JPS6189450A - Air cooling heat pump type refrigeration cycle device - Google Patents

Air cooling heat pump type refrigeration cycle device

Info

Publication number
JPS6189450A
JPS6189450A JP20828584A JP20828584A JPS6189450A JP S6189450 A JPS6189450 A JP S6189450A JP 20828584 A JP20828584 A JP 20828584A JP 20828584 A JP20828584 A JP 20828584A JP S6189450 A JPS6189450 A JP S6189450A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
air
pipe
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20828584A
Other languages
Japanese (ja)
Other versions
JPH0575947B2 (en
Inventor
孝 木村
田中 博實
大森 政義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20828584A priority Critical patent/JPS6189450A/en
Publication of JPS6189450A publication Critical patent/JPS6189450A/en
Publication of JPH0575947B2 publication Critical patent/JPH0575947B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、空冷ヒートポンプ式冷凍サイクル装置に係シ
、符に外気温度が低いときの暖房能力の維持および除ネ
I能力の向上に好適な、空冷ヒートポンプ式冷凍サイク
ル−&置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an air-cooled heat pump type refrigeration cycle device, and is particularly suitable for maintaining heating capacity when the outside air temperature is low and improving the ion removal capacity. This relates to an air-cooled heat pump type refrigeration cycle.

〔発明の背景〕[Background of the invention]

従来の空冷ヒートポンプ式冷凍サイクル装置について第
2図ないし第5図を参照して説明する。
A conventional air-cooled heat pump type refrigeration cycle device will be explained with reference to FIGS. 2 to 5.

ここに、第2図は、従来の空冷ヒートポンプ式冷凍サイ
クルの系統図、第5図は、従来の空気側熱交換器部の構
成図、第4図は、第3図の装置の冷凍サイクルの系統図
、第す図は、他の従来の装置の冷凍サイクルの系統図で
ある。
Here, Fig. 2 is a system diagram of a conventional air-cooled heat pump type refrigeration cycle, Fig. 5 is a configuration diagram of a conventional air-side heat exchanger section, and Fig. 4 is a diagram of the refrigeration cycle of the device shown in Fig. 3. System diagram, Figure 2 is a system diagram of a refrigeration cycle of another conventional device.

祉ず)第2図の列は、一般的な望僧ヒートポンプ式温水
器などの冷凍サイクル金示したもので、1は圧!(a、
2は、冷媒流路の流れを切替える四方弁、3は、室内側
熱又換器に係る水側熱父換器、4人は、室外@熱交換器
に係る空気側熱交換器である。5.8は逆止弁、6.1
は、冷媒減圧手段に係るキャピラリチューブであり、図
中の実線矢印は暖房運転時の冷媒の流れ、破線矢印は除
媚運転時の冷媒の流れを示している。
The column in Figure 2 shows the refrigeration cycle of a general Boso heat pump type water heater, etc., where 1 is the pressure! (a,
2 is a four-way valve that switches the flow of the refrigerant flow path; 3 is a water-side heat exchanger related to the indoor heat exchanger; and 4 is an air-side heat exchanger related to the outdoor heat exchanger. 5.8 is a check valve, 6.1
is a capillary tube related to the refrigerant pressure reduction means, solid arrows in the figure indicate the flow of the refrigerant during the heating operation, and broken arrows indicate the flow of the refrigerant during the aphrodisiac operation.

暖房運転時には、圧縮機1から吐出される高温高圧の冷
媒カスは、実線矢印のように四方弁2を経て水側fA3
2″侯器3(凝縮器として作用)に入シ、水に放熱して
温水を供給し冷媒みずからは凝縮する。この冷6凝縮′
e、は、逆止弁5を経て暖房運転用キャピラリチューブ
7で減圧膨張され、空気 ・側熱交快諾4A(蒸発器と
して作用ンに入る。ここで冷媒は空気と熱交保して蒸発
し、低温低圧の冷媒ガスとなって四方弁2を経て圧縮機
1に戻り、以下同じサイクルを繰返す。
During heating operation, high-temperature, high-pressure refrigerant waste discharged from the compressor 1 passes through the four-way valve 2 as shown by the solid line arrow to the water side fA3.
The refrigerant enters the 2" unit 3 (acts as a condenser), radiates heat to the water, supplies hot water, and condenses itself. This cold 6 condenses'
e is depressurized and expanded in the capillary tube 7 for heating operation through the check valve 5, and enters the air/side heat exchanger 4A (acting as an evaporator).Here, the refrigerant exchanges heat with the air and evaporates. The refrigerant gas becomes a low-temperature, low-pressure refrigerant gas and returns to the compressor 1 via the four-way valve 2, whereupon the same cycle is repeated.

