JPS618918A - Forming of semiconductor electrode - Google Patents

Forming of semiconductor electrode

Info

Publication number
JPS618918A
JPS618918A JP13052984A JP13052984A JPS618918A JP S618918 A JPS618918 A JP S618918A JP 13052984 A JP13052984 A JP 13052984A JP 13052984 A JP13052984 A JP 13052984A JP S618918 A JPS618918 A JP S618918A
Authority
JP
Japan
Prior art keywords
electrode
heat
semiconductor
substrate
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13052984A
Other languages
Japanese (ja)
Inventor
Kazuo Kishi
岸 計雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd, Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP13052984A priority Critical patent/JPS618918A/en
Publication of JPS618918A publication Critical patent/JPS618918A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To coat and remove easily a resin layer in a short time and to make a coating temperature low without requiring an expensive facility, by coating a semiconductor substrate with heat-resisting resin such as polyimide which can be easily coated after depositing metal electrodes and which can protect the metal electrodes effectively. CONSTITUTION:After a P-N junction 4 is formed on a semiconductor substrate 1, metal electrodes 5, 6 are deposited using sputtering or evaporating. Heat- resisting resin such as polyimide of several drops are dripped while rotating the semiconductor substrate. Next, the substrate is heat-treated at about 250 deg.C to harden the liquid polyimide, forming a protective film thereon. Next, after the substrate is heat-treated at about 480 deg.C to make the electrode metal and the semiconductor crystal eutectic, the substrate is immersed in liquid such as hydrazine hydrate or ethylenediamine to resolve away the protective film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体電極の形成方法に関し、特に電極接触面
が電圧と電流で比例関係となろオーム性の電極を形成す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a semiconductor electrode, and more particularly to a method for forming an ohmic electrode in which the electrode contact surface has a proportional relationship between voltage and current.

〔技術の背景〕[Technology background]

半導体装置ではPN接合等各回路を半導体基板に形成し
、各回路の領域は半導体装置内での細線による接続また
は外部回路との接続のため半導体装置のリード線に細線
で接続するため。
In a semiconductor device, each circuit such as a PN junction is formed on a semiconductor substrate, and the area of each circuit is connected by a thin wire within the semiconductor device or to a lead wire of the semiconductor device for connection to an external circuit.

各領域の半導体結晶上に金属膜で電極が形成される。図
にこの一例を示す半導体装置、半導体基板の縦断面図を
示す。即ち図は発光ダイオードを製造丁べ(GaAs半
導体基板にPN接合を形成し、電極を形成した時点の断
面図を示すもので、1はN型GaAs半導体基板、2は
N型GaAs基板上にエピタキシャル成長したN型Ga
As結晶層、3は更に温度を低下してエピタキシャル成
長したP型のGaAs結晶層で、この半導体基板を切断
により小片に分離することにより多数の同一の半導体チ
ップを得るものである。
An electrode is formed using a metal film on the semiconductor crystal in each region. The figure shows a vertical cross-sectional view of a semiconductor device and a semiconductor substrate showing an example of this. In other words, the figure shows a cross-sectional view of a light emitting diode being manufactured (a PN junction is formed on a GaAs semiconductor substrate and an electrode is formed). 1 is an N-type GaAs semiconductor substrate, 2 is an epitaxial growth on an N-type GaAs substrate. N-type Ga
The As crystal layer 3 is a P-type GaAs crystal layer epitaxially grown at a further lowered temperature, and a large number of identical semiconductor chips are obtained by separating this semiconductor substrate into small pieces by cutting.

この半導体結晶基板上に電極とすべき例えばAuGe合
金をスパッタあるいは蒸着により全面に被着し、必要な
ところだけを残しく本実施例では各チノグの上電極5部
分)他は腐蝕除去あるいはリフトオンし9本実施例のよ
うに必要であれば半導体基板裏面にも下電極6用金属A
uZn等をスパッタあるいは蒸着により被着する。
For example, an AuGe alloy to be used as an electrode is deposited on the entire surface of this semiconductor crystal substrate by sputtering or vapor deposition, leaving only the necessary parts (in this example, the upper electrode 5 of each chinog), and the rest is removed by corrosion or lift-on. 9 If necessary as in this embodiment, the metal A for the lower electrode 6 is also applied to the back surface of the semiconductor substrate.
UZn or the like is deposited by sputtering or vapor deposition.

