divided into one segment at the leading edge of the wing section in the longitudinal direction. Gas turbine stationary blades undergo rapid temperature changes when starting or stopping. In particular, ceramics generally have poor thermal conductivity properties, resulting in a large temperature difference between the leading edge and the remaining region, but in these embodiments, each segment 11 and 12 can freely expand and contract, and each The segments are not restrained from deforming each other.

第5図は別な効果を狙った他の実施例で、ガスタービン
静翼の入口の燃焼ガス温度はガスタービン半径方向(該
静翼の長手方向に対応する)に台形形の温度分布を呈し
、翼部中央で高くサイドウオール側すなわち翼端部で低
いという事実に着目し、静翼を長手方向に、中央セグメ
ント22、及び上、下セグメン)21.23の3分割と
した例である。この場合には、与えられたガスタービン
入口温度分布の設計仕様によって、各セグメントの寸法
を該各セグメント内の温度が可能な限り一様になるよう
決定するのが望ましい。第6図は第2図と第5図に示し
た異なった狙いを有する実施例を組み合せたもので、タ
ービン入口温度の台形状分布と急激な燃焼ガス温度変動
に耐え得る静翼とすることを狙ったものである。
FIG. 5 shows another embodiment aiming at a different effect, in which the combustion gas temperature at the inlet of the gas turbine stator blade exhibits a trapezoidal temperature distribution in the gas turbine radial direction (corresponding to the longitudinal direction of the stator blade). This example focuses on the fact that the vane is high at the center of the vane and low at the sidewall side, that is, at the tip of the vane, and the stator vane is divided into three parts in the longitudinal direction: a central segment 22, and upper and lower segments 21 and 23. In this case, it is desirable to determine the dimensions of each segment so that the temperature within each segment is as uniform as possible according to the given design specifications for the gas turbine inlet temperature distribution. Figure 6 is a combination of the embodiments shown in Figures 2 and 5 with different aims, and aims to create a stator blade that can withstand the trapezoidal distribution of turbine inlet temperature and rapid fluctuations in combustion gas temperature. That's what I was aiming for.

第7図〜第8図は静翼の背側、腹側の温度差に対しても
同様の効果を狙った場合の実施例でおる。
FIGS. 7 and 8 show examples in which the same effect is aimed at for the temperature difference between the back side and the vent side of the stationary blade.

第9図は第5図の如き実施例の場合の各セグメントの嵌
合構造の一実施例である。上セグメント21にはR断面
形状の凸部41を設け、これに適合するよう、中央セグ
メント22には図中で上面には四部42を、一方下面に
は凸部43が設けられている。さらに下セグメント23
にも同様に上面に凹部44が設けられており、凸部41
は凹部42に、凸部43は凹部44にそれぞれ嵌合され
、各セグメントにより翼部全体が形成される。
FIG. 9 shows an example of the fitting structure of each segment in the case of the embodiment shown in FIG. 5. The upper segment 21 is provided with a convex portion 41 having an R cross-sectional shape, and to match this, the central segment 22 is provided with four portions 42 on the upper surface and a convex portion 43 on the lower surface in the figure. Further lower segment 23
Similarly, a concave portion 44 is provided on the upper surface, and a convex portion 41
are fitted into the recesses 42, and the protrusions 43 are fitted into the recesses 44, respectively, and the entire wing section is formed by each segment.

第10図はさらに第6図の一セグメントの詳細な構造を
第9図と同様に示したものである。この例は第6図の中
央セグメントを示しているが、セグメン)51と52の
嵌合にはM9図に示すような凹部凸部は不要であり、こ
の場合には上、下サイドウオールへの嵌合構造によシ各
セグメントの固定支持を行うことができる。
FIG. 10 further shows the detailed structure of one segment of FIG. 6 in the same way as FIG. 9. Although this example shows the center segment in Fig. 6, the concave and convex parts shown in Fig. M9 are not necessary for fitting segments 51 and 52, and in this case, there is no need for the concave and convex portions shown in Fig. M9. The mating structure provides fixed support for each segment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、静翼各部をセグメントに分割した構造
としており、右セグメントをそれぞれ可能な限シ一様な
温度とするよう構成しているので、各セグメントが各々
自由に膨張、収縮変形できるので、各セグメントの熱応
力が大幅に軽減され、したがって静翼全体の発生熱厄力
が低く抑えられるので強度信頼性を大幅に向上できると
いう効果がある。また、燃焼ガス流中に曝されることに
よつて万−生じた損傷に対し、該当する部分のセグメン
トのみの部分交換が可能である。一方、セグメントによ
って負荷条件が異なるので、設計寿命に到達したセグメ
ントより順次交換するなど、全体として保守の費用を節
約できるなどの副次的効果も期待される。
According to the present invention, each part of the stator blade is divided into segments, and the right segment is configured to have as uniform a temperature as possible, so each segment can freely expand and contract. Therefore, the thermal stress in each segment is significantly reduced, and the thermal stress generated in the entire stationary blade is therefore suppressed to a low level, resulting in the effect that strength reliability can be significantly improved. Further, in case of damage caused by exposure to the combustion gas flow, only the corresponding segment can be partially replaced. On the other hand, since the load conditions differ depending on the segment, side effects such as the ability to save maintenance costs as a whole are also expected, such as by replacing segments sequentially when they reach the end of their design life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は静翼の全体1成概略図、第2図ないし第8図は
それぞれ異った実施例を示す興部の斜視図、第9図ない
し第10図はそれぞれ異った実施例を示す翼部の構成部
分の斜視図である。 11・・・尻の前縁部のセグメント、12・・・翼の後
縁′ij g 記 官1頁の続き 5発 明 者  宮  1)    寛  土浦市神立
町50旙地■発 明 者  飯 島   史 部  日
立市幸町3丁目1召所内
Fig. 1 is a schematic diagram of the entire stator vane, Figs. 2 to 8 are perspective views of the Okonobe showing different embodiments, and Figs. 9 to 10 show different embodiments. FIG. 3 is a perspective view of the constituent parts of the wing section. 11... Segment of the leading edge of the butt, 12... Trailing edge of the wing 'ij g Continued from Page 1 of the Registrar 5 Inventor: Miya 1) Hiroshi 50, Kandate-cho, Tsuchiura City■ Inventor: Iijima History Department 3-1 Saiwaimachi, Hitachi City