このように暖房4転時に蒸発器として作用する空気f1
!l熱交換器4Aには箱が付着するので、逆サイクルで
除霜することになる。
In this way, the air f1 that acts as an evaporator during the 4-turn heating
! Since the box is attached to the heat exchanger 4A, defrosting will be performed in a reverse cycle.

すなわち、除屑運転時にぼ、圧jMtatから吐出さγ
しる高温制圧の冷媒ガスは、破線矢印のように四方弁2
を経て空気側熱交換器4A(凝縮器として作用)K入り
、霜を溶かすとともに空気と熱交換して凝縮する。この
冷媒凝縮液は、逆止弁8を経て除霜運転用キャピラリチ
ェープロで減圧膨張され、水側熱交換器3(蒸発器とし
て作用ンに入る。ここで冷媒は蒸祐し低温低圧の冷媒ガ
スとなり、四方弁2を経て圧縮機IVこ戻る。
In other words, during the waste removal operation, the discharge γ from the pressure jMtat
The refrigerant gas under high temperature pressure is passed through the four-way valve 2 as shown by the dashed arrow.
The air then enters the air side heat exchanger 4A (acting as a condenser) K, where it melts the frost and exchanges heat with the air to condense it. This refrigerant condensate passes through the check valve 8, is depressurized and expanded in the capillary chaperone for defrosting operation, and enters the water side heat exchanger 3 (operating as an evaporator). It becomes a gas and returns to the compressor IV via the four-way valve 2.

このような除霜運転時Vこ、空気側熱交換器4Aで俗け
た才dは広間となって落下するが、次の暖房運転時に見
気側PA父換器4Aの下部の水が再び結氷することYこ
なシ、従来の冷凍サイクルでは空気側熱交換器の下部が
結氷しやすいという問題があった。
During this kind of defrosting operation, the water in the air side heat exchanger 4A will turn into a lump and fall, but during the next heating operation, the water at the bottom of the air side PA exchanger 4A will freeze again. However, conventional refrigeration cycles have a problem in that the lower part of the air-side heat exchanger tends to freeze.

第3図および第4図に示す従来の他の例では、前述の空
気側熱交換器下部の結氷を防止するため、空気側熱交換
器4Bの下部rこ加熱配管13を配設している。図に2
=−いて、前述の第2図と同−符−号のもの1よ同等部
分であり、また、第4図の図示外の部分の冷凍サイクル
の系統および矢印の種別は第2図と同じである。
In other conventional examples shown in FIGS. 3 and 4, a heating pipe 13 is provided at the bottom of the air side heat exchanger 4B in order to prevent freezing at the bottom of the air side heat exchanger. . Figure 2
=-, which is the same part as 1 with the same symbol as in Fig. 2, and the refrigeration cycle system and arrow types in the parts other than those shown in Fig. 4 are the same as in Fig. 2. be.

第3,4図に示すように、芙線矢印で示す暖房運転時に
、冷媒液人口側となる冷媒配管9を、分岐管用のT継手
10を設けて分岐式せ、一方はキャピラリチューブ7を
経て空気側熱交換器4Bの主コイル11へ、もう一方は
、空気熱交換器4Bの下部に配設した加熱配管13に接
続していた。
As shown in FIGS. 3 and 4, during heating operation, as indicated by the arrows, the refrigerant pipe 9 on the refrigerant liquid side is branched by providing a T-joint 10 for the branch pipe, and one side is connected through the capillary tube 7. One end was connected to the main coil 11 of the air side heat exchanger 4B, and the other end was connected to a heating pipe 13 disposed at the bottom of the air heat exchanger 4B.

このような冷凍サイクルでは、暖房運転時には空気側熱
交換器4Bの下部を加熱して着霜、結氷の防止に効果を
発揮するが、除霜運転時には)積極的な除霜のための加
熱効果は無く、加熱配管13の熱交換面積が無為となっ
ていた。
In such a refrigeration cycle, during heating operation, the lower part of the air side heat exchanger 4B is heated to prevent frost formation and ice formation, but during defrosting operation, the heating effect is for active defrosting. There was no heat exchange area of the heating pipe 13.