〔従来の技術〕[Conventional technology]

上述の如く半導体結晶上に金属を被着すると金属と半導
体結晶の間にショットキ接合が形成されある電圧が印加
される迄は電流は流れず。
As described above, when a metal is deposited on a semiconductor crystal, a Schottky junction is formed between the metal and the semiconductor crystal, and no current flows until a certain voltage is applied.

ある電圧以上になると急激に電流が流れ出し電極として
使用するには非常に不都合となる。そのためこのような
電極として用いるためには印加電圧の小さいうちから電
圧に比例した電流が得られるオーム性接触が硬求される
。このオーミックコンタクトを得るため通常半導体製造
においては電極用金属な被着した後昇温して熱処理する
ことにより金属と半導体結晶の接触面に一共晶を形成し
ている。この実施例のようにAuGeを電極として使う
場合はこの共晶を得るためには通常400℃以上の熱処
理をしなければならない。しかしAuGeの共晶点は3
56°Cでこの熱処4    環中に電極形状が変形し
たり電極表面があれて平担性を失い、後ワイヤボンディ
ングなどに不都合を生ずる。これを解消するため従来は
電極用金属を被着した後、その周囲にS 102 、 
All 203rSi3N4などの誘電体膜を保護膜と
して被覆し熱処理を行なっていた。
When the voltage exceeds a certain level, current suddenly flows out, making it very inconvenient to use as an electrode. Therefore, in order to use it as such an electrode, an ohmic contact is required that can obtain a current proportional to the voltage even when the applied voltage is small. In order to obtain this ohmic contact, normally in semiconductor manufacturing, a metal for an electrode is deposited and then heated and heat treated to form a monoeutectic at the contact surface between the metal and the semiconductor crystal. When AuGe is used as an electrode as in this embodiment, heat treatment at 400° C. or higher is normally required to obtain this eutectic. However, the eutectic point of AuGe is 3
At 56.degree. C., the shape of the electrode is deformed during the heat treatment, and the surface of the electrode becomes rough, resulting in loss of flatness, which causes problems in subsequent wire bonding. To solve this problem, conventionally, after depositing the electrode metal, S102,
A dielectric film such as All 203rSi3N4 was coated as a protective film and heat treatment was performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この5i02やAl2O3などの誘電体
膜を被覆する方法は2通常スパッタリングやCUD法が
とられており、高価な装置が必要と共に被着時に高温と
なり半導体素子そのものの特性を損なう危険性をはらん
でおり、またこれらの被着方法は長時間を要し全体的に
コストが大幅に上昇し、高温にさらされることにより半
導体装置の信頼性にも問題が出てくる。
However, the method of coating dielectric films such as 5i02 and Al2O3 is usually sputtering or CUD, which requires expensive equipment and raises the risk of damaging the characteristics of the semiconductor element itself due to high temperatures during deposition. Furthermore, these deposition methods require a long time, significantly increasing the overall cost, and exposure to high temperatures poses problems in the reliability of the semiconductor device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこのような欠点に鑑みなされたもので、電極用
金属を被着した後の保護膜を簡易に被着でき、しかも電
極用金属を有効に保護できるポリイミドなど耐熱性樹脂
で被覆するものである。以下実施例により詳細に説明す
る。      セ〔実施例〕 まず前述の如(図に示すように、半導体基板にPN接合
4を形成し、電極用金属5,6をスパッタあるいは蒸着
により被着する。上電極5用金属は前述の如(半導体基
板表面全域に被着した後余計な所を腐蝕除去したもので
ある。次にこの半導・体基板全体を例えばスピナーの上
に載置し、3500回/分のスピードで回転しながらポ
リイミドのような耐熱性樹脂を数滴1滴下する。ポリイ
ミドは粘性のある液状のため回転による遠心力により半
導体基板表面上に適当な厚みをもって拡がる。次にこれ
を250°C位で約60分熱処理すると液状のポリイミ
ドは硬化し。
The present invention has been made in view of these drawbacks, and it is a method in which a protective film can be easily applied after the electrode metal is coated, and the electrode metal is coated with a heat-resistant resin such as polyimide that can effectively protect the electrode metal. It is. This will be explained in detail below using examples. [Example] First, as described above (as shown in the figure), a PN junction 4 is formed on a semiconductor substrate, and electrode metals 5 and 6 are deposited by sputtering or vapor deposition.The upper electrode 5 metal is formed as described above. (After coating the entire surface of the semiconductor substrate, unnecessary parts were removed by corrosion.Next, the entire semiconductor/body substrate was placed on a spinner, for example, and rotated at a speed of 3500 times/min. Drop several drops of a heat-resistant resin such as polyimide. Polyimide is a viscous liquid, so it spreads to an appropriate thickness on the surface of the semiconductor substrate due to the centrifugal force caused by rotation. Next, this is heated at about 250°C for about 60 minutes. When heat treated, liquid polyimide hardens.

