JPS618980A - Light conducting element - Google Patents

Light conducting element

Info

Publication number
JPS618980A
JPS618980A JP59129860A JP12986084A JPS618980A JP S618980 A JPS618980 A JP S618980A JP 59129860 A JP59129860 A JP 59129860A JP 12986084 A JP12986084 A JP 12986084A JP S618980 A JPS618980 A JP S618980A
Authority
JP
Japan
Prior art keywords
substrate
film
ganx
light
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59129860A
Other languages
Japanese (ja)
Inventor
Kazumi Sadamatsu
和美 貞松
Yoshiya Takeda
悦矢 武田
Shinji Fujiwara
慎司 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59129860A priority Critical patent/JPS618980A/en
Publication of JPS618980A publication Critical patent/JPS618980A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a highly sensitive light conductive element over the entire visual light region with good reproducibility, by forming a GaNx film on a light transmitting substrate having a transparent electrode, and forming a light conducting film of (Zn(1-x)CdxTe)1-y(In2Te3)y (0<=x<=1, 0<=y<=0.1) on said film. CONSTITUTION:In2O3 12 is formed on a glass substrate 11, which is optically polished, as a transparent electrode to a thickness of 1,000Angstrom by a vacuum evaporation method at a substrate temperature of 250 deg.C and at an oxygen partial pressure of 4X10<-4>torr. Then GaNx 13 is formed on the substrate by using an RF sputtering method. Ga having a purity of 6N is used as a target. A film thickness of 500Angstrom is obtained in a mixed gas of Ar:N2=3:7 at a pressure of 3-5X10<-2>torr and a substrate temperature of 300 deg.C by discharge power of 30W. Then the substrate is set in a vacuum evaporating device. For example, (Zn0.7 Cd0.3Te)0.95(In2Te3)0.05 14 is formed to a thickness of 3mum at a substrate temperature of 200 deg.C. Then, heat treatment is performed in a vacuum at 550 deg.C for 15- 60min.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光導電素子に関するもので2特にテレビカメラ
用撮像管ターゲットの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to photoconductive devices, and more particularly to improvements in image pickup tube targets for television cameras.

従来例の構成とその問題点 ′従来、撮像管ターゲットの光導電材料として(Zn 
(1−x) Cdx’l’e )   (丁n2 Te
3 )’J y、 用イ−Y た光導室形撮像管には、例えば白黒用のパニュービコン
”(商品名)と、カラー用として光学ストライプフィル
タを内蔵した1′ニユーコスビコン゛(商品名)等があ
る。この撮像管ターゲットは透明電極からの正孔の注入
を防ぐ目的で。
Conventional structure and its problems 'Conventionally, Zn was used as the photoconductive material for the image pickup tube target
(1-x) Cdx'l'e ) (ding n2 Te
3) For example, there are two types of light guide chamber type image pickup tubes: the black-and-white ``Panubicon'' (product name), and the 1' ``Newcos Bicon'' (product name) with a built-in optical stripe filter for color images. This image pickup tube target is intended to prevent hole injection from the transparent electrode.

Zn5eやZn Q−a) Cda S o膜2透明電
極ト、 光導電材料(Zn(1−X) CdxTe )
   (I+n2 Te5)Y1″″y との間に形成している。しかし正孔のブロッキング材料
としてZn5e f用いたものは、光学的バンドギャッ
プが2.67 (30oK)evであるため460朋よ
シ短波長の光は吸収してしまい、(Zn (1−X) 
CdxTe)1−y(In2 Te5)’Iに光が入射
しなくなって青色感度が低下してしまうという欠点があ
る。またZn (1−a) CdaS  f用いたもの
は+ ZnとCd  の係数aの値を変化させることに
よシ分光特性全350 mtsから490順まで自由に
設定できる。この場合、a=0にすると、すなわちZn
 (1−a) CdaS = ZnS  になシ、青色
光はよく透過するが、抵抗が高いためVC、(Zn (
1−x) CdxTe ) 1−Y (In zTe、
:s) y 膜に電圧がかからなくなる。このような光
導電素子を撮像管ターゲットとして使用したときは、焼
付けの消える電圧が高くなシ、ターゲット電圧を高く設
定しなければならない。これは、テレビ画面に白点キズ
を多数発生させる原因となる。
Zn5e or ZnQ-a) CdaSO film 2 transparent electrode, photoconductive material (Zn(1-X)CdxTe)
It is formed between (I+n2 Te5)Y1″″y. However, the material using Zn5e as a hole blocking material has an optical bandgap of 2.67 (30oK) ev, so it absorbs light with a short wavelength of 460 degrees, and (Zn (1-X)
There is a drawback that no light is incident on CdxTe)1-y(In2Te5)'I, resulting in a decrease in blue sensitivity. Further, in the case of using Zn (1-a) CdaS f, the spectral characteristics can be freely set from 350 mts to 490 mts by changing the value of the coefficient a of +Zn and Cd. In this case, if a=0, that is, Zn
(1-a) CdaS = ZnS, blue light is transmitted well, but the resistance is high, so VC, (Zn (
1-x) CdxTe) 1-Y (InzTe,
:s) y No voltage is applied to the membrane. When such a photoconductive element is used as an image pickup tube target, the target voltage must be set high because the voltage at which the image disappears is high. This causes many white spots to appear on the television screen.