次に、従来のさらに他の例を第5図に示す。Next, still another conventional example is shown in FIG.

第5図の図示外の冷凍サイクルの系統および矢印の種別
は第2図と同じである。 。
The refrigeration cycle systems not shown in FIG. 5 and the types of arrows are the same as in FIG. 2. .

第5図の例では、冷媒配管9から下継手10を介して分
岐された配管は、空気熱交換器4Cの下部に加熱配管1
6として配設されたのち、逆止弁15を具備して空気9
ig熱交換器主管路の暖房時冷媒入口側に接続されてい
る。14は暖房運転用キャピラリチューブである。
In the example shown in FIG. 5, the pipe branched from the refrigerant pipe 9 via the lower joint 10 is connected to the heating pipe 1 at the bottom of the air heat exchanger 4C.
6 and then equipped with a check valve 15 to supply air 9.
Connected to the heating refrigerant inlet side of the ig heat exchanger main pipe. 14 is a capillary tube for heating operation.

これによれば、暖房運転時には空気側熱交換器4Cの下
部を加熱して着霜、結氷の防止に効果を発揮するが、除
ネ冒運転時には破線矢印のように加熱配管16部を冷媒
が通ることで圧力損失が増加し、冷媒循環量の減少によ
シ、除霜能力が低下するなどの欠点があった。
According to this, during heating operation, the lower part of the air-side heat exchanger 4C is heated to effectively prevent frost formation and icing, but during removal operation, the refrigerant flows through 16 parts of the heating piping as shown by the broken line arrow. There were drawbacks such as an increase in pressure loss, a decrease in the amount of refrigerant circulated, and a decrease in defrosting ability.

なお、このような空冷ヒートポンプ式冷凍サイクル装置
の着霜、結氷防止に関する先行技術として、実開昭54
−182454号公報には、除4運転時と冷房運転時に
rユ冷媒を流し、暖房運転時には冷媒をその中に停滞さ
せるためのサブコンデンサを具えた冷媒回路について記
載されているが、暖房運転時、除霜運転時ともに有効に
使用さnるサイクル構成ではなく、特に外気温度が低い
ときに冷媒循環量を十分に確保するサイクルは提供され
ていなかった。
In addition, as a prior art related to the prevention of frost formation and freezing of such air-cooled heat pump type refrigeration cycle equipment,
Publication No. 182454 describes a refrigerant circuit equipped with a sub-condenser that allows refrigerant to flow during four-way operation and cooling operation, and to stagnate the refrigerant therein during heating operation. However, a cycle configuration that is not effectively used during defrosting operation, and a cycle that ensures a sufficient amount of refrigerant circulation especially when the outside temperature is low, has not been provided.

また、特開昭57−196055号公報には、暖房時で
あって外気温度が低いときに室内側熱交換器からの高圧
冷媒を気液分離器で熱交換させたのち、再び気液分離器
に導入してガス冷媒を分雅させて室外機に導くことによ
って室外機の着INk防止する方法が記載されている。
In addition, Japanese Patent Application Laid-open No. 57-196055 discloses that during heating and when the outside air temperature is low, high-pressure refrigerant from an indoor heat exchanger is heat-exchanged with a gas-liquid separator, and then the gas-liquid separator is used again. A method is described in which a gas refrigerant is introduced into the outdoor unit to separate the gas refrigerant and lead it to the outdoor unit, thereby preventing the ink of the outdoor unit.

しかし、この方法においても、暖房運転時、除霜運転時
ともに有効に使用されるサイクル構成は提供されていな
かった。
However, even in this method, a cycle configuration that can be effectively used during both heating operation and defrosting operation has not been provided.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の従来技術の問題点を解決するためにな
されたもので、暖房運転時には室外側熱交換器の結氷防
止がなされ、除霜運転時には、霜の溶解および冷媒循環
量の増大がなされ、除霜性能の向−とと結氷防止をはか
ることが可能な空冷ヒートポンプ式冷凍サイクル装置の
提供を、その目的としている。
The present invention was made in order to solve the problems of the prior art described above, and prevents freezing of the outdoor heat exchanger during heating operation, and prevents frost from melting and increases the amount of refrigerant circulation during defrosting operation. The purpose of this invention is to provide an air-cooled heat pump type refrigeration cycle device that can improve defrosting performance and prevent freezing.

