JPS6188761A - Rotary converter - Google Patents

Rotary converter

Info

Publication number
JPS6188761A
JPS6188761A JP59207039A JP20703984A JPS6188761A JP S6188761 A JPS6188761 A JP S6188761A JP 59207039 A JP59207039 A JP 59207039A JP 20703984 A JP20703984 A JP 20703984A JP S6188761 A JPS6188761 A JP S6188761A
Authority
JP
Japan
Prior art keywords
rotating
fixed
armature winding
current transformer
multiphase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59207039A
Other languages
Japanese (ja)
Other versions
JPH0564541B2 (en
Inventor
Miyoshi Takahashi
身佳 高橋
Masatoshi Watabe
渡部 正敏
Noriyoshi Takahashi
高橋 典義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59207039A priority Critical patent/JPS6188761A/en
Publication of JPS6188761A publication Critical patent/JPS6188761A/en
Publication of JPH0564541B2 publication Critical patent/JPH0564541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K47/00Dynamo-electric converters
    • H02K47/02AC/DC converters or vice versa
    • H02K47/04Motor/generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/06Dynamo-electric machines having windings operating at cryogenic temperatures of the homopolar type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve the reliability by respectively disposing armature windings of AC and DC sides separately at stator and rotor sides, thereby reducing mutual interference. CONSTITUTION:A rotary converter has a rotor 8 and a stator 9 provided at the prescribed interval on the outer periphery of the rotor 8. The rotor 8 is formed of a magnetic rotor body 10 and a conductive cylinder 11 engaged fixedly with the outer periphery of the body, and the stator 9 is formed of a ring-shape wound superconductive field winding 12, a vessel 13, a yoke 14, a current collector of a brush 16, an output terminal 17, and a DC exciting power source 18. Further, a polyphase AC armature winding 19 is disposed in an air gap between the rotor 8 and the yoke 14 of the stator 9, secured to the inner periphery of the yoke 14, and a magnetic shielding plate 20 for protecting the winding 12 against the AC magnetic field by the winding 19 is provided. Thus, when the rotor 8 is rotated, the rotary shaft direction of the cylinder 11 crosses a sole pole magnetic flux phi, a DC voltage is inducted at this portion to produce a DC power from the brush 16.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は直流電力を交流電力に、あるいは交流電力を直
流電力に変換する回転変流機に係り、特に界磁巻線に超
電導巻線を用いた回転変流機に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a rotary current transformer that converts DC power to AC power or AC power to DC power, and particularly relates to a rotary current transformer that converts DC power to AC power or AC power to DC power. Regarding rotary current transformers.

〔発明の背景〕[Background of the invention]

直流電力を交流電力に、あるいは交流電力を直流電力に
変換する回転変流機としては、第7図に示すように、同
期発電機(または同期電動機)と直流電動機(または直
流発電機)を一体にしたものか知られている。
As shown in Figure 7, a rotary current transformer that converts DC power into AC power or AC power into DC power is a combination of a synchronous generator (or synchronous motor) and a DC motor (or DC generator). It is known what was done.

すなわち、固定゛磁極1とその中で回転する整流子2付
き直流電機子3とで主要部が構成され、そのX機子巻線
は多相に分1すられて集電環4に導かれている。例えば
三相の場合は、3つの集電環4があり、これらに三相電
源を接続すれば、この回転変流機は、同期電動機として
回転し、整流子2上を相対的に摺動するブラシ5によっ
て直流電流Idを取り出すことができる。また、ブラシ
5より整流子2を介して電機子巻線に直流電流lαを流
せば、直流電動機として回転し、集電環4より三相交流
電流Iαを取り出すことができる。なお図中、6は回転
子を支承する軸受、7は磁極1の継鉄である。
That is, the main part is composed of a fixed magnetic pole 1 and a DC armature 3 with a commutator 2 rotating therein, and its X-mature winding is divided into multiple phases and led to a current collecting ring 4. ing. For example, in the case of a three-phase system, there are three current collecting rings 4, and if a three-phase power source is connected to these, this rotary current transformer rotates as a synchronous motor and slides relatively on the commutator 2. Direct current Id can be taken out by the brush 5. Furthermore, if a DC current lα is passed through the armature winding from the brush 5 through the commutator 2, the armature rotates as a DC motor, and a three-phase AC current Iα can be taken out from the current collector ring 4. In the figure, 6 is a bearing that supports the rotor, and 7 is a yoke for the magnetic pole 1.

このように従来の回転変流機は共通の回転電機子巻線に
整流子および集電環を接続したものであり、過去には電
気鉄道や電気化学工業など直流電力が必要な分野では一
時盛んに用いられたが、最近上はシリコン整流器やサイ
リスクなどの静止形変換器の出現によりほとんど製作さ
れなくなって来ている。
In this way, conventional rotary current transformers have a commutator and current collector ring connected to a common rotating armature winding, and in the past, they were popular in fields that required DC power, such as electric railways and electrochemical industries. However, with the advent of static converters such as silicon rectifiers and SIRISK, they are no longer manufactured.