また、a−1にしてZn、(1−a) CdaS = 
CaSにすると抵抗は低くなるが青色光が透過しなくな
シ、青色感度が低下してしまう。したがってaの値は透
過率と抵抗とのかねあいから最適値がJ     ある
。しかしながら、この中間膜材料の三元素には、当然な
がら蒸気圧に差があるため組成の制御が困難であり、し
たがって青感度のバラツキが多く生産の歩留シが低下し
てしまうという欠点があった。
Also, a-1 is Zn, (1-a) CdaS =
If CaS is used, the resistance will be lower, but blue light will not be transmitted through it, and the blue sensitivity will be lowered. Therefore, the value of a has an optimum value based on the balance between transmittance and resistance. However, the three elements of the interlayer film material naturally have different vapor pressures, which makes it difficult to control the composition.Therefore, there is a drawback that the blue sensitivity varies widely and the production yield decreases. Ta.

発明の目的 本発明の目的は、青感度を向上させたことによシ可視光
全域にわたシ高感度な光導電素子盆再現性よく提供する
ことで塾る。
OBJECTS OF THE INVENTION An object of the present invention is to provide a photoconductive element with high sensitivity over the entire visible light range with good reproducibility by improving blue sensitivity.

発明の構成 本発明は上記の目的を達するため、透明電極を有する透
光性基板上にG s N x膜を形成し、さうK ソノ
上K (Zn(1−x) CdxTe ) 1− y 
 (I n 2 ′ll′e3)y、(o≦X≦1.0
≦y≦0.1)の光導電膜全形成してなる光導電素子を
構成したものである。
Structure of the Invention In order to achieve the above-mentioned object, the present invention forms a GsNx film on a transparent substrate having a transparent electrode.
(I n 2 'll'e3)y, (o≦X≦1.0
y≦0.1), a photoconductive element is constructed in which all photoconductive films are formed.

実施例の説明 第1図は1本発明の光導電素子の断面図を示すものであ
る。すなわち1本発明の光導電素子は第1図に示すよう
に透明電極(2)付きの透光性基板(1)上にG a 
N x膜(3)ヲもうけ5次に光導電材    F料で
ある(Zn(1−x) cdx’re)1−y(In、
2 Te3 )yの膜(4)t−形成したものである。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows a sectional view of a photoconductive element of the present invention. That is, 1 the photoconductive element of the present invention, as shown in FIG.
N
2Te3)y film (4)t-formed.

第2図は第1図の構造におけるエネルギーバンド図を示
すもので、第2図(a)は平衡状態、同図(b)は撮像
動作させた場合のものである。光は透明電極からG a
N x膜?透過し、(Zn(1−x) CdXTe )
1−y(I nz Te 3 ) y膜で吸収されて正
孔・電子対全発生する。発生した電子はトンネル効果に
よシGaNx中全通過して透明電極へ流扛、正孔は(z
、−X)CdxTe)1−y ’(In2 Te3 ’
Y模膜中表面に向かって移動し、その部分の電子と中和
して表面電位を低下させ、信号電流として流れる。
FIG. 2 shows an energy band diagram for the structure shown in FIG. 1, in which FIG. 2(a) shows an equilibrium state, and FIG. 2(b) shows a state of imaging operation. Light is transmitted from the transparent electrode to Ga
Nx membrane? Transmitted, (Zn(1-x)CdXTe)
1-y(InzTe3)y is absorbed by the y film and all hole/electron pairs are generated. The generated electrons pass through GaNx due to the tunnel effect and flow to the transparent electrode, and the holes are (z
, -X)CdxTe)1-y'(In2Te3'
It moves toward the surface of the Y model, neutralizes the electrons in that area, lowers the surface potential, and flows as a signal current.