〔発明の概要〕[Summary of the invention]

本発明に係る空冷ヒートポンプ式冷凍サイクルの構成は
、圧縮機、四方弁、室内側、室外側熱交換器、冷媒減圧
手段およびこれら各機器を接続する冷媒管路からなる空
冷ヒートポンプ式冷凍サイクル装置において、暖房運転
用冷媒減圧手段と除霜運転用冷媒減圧手段とを接続する
冷媒配管部に分岐管を設け、この分岐管を前記室外側熱
交換器の下部に配設した加熱配管に接続するとともに、
その加熱配管の他端全、減圧手段を具備して前記室外側
熱交換器の暖房時に冷媒入口側となる主管路に接続する
ように設けた配管と、逆止弁を具備して前記室外側熱交
換器の暖房時に冷媒出口側となる主管路に接続するよう
に設けた配管とに、三方弁を介して接続するようにした
ものである。
The configuration of the air-cooled heat pump type refrigeration cycle according to the present invention is an air-cooled heat pump type refrigeration cycle device comprising a compressor, a four-way valve, an indoor side heat exchanger, an outdoor side heat exchanger, a refrigerant pressure reduction means, and a refrigerant pipe line connecting these devices. A branch pipe is provided in the refrigerant piping section connecting the refrigerant pressure reduction means for heating operation and the refrigerant pressure reduction means for defrosting operation, and this branch pipe is connected to the heating pipe arranged at the lower part of the outdoor heat exchanger. ,
The other end of the heating pipe is equipped with a pressure reducing means and is connected to the main pipe line which becomes the refrigerant inlet side during heating of the outdoor side heat exchanger, and the other end is equipped with a check valve and is installed on the outdoor side. The refrigerant is connected via a three-way valve to a pipe provided to connect to the main pipe on the refrigerant outlet side during heating of the heat exchanger.

なお、付記すると、本発明は、空気側熱交換器下部に設
けた着霜抑制用の加熱配管を、暖房運転時および除霜運
転時ともに有効に使うことができるように、サイクル構
成を新たに考えたもので、特に、外気温度が低いときお
よび除霜用熱源温度が低いときの、除霜性能を向上する
ため、冷媒循環量の増大をはかることの可能な、9冷ヒ
一トボング式冷凍サイクルを構成したものである。
As an additional note, the present invention has a new cycle configuration so that the heating piping for suppressing frost formation provided at the bottom of the air side heat exchanger can be effectively used during both heating operation and defrosting operation. This is a 9-refrigerated bong type refrigeration system that can increase the amount of refrigerant circulated to improve defrosting performance, especially when the outside air temperature is low and the defrosting heat source temperature is low. It consists of a cycle.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図を参照して説明する。 An embodiment of the present invention will be described below with reference to FIG.

ここに、第1図は、本発明の一実施例に係る空冷ヒート
ポンプ式冷凍サイクルの系統図である。
Here, FIG. 1 is a system diagram of an air-cooled heat pump type refrigeration cycle according to an embodiment of the present invention.

図中、第2図と同一符号のものは従来技術と同等部分で
あるから、その説明を省略する。
In the figure, parts with the same reference numerals as those in FIG. 2 are the same parts as in the prior art, so their explanation will be omitted.

また、図中の実線矢印は暖房運転時の冷媒の流れ、破滅
矢印は除霜運転時の冷媒の流れを示す。
Further, the solid arrows in the figure indicate the flow of refrigerant during heating operation, and the doomed arrows indicate the flow of refrigerant during defrosting operation.

第1図に示す冷凍サイクルの装置は、空冷ヒートポンプ
式温水器などの冷凍サイクル装置で、4は、室外側熱交
換器に係る空気側熱交換器である空気側熱交換器4は、
当該冷凍サイクルの冷媒管路の主管路と連結する主コイ
ル11を備え、その下部に加熱配管21が配設されてい
る。
The refrigeration cycle device shown in FIG. 1 is a refrigeration cycle device such as an air-cooled heat pump type water heater, and the air-side heat exchanger 4 is an air-side heat exchanger related to an outdoor-side heat exchanger.
It has a main coil 11 connected to the main refrigerant pipe of the refrigeration cycle, and a heating pipe 21 is disposed below the main coil 11 .