半導体基板上に保護膜が形成される。半導体基板裏面の
下電極6用金属についても同様に耐熱性樹脂で被覆する
。このポリイミドは500℃位迄昇温しても変色等多少
変質はきたしてもクラックが入って剥れるとか燃えて灰
になるなど無形化することはないため電極用金属保護す
る目的は十分に達し得る。次に従来と同じく、電極用金
属と半導体結晶の共晶化のため480°C位で3分位熱
処理する。その後例えば抱水とドラジン、エチレンジア
ミンのような液に半導体基板全体を浸すことにより溶解
除去する。この保護膜の除去は熱処理後直ちに除去しな
くても1次の半導体基板から冬半導体チップに分離する
ための切断工程時の半導体基板表面保護をも兼ねて切断
後に除去しても良いことは言う迄もない。
A protective film is formed on the semiconductor substrate. The metal for the lower electrode 6 on the back surface of the semiconductor substrate is similarly coated with a heat-resistant resin. Even if this polyimide is heated to about 500 degrees Celsius, it may undergo some changes in quality such as discoloration, but it will not become intangible such as cracking, peeling, or burning to ash, so it is sufficient to serve the purpose of protecting electrode metals. obtain. Next, as in the conventional case, heat treatment is performed at about 480° C. for about 3 minutes in order to eutecticize the electrode metal and the semiconductor crystal. Thereafter, the semiconductor substrate is dissolved and removed by immersing the entire semiconductor substrate in a liquid such as hydrated water, dorazine, or ethylenediamine. It should be noted that this protective film does not need to be removed immediately after heat treatment, but may be removed after cutting to also protect the surface of the semiconductor substrate during the cutting process to separate the primary semiconductor substrate into semiconductor chips. Not until now.

上記実施例ではポリイミドの例で説明したが。In the above embodiment, polyimide was used as an example.

その他の耐熱性樹脂で被着並びに剥離が容易で熱処理時
の500℃位に耐え得るものであれば良い。
Any other heat-resistant resin may be used as long as it is easy to adhere and peel off and can withstand temperatures of about 500° C. during heat treatment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電極用金属保護を
従来の誘電体膜でなく耐熱性樹脂で行なっているため、
その被着並びに除去が非常に容易で短時間でできると共
に設備も高価な設備は必要な(、また被着温度も低温で
できるため、この方法により製造した半導体装置はコス
トが安価であると共に品質の信頼性も向上するという利
点がある。
As explained above, according to the present invention, since the metal protection for the electrode is performed with a heat-resistant resin instead of the conventional dielectric film,
The deposition and removal of this method is very easy and can be done in a short period of time, and expensive equipment is not required. This has the advantage of improving reliability.