Ga N xは光学的バンドギャップが3.39 eV
 で(Zn (1−X) CdxTe ) 1−y (
In’2 Te3 )yよシ大きく、したがって、36
00よシ長波長の光を透過するととも゛に、電極からの
正孔の注入をブロッキングする。一方、電子は、G a
 N x膜中金トンネル効果によシ通過しなければなら
ず、そのためG a N xの膜厚は無制限に厚くでき
ず一定め最適値がある。
GaN x has an optical bandgap of 3.39 eV
(Zn (1-X) CdxTe ) 1-y (
In'2 Te3 ) is larger than y, so 36
It transmits light with a wavelength longer than 0.00 nm, and blocks hole injection from the electrode. On the other hand, the electron is Ga
The gold must pass through the Nx film due to the gold tunneling effect, and therefore the thickness of the GaNx film cannot be increased without limit, but has a certain optimum value.

以下、具体的な実施例を示す。Specific examples will be shown below.

実施例 l 第3図に実施例1の光導電素子の断面図を示す。Example l FIG. 3 shows a cross-sectional view of the photoconductive element of Example 1.

光学研摩したガラス基板ID上に透明電極としてI n
 203112を基板温度250℃、酸素分圧4X 1
0  torr  で100OA真空蒸着法によシ形成
する。次にこの基板上にQaNx(131’e形成する
。GaNxは、RFスパッタリング法を用いて形成する
。ターゲットに純度6NのG a f用い、Ar :N
 2−3 : 7の混合ガスで圧力ヲ3〜5X I O
torr 基板部5度300°C1放電電力30Wによ
シ%500Aの膜厚に形成する。次にこの基板全真空蒸
着装置に設定する。基板温度200°Cにて(Zn0.
7 cctO,3Te)0.95 (In2Te3 )
0.05 (141k B p m (D厚すニ形成L
−ソノffl真空中550”Cで15〜60分熱処理ケ
おこなう。このようにして得られた光導電素子を撮像管
ターゲットとして撮像管に組みこんで分光特性を測定し
た。その結果を第4図の線Bに示す。
I n as a transparent electrode on an optically polished glass substrate ID.
203112, substrate temperature 250℃, oxygen partial pressure 4X 1
It is formed by a 100OA vacuum evaporation method at 0 torr. Next, QaNx (131'e) is formed on this substrate. GaNx is formed using the RF sputtering method. Ga f with a purity of 6N is used as a target, and Ar:N
2-3: Pressure 3-5X IO with mixed gas of 7
torr substrate part 5 degrees 300 degrees C1 discharge power 30W to form a film thickness of 500A. Next, this substrate is set in a full vacuum evaporation apparatus. At a substrate temperature of 200°C (Zn0.
7 cctO,3Te)0.95 (In2Te3)
0.05 (141k B p m (D thickness)
- Heat treatment at 550"C in a vacuum for 15 to 60 minutes. The photoconductive element thus obtained was incorporated into an image pickup tube as a target and its spectral characteristics were measured. The results are shown in Figure 4. It is shown in line B of .

比較の為、従来〕Z n S e  (Z n (1−
n)Cd X T e) 1 ++ y(In2 Te
5)y 構造の撮像管ターゲッドニュ−ビコン”の分光
感度時tl線Aに示す。このように本発明の構成で用い
た撮像管ターゲットは、従来の撮像管ターゲットよシ青
感度が高くなり、可視光から近赤外光の領域にわたシ高
感度な撮像管ターゲットを得ることができる。
For comparison, conventional] Z n S e (Z n (1-
n) Cd X T e) 1 ++ y(In2 Te
5) The spectral sensitivity of the image pickup tube target "Nubicon" with the y structure is shown in tl line A. In this way, the image pickup tube target used in the configuration of the present invention has higher spectral sensitivity than the conventional image pickup tube target, and the visible It is possible to obtain an imaging tube target with high sensitivity in the light to near-infrared light region.

実施例 2 第5図に実施例2の光導電素子の断面図ケ示す。光学研
摩したガラス基板oD上に透明電極として5no2(2
1スプレー法を用いて形成する。
Example 2 FIG. 5 shows a cross-sectional view of a photoconductive element of Example 2. 5no2 (2
Formed using a one-spray method.

次にこの基板上にGa N x(ハ)を形成する。Ga
Nxは1反応性クラスタビーム法を用いて形成する。
Next, Ga N x (c) is formed on this substrate. Ga
Nx is formed using the one-reactive cluster beam method.

GaNx  (純度5N)の粉末’Th0.1s+iψ
の噴出孔をもつるつぼに入れて1000°Cで加熱する
GaNx (purity 5N) powder 'Th0.1s+iψ
Place it in a crucible with a nozzle and heat it at 1000°C.