9は、暖房運転時に空気側熱交換器4に対し冷媒液入口
側となる冷媒配管、12は、暖房運転時に空気側熱交換
器4に対し冷媒ガス出口側となるピラリチューブ7と除
霜運転用キャピラリチェープロとを結ぶ冷媒配管20部
に位置している。
9 is a refrigerant pipe that is on the refrigerant liquid inlet side with respect to the air side heat exchanger 4 during heating operation, and 12 is a pilar tube 7 that is on the refrigerant gas outlet side with respect to the air side heat exchanger 4 during heating operation, and a defrosting operation. It is located in the 20th section of the refrigerant piping that connects the capillary chamber.

22.23.27は、いずれも冷媒配管の接続とともに
冷媒流路の流れを切替える三方弁である24は、空気側
熱交換器4の、暖房運転時に冷媒の入口側となる主管路
に三方弁27を介して接続し、空気側熱交換器4の、暖
房運転時の冷媒の出口側となる主管路に三方弁23分介
して接続する配管で、逆止弁25とキャピラリチューブ
26を具備している。前記の三方弁22は、逆止弁25
とキャビ2リチエープ26との中間に位置している。
22, 23, and 27 are all three-way valves that switch the flow of the refrigerant flow path when the refrigerant pipes are connected. 24 is a three-way valve in the main pipe line that is the inlet side of the refrigerant during heating operation of the air side heat exchanger 4. This pipe is connected via a three-way valve 27 to the main pipe line that is the outlet side of the refrigerant during heating operation of the air side heat exchanger 4, and is equipped with a check valve 25 and a capillary tube 26. ing. The three-way valve 22 is a check valve 25.
It is located between the 2nd and 2nd cabinets 26.

すなわち、空気側熱交換器4の下部に配役され九加熱配
v21#″1i1一端を分岐管用のT継手20を介して
冷媒配管9に接続し、加熱配管21の他端を、減圧手段
に係るキャピラリチューブ26と具備して前記空気側熱
交換器の暖房運転時に冷媒人口側となる主管路に三方弁
21を介して接続した配管と、逆止弁25を具備して前
記空気側熱交換器の暖房運転時の冷媒出口側となる主管
路に三方弁23を介して接続した配f24とに、三方弁
22を介して接続されている。
That is, one end of the heating pipe 21#''1i1 located at the lower part of the air side heat exchanger 4 is connected to the refrigerant pipe 9 via the T-joint 20 for branch pipe, and the other end of the heating pipe 21 is connected to the refrigerant pipe 9 connected to the pressure reducing means. The air-side heat exchanger is equipped with a capillary tube 26 and connected to a main pipe line on the refrigerant population side during heating operation of the air-side heat exchanger via a three-way valve 21, and a check valve 25. It is connected via a three-way valve 22 to a distribution f24 which is connected via a three-way valve 23 to the main pipe line which is the refrigerant outlet side during heating operation.

その他のサイクル機器の構成は、先に第2図で説明した
従来のものと同様になっている。
The rest of the structure of the cycle equipment is the same as that of the conventional cycle equipment described above with reference to FIG.

次に、このような空冷ヒートポンプ式冷凍サイクル装置
の動作につ−て説明する。
Next, the operation of such an air-cooled heat pump type refrigeration cycle device will be explained.

暖房運転時には、圧縮機1から吐出される高温高圧の冷
媒ガスは、実線矢印のように四方弁2を経て室内側熱交
換器に係る水側熱交換器3(凝縮器として作用)に入シ
、水に放熱して温水を供給し、冷媒みずからは凝縮する
。この冷媒凝縮液は、逆止弁5を経て冷媒配管9を流れ
、T継手20を経て暖房運転用キャピラリチューブ7へ
流れるものと加熱配管21へ流れるものとに分流する。
During heating operation, high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2 and enters the water-side heat exchanger 3 (acting as a condenser) associated with the indoor heat exchanger, as shown by the solid line arrow. , heat is radiated to water to supply hot water, and the refrigerant itself condenses. This refrigerant condensate flows through the refrigerant pipe 9 through the check valve 5, and is divided into two parts: one flows into the heating operation capillary tube 7 through the T-joint 20, and the other flows into the heating pipe 21.

暖房運転用キャピラリチューブ7では、冷媒は減圧膨張
して空気側熱交換器4の主コイル11へ入る。
In the heating operation capillary tube 7, the refrigerant expands under reduced pressure and enters the main coil 11 of the air side heat exchanger 4.