【図面の簡単な説明】[Brief explanation of drawings]

図は半導体装置の電極用金属を被着した状態の断面図で
ある。 1−、・N型GaAs半導体基板、2・N型GaAsエ
ピタキシャル成長層、3・・・P型GaAsエピタキシ
ャル成長層、4・・・PN接合、5・・・上電極。 6・・・下電極。 特許出願人 新日本無線株式会社 一〇に
The figure is a cross-sectional view of a state in which metal for electrodes of a semiconductor device is coated. 1-, N-type GaAs semiconductor substrate, 2-N-type GaAs epitaxial growth layer, 3... P-type GaAs epitaxial growth layer, 4... PN junction, 5... upper electrode. 6...lower electrode. Patent applicant: New Japan Radio Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 半導体結晶上にオーム性電極を形成する半導体電極の形
成方法において、前記半導体結晶上に電極用金属を被着
する工程と、該電極用金属周囲に耐熱性樹脂を被覆する
工程と、前記半導体結晶全体を昇温して前記半導体結晶
と前記電極用金属との接触面を共晶化する熱処理工程と
、前記被覆した耐熱性樹脂を除去する工程とからなる半
導体電極の形成方法。
A method for forming a semiconductor electrode in which an ohmic electrode is formed on a semiconductor crystal, comprising the steps of depositing an electrode metal on the semiconductor crystal, coating a heat-resistant resin around the electrode metal, and the semiconductor crystal. A method for forming a semiconductor electrode, comprising: a heat treatment step of raising the temperature of the entire structure to eutecticize the contact surface between the semiconductor crystal and the electrode metal; and a step of removing the coated heat-resistant resin.
JP13052984A 1984-06-25 1984-06-25 Forming of semiconductor electrode Pending JPS618918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13052984A JPS618918A (en) 1984-06-25 1984-06-25 Forming of semiconductor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13052984A JPS618918A (en) 1984-06-25 1984-06-25 Forming of semiconductor electrode

Publications (1)

Publication Number Publication Date
JPS618918A true JPS618918A (en) 1986-01-16

Family

ID=15036475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13052984A Pending JPS618918A (en) 1984-06-25 1984-06-25 Forming of semiconductor electrode

Country Status (1)

Country Link
JP (1) JPS618918A (en)

Similar Documents

Publication Publication Date Title
US3339274A (en) Top contact for surface protected semiconductor devices
US4652336A (en) Method of producing copper platforms for integrated circuits
US3288662A (en) Method of etching to dice a semiconductor slice
JPH07500224A (en) Manufacturing method of semiconductor components
US4638553A (en) Method of manufacture of semiconductor device
US4086375A (en) Batch process providing beam leads for microelectronic devices having metallized contact pads
US3632436A (en) Contact system for semiconductor devices
US4702941A (en) Gold metallization process
US4180422A (en) Method of making semiconductor diodes
US3746587A (en) Method of making semiconductor diodes
US3913217A (en) Method of producing a semiconductor device
US4965173A (en) Metallizing process and structure for semiconductor devices
US3621565A (en) Fabrication of single-crystal film semiconductor devices
US4080722A (en) Method of manufacturing semiconductor devices having a copper heat capacitor and/or copper heat sink
US4878099A (en) Metallizing system for semiconductor wafers
US4663820A (en) Metallizing process for semiconductor devices
JPS618918A (en) Forming of semiconductor electrode
JPS6364057B2 (en)
FR2477772A1 (en) METHOD FOR ADHERING A PASSIVATION LAYER ON GOLDEN ZONES OF A SEMICONDUCTOR
US4132813A (en) Method for producing solderable metallized layer on a semiconducting or insulating substrate
US3551196A (en) Electrical contact terminations for semiconductors and method of making the same
US3253951A (en) Method of making low resistance contact to silicon semiconductor device
JP2000232090A5 (en)
US3638304A (en) Semiconductive chip attachment method
GB2132412A (en) Improvements in or relating to methods of manufacture of semiconductor devices