基板温度は450″Cでコントロールし、N2ガスk 
5 X l O−’torr  導入してG a N 
xとN2ガスをイオン化させて800Aの膜厚に形成さ
せる。次にこの基板を真空蒸着装置に設定する。
The substrate temperature was controlled at 450″C, and N2 gas
5 X l O-'torr Introduce G a N
x and N2 gas are ionized to form a film with a thickness of 800A. Next, this substrate is set in a vacuum evaporation apparatus.

t    基板温度200’Cにて−(Zna 、 7
 Cd□ 、 3 Te )0.95’  (”2 T
e5)o、o5cl!4)t 8 p m tv厚す[
形成し、その後真空中550°Cで15〜60分熱処理
?おこなう。このようにして得られた光導電素子を撮像
管ターゲットとして撮像管に組みこんで分光特性を測定
した。ところ実施例1と同等の分光感度特性が得られた
。また() a N xO形成方法はRFイオンプレー
ディング法でも形成可能であシ、GaNx形成方法の違
いによる分光感度特性の違いはみられなかった。
t At a substrate temperature of 200'C - (Zna, 7
Cd□, 3 Te)0.95'("2 T
e5) o, o5cl! 4) t 8 p m tv thickness [
Formed and then heat treated in vacuum at 550°C for 15-60 minutes? Let's do it. The thus obtained photoconductive element was incorporated into an image pickup tube as an image pickup tube target, and its spectral characteristics were measured. However, spectral sensitivity characteristics equivalent to those of Example 1 were obtained. Furthermore, ()aNxO can also be formed by the RF ion plating method, and no difference in spectral sensitivity characteristics was observed due to the difference in the GaNx formation method.

本発明の光導電素子は、透明電極を有する透光性基板上
にGaNx f形成し、さらにその上に(Zn1−x 
Cdx Te)1−y (In2 Te3 >yの光導
電膜を形成しているが、この光導電膜を前半にCdTe
を主成分とする膜?形成し、後半に(ZnTe)   
(In2Te3 )y  とする膜?形成した構1″′
y 造にしても艮い。
In the photoconductive element of the present invention, GaNx f is formed on a transparent substrate having a transparent electrode, and (Zn1-x
A photoconductive film with Cdx Te)1-y (In2 Te3 >y is formed, but this photoconductive film is made of CdTe in the first half.
A film whose main component is Formed and late (ZnTe)
(In2Te3)y film? Formed structure 1″′
y Even if it's made, it doesn't matter.

発明の効果 本発明は好適な正孔防止膜?形成して、青色感度を向上
させる0と′よシ可視光力゛ら近赤外    2光の領
域にわたり高感度な光導電素子全得るも    □−一
のでアシ、撮像管ターゲットとして用いた場合には他の
特性を劣化させることなく青色感度?向上させる。特に
青感度が高いのでカラー用撮像管ターゲットに適してい
る。またGaNx fもちいているため青感度のバラツ
キがなく再現性のよい撮像管ターゲットを得ることがで
きる。
Effects of the Invention Is the present invention a suitable hole blocking film? It is possible to obtain a photoconductive element with high sensitivity over the near-infrared 2 light range from visible light power to 0 and ' to improve blue sensitivity by forming a photoconductive element. Can blue sensitivity be improved without degrading other characteristics? Improve. In particular, it has high blue sensitivity, making it suitable for color image pickup tube targets. Furthermore, since GaNx f is used, it is possible to obtain an image pickup tube target with no variation in blue sensitivity and good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光導電素子の基本的構成を示す断面図
、 第2図は第1図の断面図に対応した本発明の詳細な説明
するバンド図、 第3図は実施例1の断面図、 第4図は実施例■の光導電素子を撮像管ターゲットとし
て用いた場合の分光感度特性を従来のものと比較して示
すグラフ、 第5図は実施例2の断面図である。 rn−−−−一透光性基板 +21−−−−一透明電極 [3) −−−−−GaNx 膜 曲線A−−−実捲例1の分光感度特性 的@B −−一従来のZn5eを用いたニュービコンの
分光感度特性 σn−−−−−ガラス基板 圓−−−−−In203 (131−−−−−GaNx (14−−−−−(Z no、7Cdo、:y、 T 
e > 0,95 (I n 2 T e 3) 0.
05膜 (2]) −−−−−ガラス基板 (22+−−−−−5n02 C!31−−−−− GaNx (241−−−−−(Zn0.7Cd0.3Te)0.
95 (In2 Tez)0.05膜 特許出願人  松下電器産業株式会社 代 理  人   新   実   健   部(外1
名) 11all 第2図
FIG. 1 is a cross-sectional view showing the basic structure of the photoconductive element of the present invention, FIG. 2 is a band diagram explaining the present invention in detail corresponding to the cross-sectional view of FIG. 1, and FIG. 4 is a graph showing the spectral sensitivity characteristics when the photoconductive element of Example 2 is used as an image pickup tube target in comparison with a conventional one; FIG. 5 is a sectional view of Example 2. rn - - Transparent substrate + 21 - - Transparent electrode [3) - - - GaNx film curve A - - Spectral sensitivity characteristic of actual winding example 1 @B - - Conventional Zn5e Spectral sensitivity characteristic σn of Newbicon using
e > 0,95 (I n 2 T e 3) 0.
05 film (2]) ----Glass substrate (22+----5n02 C!31----- GaNx (241-----(Zn0.7Cd0.3Te)0.
95 (In2 Tez) 0.05 membrane patent applicant Matsushita Electric Industrial Co., Ltd. Agent Ken Shinmi (External 1)
name) 11all Figure 2