一方、加熱配管21では、冷媒凝縮液の熱によシ空気側
熱交換器4の下部を加熱し、着霜や結氷を防いだのち、
キャピラリチューブ26を経て減圧膨張して空気側熱交
換器4(蒸発器として作用)の主コイル11へ入る。
On the other hand, in the heating pipe 21, the lower part of the air side heat exchanger 4 is heated by the heat of the refrigerant condensate to prevent frost formation and freezing.
It expands under reduced pressure through the capillary tube 26 and enters the main coil 11 of the air side heat exchanger 4 (acting as an evaporator).

主コイール11で空気と熱交換して蒸発した低温低圧の
冷媒ガスは、冷媒配管12を流れ、四方弁2を経て圧縮
機1へ戻り、以下同じサイクルを繰返す。
The low-temperature, low-pressure refrigerant gas evaporated by heat exchange with the air in the main coil 11 flows through the refrigerant pipe 12, returns to the compressor 1 via the four-way valve 2, and repeats the same cycle.

また、除霜運転時には、圧M機1から吐出される高温高
圧の冷媒ガスは、破線矢印のように四方弁2を経て冷媒
配管12を流れ、空気側熱交換器4(凝縮器として作用
)の主コイル11へ入るものと、三方弁23から配管2
4へ流れるものとに分流する。
In addition, during defrosting operation, the high-temperature, high-pressure refrigerant gas discharged from the pressure M machine 1 flows through the refrigerant pipe 12 via the four-way valve 2 as indicated by the broken line arrow, and flows through the air-side heat exchanger 4 (acting as a condenser). The one that enters the main coil 11 and the one that enters the pipe 2 from the three-way valve 23
Divides the flow into 4.

主コイル11では、冷媒ガスは媚を溶かすとともに空気
と熱交換して冷媒みずからは凝縮し、その冷媒凝縮液は
逆止弁8へ流れる。
In the main coil 11, the refrigerant gas melts and exchanges heat with the air, and the refrigerant itself condenses, and the refrigerant condensate flows to the check valve 8.

一方、配管24から逆止弁25を経て流れる冷媒ガスは
、三方弁22から加熱配管21に入ジ、前記空気熱交換
器4の下部を加熱し冷媒凝縮液と下 なって、逆止弁8を通った冷媒凝縮液と羊継手20部で
合流し、冷媒配管9を流れ、除霜運転用キャピラリチェ
ープロを通って減圧膨張されたのち水側熱交換器3(蒸
発器として作用)に入る。ここで冷媒は水と熱交換して
蒸発し、低温低圧の冷媒ガスとなジ、四方弁2を経て圧
縮機1へ戻シ、以下同じサイクルを繰返す。
On the other hand, the refrigerant gas flowing from the pipe 24 through the check valve 25 enters the heating pipe 21 from the three-way valve 22, heats the lower part of the air heat exchanger 4, flows down to the refrigerant condensate, and flows into the check valve 8. It joins with the refrigerant condensate that has passed through the joint at 20 joints, flows through the refrigerant pipe 9, is depressurized and expanded through the capillary cup for defrosting operation, and then enters the water side heat exchanger 3 (acts as an evaporator). . Here, the refrigerant exchanges heat with water, evaporates, becomes a low-temperature, low-pressure refrigerant gas, returns to the compressor 1 via the four-way valve 2, and repeats the same cycle.

なお、本実施例では、暖房運転と除霜運転のサイクルを
有する温水器の例を示し、冷房運転については言及しな
い。
In this embodiment, an example of a water heater having a cycle of heating operation and defrosting operation is shown, and cooling operation is not mentioned.

本実施例によれば、暖房運転時に、特に外気温度の低い
条件において、冷凍サイクルの主回路と別に設けた、空
気側熱交換器4の下部に配設された加熱配管21を流れ
て凝縮液となった冷媒が、キャピラリチューブ26を経
て、主回路に合流し、空気側熱交換器4(蒸発器として
作用ンに入るため、冷媒循環量の低下を防ぎ、従来の冷
凍サイクルに比較し、暖房能力の向上をはかることがで
きる。
According to this embodiment, during heating operation, especially under conditions of low outside air temperature, the condensate flows through the heating pipe 21 installed at the lower part of the air-side heat exchanger 4, which is provided separately from the main circuit of the refrigeration cycle. The refrigerant passes through the capillary tube 26, joins the main circuit, and enters the air side heat exchanger 4 (acting as an evaporator), which prevents a decrease in the amount of refrigerant circulation and, compared to a conventional refrigeration cycle, It is possible to improve heating capacity.