Claims (1)

【特許請求の範囲】 1、高温燃焼ガスを仕事をなす回転動翼に導くための流
路を構成する上、下サイドウォールと、該サイドウォー
ルに支持され、高温燃焼ガス流中に該高温燃焼ガス流を
一定の角度で回転動翼に流入させるべく配置された翼部
から構成されるガスタービンのセラミック製静翼におい
て、 翼部の前縁部と後縁部を該翼部のコード方向に沿って2
個以上に分離してあることを特徴とするセラミック静翼
耐熱衝撃構造。
[Scope of Claims] 1. Upper and lower sidewalls forming a flow path for guiding high-temperature combustion gas to rotary rotor blades that perform work; In a gas turbine ceramic stator vane consisting of a vane section arranged to allow gas flow to flow into a rotating rotor blade at a constant angle, the leading edge and the trailing edge of the vane section are arranged in the chord direction of the vane section. Along 2
A ceramic stator vane with a thermal shock-resistant structure characterized by being separated into more than one individual piece.
JP21139084A 1984-10-11 1984-10-11 Thermal impact structure for ceramic stationary blade Pending JPS6189903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21139084A JPS6189903A (en) 1984-10-11 1984-10-11 Thermal impact structure for ceramic stationary blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21139084A JPS6189903A (en) 1984-10-11 1984-10-11 Thermal impact structure for ceramic stationary blade

Publications (1)

Publication Number Publication Date
JPS6189903A true JPS6189903A (en) 1986-05-08

Family

ID=16605166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21139084A Pending JPS6189903A (en) 1984-10-11 1984-10-11 Thermal impact structure for ceramic stationary blade

Country Status (1)

Country Link
JP (1) JPS6189903A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169843A (en) * 2007-01-11 2008-07-24 General Electric Co <Ge> Gas turbine blade device
EP2213839A3 (en) * 2009-01-28 2013-12-25 United Technologies Corporation Segmented ceramic component for a gas turbine engine
ITCO20120058A1 (en) * 2012-12-13 2014-06-14 Nuovo Pignone Srl METHODS FOR MANUFACTURING BLADES DIVIDED IN TURBOMACCHINE BY ADDITIVE PRODUCTION, TURBOMACCHINA POLES AND TURBOMACHINES
EP3012412A1 (en) * 2014-10-24 2016-04-27 United Technologies Corporation Gas turbine engines and corresponding maintenance method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169843A (en) * 2007-01-11 2008-07-24 General Electric Co <Ge> Gas turbine blade device
EP2213839A3 (en) * 2009-01-28 2013-12-25 United Technologies Corporation Segmented ceramic component for a gas turbine engine
ITCO20120058A1 (en) * 2012-12-13 2014-06-14 Nuovo Pignone Srl METHODS FOR MANUFACTURING BLADES DIVIDED IN TURBOMACCHINE BY ADDITIVE PRODUCTION, TURBOMACCHINA POLES AND TURBOMACHINES
EP2743452A1 (en) * 2012-12-13 2014-06-18 Nuovo Pignone S.p.A. Methods of manufacturing divided blades of turbomachines by additive manufacturing
EP3012412A1 (en) * 2014-10-24 2016-04-27 United Technologies Corporation Gas turbine engines and corresponding maintenance method
US10801340B2 (en) 2014-10-24 2020-10-13 Raytheon Technologies Corporation Multi-piece turbine airfoil

Similar Documents

Publication Publication Date Title
US4169694A (en) Ceramic rotor blade having root with double curvature
US4396349A (en) Turbine blade, more particularly turbine nozzle vane, for gas turbine engines
EP3232005B1 (en) Turbine vane with load distribution system having a compliant layer
JP5414200B2 (en) Turbine rotor blade assembly and method of making the same
JP4800689B2 (en) Turbine blade with skirt
US4802824A (en) Turbine rotor
US5522705A (en) Friction damper for gas turbine engine blades
US5358379A (en) Gas turbine vane
US6733233B2 (en) Attachment of a ceramic shroud in a metal housing
US6543996B2 (en) Hybrid turbine nozzle
US20120063881A1 (en) Abradable bucket shroud
US20050129519A1 (en) Center located cutter teeth on shrouded turbine blades
JPS58138206A (en) Integrally cast fixed blade structure of turbine
JP2008157251A (en) Coronary rail for supporting arc-like element
US8444371B2 (en) Axially-oriented cellular seal structure for turbine shrouds and related method
US10443389B2 (en) Turbine blade having improved flutter capability and increased turbine stage output
US4180371A (en) Composite metal-ceramic turbine nozzle
WO1996015356A1 (en) An improved airfoil structure
JPS6189903A (en) Thermal impact structure for ceramic stationary blade
US9765631B2 (en) Structural configurations and cooling circuits in turbine blades
JP2003214109A (en) Turbine blade
JPS58182034A (en) Gas turbine combustor tail cylinder
US7934900B1 (en) Nozzle guide vane for a gas turbine engine
JP2777609B2 (en) Ceramic stationary blade
JPS62605A (en) Static vane of gas turbine