Claims (1)

【特許請求の範囲】[Claims] 透明電極を有する透光性基板上にGaNx膜を形成し、
さらにその上に(Zn_(_1_−_x)CdxTe)
_1_−_y(Im_2Te_3)_y・(0≦x≦1
、0≦y≦0.1)の光導電膜を形成した光導電素子。
Forming a GaNx film on a transparent substrate having a transparent electrode,
Furthermore, on top of that (Zn_(_1_-_x)CdxTe)
_1_−_y(Im_2Te_3)_y・(0≦x≦1
, 0≦y≦0.1).
JP59129860A 1984-06-23 1984-06-23 Light conducting element Pending JPS618980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59129860A JPS618980A (en) 1984-06-23 1984-06-23 Light conducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59129860A JPS618980A (en) 1984-06-23 1984-06-23 Light conducting element

Publications (1)

Publication Number Publication Date
JPS618980A true JPS618980A (en) 1986-01-16

Family

ID=15020057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59129860A Pending JPS618980A (en) 1984-06-23 1984-06-23 Light conducting element

Country Status (1)

Country Link
JP (1) JPS618980A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278435A (en) * 1992-06-08 1994-01-11 Apa Optics, Inc. High responsivity ultraviolet gallium nitride detector
WO2000017941A1 (en) * 1998-09-18 2000-03-30 Mitsubishi Cable Industries, Ltd. Semiconductor photodetector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278435A (en) * 1992-06-08 1994-01-11 Apa Optics, Inc. High responsivity ultraviolet gallium nitride detector
WO2000017941A1 (en) * 1998-09-18 2000-03-30 Mitsubishi Cable Industries, Ltd. Semiconductor photodetector

Similar Documents

Publication Publication Date Title
US4540914A (en) Absorbing graded nitride film for high contrast display devices
Ives Photo-Electric Properties of Thin Films of Alkali Metals
JPS618980A (en) Light conducting element
US5473456A (en) Method for growing transparent conductive gallium-indium-oxide films by sputtering
JP3102995B2 (en) LCD light valve
EP0146967B1 (en) Photoconductive target of image pickup tube and manufacturing method thereof
US3486059A (en) High sensitivity photoconductor for image pickup tube
US4605285A (en) Electrochromic device
US3816787A (en) Photoconductor comprising cadmium selenide
US3985918A (en) Method for manufacturing a target for an image pickup tube
US3681638A (en) Storage tube comprising electro-luminescent phosphor and cadmium sulfide field sustained conducting target
US4883562A (en) Method of making a photosensor
JPH061672B2 (en) Photoconductive element
Heimann et al. Development of an Infra-red Vidicon-type Pick-up Tube with a Lead Sulphide Target
JP3006749B2 (en) Spatial light modulator
US3517241A (en) Photoconductive target comprising aluminum,selenium and arsenic triselenide layers
JPH0419650B2 (en)
JPH06212403A (en) Production of in/sn oxide transparent conductive film
JPS58209009A (en) Method of forming transparent conductive film
JP2744616B2 (en) Infrared vidicon target and method of manufacturing the same
JPS59143384A (en) Manufacture of orientational metallic thin film
JPS58197607A (en) Method of forming transparent conductive film
JPH10288793A (en) Spatial optical modulation element
JPS62131447A (en) Photoconductive camera tube target
JPH0431832A (en) Liquid crystal display device