また、前述の加熱配管21は、空気側熱交換器4の下部
を加熱し、着霜や結氷の防止、またドレンパン上への結
氷を防止できる。
Further, the aforementioned heating pipe 21 can heat the lower part of the air-side heat exchanger 4 to prevent frost formation and ice formation, and also to prevent ice formation on the drain pan.

さらに、除霜運転時には、圧縮機1からの高圧高温の吐
出冷媒ガスが、空気側熱交換64の主コイル11と加熱
配管21とに分流して流れるため、循itの増大による
除霜能力の向上が期待されるとともに、加熱配管21に
おいては結氷防止と融解水の昇温効果によシ、排水を容
易にできる効果もある。
Furthermore, during defrosting operation, the high-pressure, high-temperature discharged refrigerant gas from the compressor 1 is divided into the main coil 11 of the air-side heat exchanger 64 and the heating pipe 21, so the defrosting capacity is reduced due to increased circulation. Improvements are expected, and the heating piping 21 also has the effect of preventing ice formation and increasing the temperature of melted water, as well as facilitating drainage.

なお、前記の実施例では、暖房運転と除霜運転の冷凍テ
ィクルを有する空冷ヒートボンズ式温水器であって、水
側熱交換器3と空気側熱交換器4とを備えた装置を説明
したが、本発明はこれに限るものではなく、室内側、室
外側間熱交換器にも空気と熱交換する形式の空冷ヒート
ポンプ式空気調和機など、冷房運転も可能で同等の効果
が期待できる空冷ヒートポンプ式冷凍サイクル装置の範
囲で汎用的なものである。
In addition, in the above embodiment, an air-cooled heatbond type water heater having a refrigeration tickle for heating operation and defrosting operation was described, which was equipped with a water-side heat exchanger 3 and an air-side heat exchanger 4. However, the present invention is not limited to this, and includes an air-cooled heat pump type air conditioner that exchanges heat with air between indoor and outdoor heat exchangers, and air-cooled heat pumps that can also perform cooling operation and can be expected to have the same effect. This is a general-purpose type refrigeration cycle device.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によルば、暖房運転時には室
外側熱交換器の結氷防止がなされ、除霜運転時には霜の
溶解および冷媒循環量の増大がなさn1除雇性能の向上
と結氷防止をはかることが可能な空冷ヒートボ/プ式冷
凍サイクル装置を提供することができる。
As described above, according to the present invention, freezing of the outdoor heat exchanger is prevented during heating operation, and no frost melting and no increase in refrigerant circulation amount occur during defrosting operation, improving n1 removal performance and freezing. It is possible to provide an air-cooled heat pump type refrigeration cycle device that can prevent such problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る空冷ヒートポンプ式
冷凍サイクルの系統図、第2図は、従来の空冷ヒートポ
ンプ式冷凍サイクルの系統図、第3図は、従来の空気1
1t!l熱交換器部の構成図、第4図は、第3図の装置
の冷凍ティクルの系統図、第5図は、池の従来の装置の
冷凍サイクルの系統図である。 1・・・圧縮機  2・・・四方弁  3・・・水側熱
交換器  4・・・空気側熱交換器  6・・・除祁運
転用キャピラリチェーブ  7・・・暖房運転用キャピ
ラリチューブ  5.8・・・逆止弁  9,12・・
・冷媒配管  11・・・主コイル  20・・・T継
手  21・・・加熱配管  22.23.27・・・
三方弁24・・・配管  25・・・逆止弁  26・
・・キャピラリチューブ。
Fig. 1 is a system diagram of an air-cooled heat pump type refrigeration cycle according to an embodiment of the present invention, Fig. 2 is a system diagram of a conventional air-cooled heat pump type refrigeration cycle, and Fig. 3 is a system diagram of a conventional air-cooled heat pump type refrigeration cycle.
1t! 1 is a block diagram of the heat exchanger section, FIG. 4 is a system diagram of the refrigeration tickle of the apparatus shown in FIG. 3, and FIG. 5 is a system diagram of the refrigeration cycle of the conventional pond apparatus. 1... Compressor 2... Four-way valve 3... Water side heat exchanger 4... Air side heat exchanger 6... Capillary tube for removal operation 7... Capillary tube for heating operation 5.8...Check valve 9,12...
・Refrigerant piping 11... Main coil 20... T-joint 21... Heating pipe 22.23.27...
Three-way valve 24...Piping 25...Check valve 26.
...Capillary tube.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室内側、室外側熱交換器、冷媒減圧手
段およびこれら各機器を接続する冷媒管路からなる空冷
ヒートポンプ式冷凍サイクル装置において、暖房運転用
冷媒減圧手段と除霜運転用冷媒減圧手段とを接続する冷
媒配管部に分岐管を設け、この分岐管を前記室外側熱交
換器の下部に配設した加熱配管に接続するとともに、そ
の加熱配管の他端を、減圧手段を具備して前記室外側熱
交換器の暖房時に冷媒入口側となる主管路に接続するよ
うに設けた配管と、逆止弁を具備して前記室外側熱交換
器の暖房時に冷媒出口側となる主管路に接続するように
設けた配管とに、三方弁を介して接続するように構成し
たことを特徴とする空冷ヒートポンプ式冷凍サイクル装
置。
In an air-cooled heat pump type refrigeration cycle device consisting of a compressor, a four-way valve, an indoor side heat exchanger, an outdoor side heat exchanger, a refrigerant pressure reducing means, and a refrigerant pipe line connecting these devices, the refrigerant pressure reducing means for heating operation and the refrigerant for defrosting operation are used. A branch pipe is provided in the refrigerant piping section that connects to the pressure reducing means, and this branch pipe is connected to the heating pipe arranged at the lower part of the outdoor heat exchanger, and the other end of the heating pipe is equipped with the pressure reducing means. and a main pipe provided with a check valve to be connected to the refrigerant inlet side during heating of the outdoor heat exchanger, and a main pipe provided with a check valve and connected to the refrigerant outlet side during heating of the outdoor heat exchanger. 1. An air-cooled heat pump type refrigeration cycle device, characterized in that it is configured to be connected to piping provided to connect to a road via a three-way valve.
JP20828584A 1984-10-05 1984-10-05 Air cooling heat pump type refrigeration cycle device Granted JPS6189450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20828584A JPS6189450A (en) 1984-10-05 1984-10-05 Air cooling heat pump type refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20828584A JPS6189450A (en) 1984-10-05 1984-10-05 Air cooling heat pump type refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPS6189450A true JPS6189450A (en) 1986-05-07
JPH0575947B2 JPH0575947B2 (en) 1993-10-21

Family

ID=16553712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20828584A Granted JPS6189450A (en) 1984-10-05 1984-10-05 Air cooling heat pump type refrigeration cycle device

Country Status (1)

Country Link
JP (1) JPS6189450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092802A1 (en) * 2010-01-26 2011-08-04 三菱電機株式会社 Heat pump device and refrigerant bypass method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092802A1 (en) * 2010-01-26 2011-08-04 三菱電機株式会社 Heat pump device and refrigerant bypass method
US9709308B2 (en) 2010-01-26 2017-07-18 Mitsubishi Electric Corporation Heat pump device and refrigerant bypass method

Also Published As

Publication number Publication date
JPH0575947B2 (en) 1993-10-21

Similar Documents

Publication Publication Date Title
EP2211127A1 (en) Heat pump type air conditioner
EP1967801B1 (en) Hot water system
JP4874223B2 (en) Air conditioner
JP4122349B2 (en) Refrigeration cycle apparatus and operation method thereof
KR101996007B1 (en) Continuous heating Air Conditioner system
JP2989491B2 (en) Air conditioner
JP2004069228A (en) Heat exchanger
JPS6189450A (en) Air cooling heat pump type refrigeration cycle device
JP3511161B2 (en) Air conditioner
JPH1163709A (en) Air conditioner
JP2727754B2 (en) Ice making equipment
JP3709477B2 (en) Air conditioner refrigerant circuit
JPH09217972A (en) Refrigerating device
JP2000130895A (en) Chiller
JP3213992B2 (en) Air conditioner
JP2001304619A (en) Ice storage type air conditioner
JP2006097992A (en) Air conditioner
JP2006342994A (en) Ice heat storage air conditioner
KR200240134Y1 (en) Heat pump mounting auxiliary heat exchanger
JPH05149653A (en) Ice making device
JPS6048466A (en) Air conditioner
JPH03105181A (en) Antifreezing device for heat exchanger
JPS59229149A (en) Air conditioner
JP2000121108A (en) Air-conditioner
JPH0448174A (en) Ice making device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term