しかし、近年の原子力、プラズマ、MHD、核融合など
の分野では、数万A級の低圧大電流が必要となるため、
静止形変換器よりも過負荷耐量の大きな回転変流機の方
がむしろ望ましいとの見方もある。ところが、従来の回
転変流機には次のような欠点があり、その改善が望まれ
ている。
However, in recent years, fields such as nuclear power, plasma, MHD, and nuclear fusion require low voltage and high current of tens of thousands of amps.
Some believe that a rotating current transformer with greater overload capacity is more desirable than a static converter. However, conventional rotary current transformers have the following drawbacks, and improvements are desired.

すなわち、回転変流機では同期機と直流機の電機子巻線
が共用されているため、交流側の擾乱が直接直流側に影
響を及ぼし、整流子部でのフラッシュオーバの原因とな
るこ、と、同じ電機子巻線が同じ磁束を切って交直両方
の起電力を誘導するものであるため、直流側電圧を交流
側電圧に無関係に制御できないこと、および周波数の高
いものでは性能が不安定となること等の欠点があった。
In other words, in a rotary current transformer, the armature windings of the synchronous machine and the DC machine are shared, so disturbances on the AC side directly affect the DC side, causing flashover in the commutator. Since the same armature winding cuts the same magnetic flux and induces both AC and DC electromotive forces, the DC side voltage cannot be controlled independently of the AC side voltage, and performance is unstable at high frequencies. There were drawbacks such as:

また、交流出力な集電環で取り出しているため、集電環
の絶縁が問題となり、高電圧大容量化が困難であること
、および回転子巻線とその結線部の機械的強度の点から
回転子を高速化して高周波交流を得ることが困難である
こと等の問題があった。
In addition, because AC output is taken out through a current collector ring, insulation of the current collector ring becomes a problem, making it difficult to increase high voltage and capacity, and the mechanical strength of the rotor windings and their connections. There have been problems such as the difficulty of increasing the speed of the rotor and obtaining high frequency alternating current.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、直流側と交流側の相互干渉を少なりシ
゛得る回転変流機を提供することにある。
An object of the present invention is to provide a rotary current transformer that can reduce mutual interference between the DC side and the AC side.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、直流電力を交流電
力に変換する回転変流機において、単極磁界を形成する
固定超電導界磁巻線、固定磁路および回転磁路と、この
単極磁界の往路または帰路のいずれか一方を形成する前
記固定磁路と前記回転磁路との間の間隙に単極磁界と鎖
交するように配設された固定多相交流電機子巻線と、前
記回転磁路の前記固定多相交流電機子巻線と対向する部
分の磁束分布を周方向において交互に粗密にする手段と
、前記単極磁界の往路または復路のいずれか一方を形成
する前記回転磁路に単極磁界と鎖交するように配設され
た回転導体と、この回転導体に直流電流を流すための集
電装置とを備え、前記固定超電導界磁巻線を直流励磁し
、かつ前記回転導体に直流電流を流して、直流電動機と
して駆動させるとともに前記固定多相交流電機子巻線に
多相交流電圧を発生させるようにしたことを特徴とし、
また、交流電力を直流電力に変換する回転変流機におい
て、単極磁界を形成する固定超電導界磁巻線、固定磁路
および回転磁路と、この単極磁界の往路また帰路のいず
れか一方を形成する前記固定磁路と回転磁路との間の間
隙に単極磁界と鎖交するように配設された固定多相交流
1!磯子巻線と、前記回転磁路の前記固定多相交流電機
子巻線と対向する部分に配設された第1の回転導体と、
前記単極磁界の往路または復路のいずれか一方を形成す
る前記回転磁路に単極磁界と鎖交するように配設された
第2の回転導体と、この第2の回転導体から直流電力を
取出すための集電装置とを備え、前記固定超電導界磁巻
線を直流励磁し、かつ前記固定多相交流電機子巻線を交
流励磁して、誘導′電動機として駆動させるとともに前
記第2の回転導体に直流電圧を発生させるよ5Kしたこ
とを特徴とする。
To achieve this object, the present invention provides a rotating current transformer for converting DC power into AC power, which includes a fixed superconducting field winding, a fixed magnetic path, and a rotating magnetic path that form a unipolar magnetic field, and a fixed superconducting field winding, a fixed magnetic path, and a rotating magnetic path that form a unipolar magnetic field, a fixed multiphase AC armature winding disposed so as to be interlinked with a unipolar magnetic field in a gap between the fixed magnetic path and the rotating magnetic path forming either an outgoing path or a return path of the magnetic field; means for alternately making the magnetic flux distribution denser and denser in the circumferential direction in a portion of the rotating magnetic path that faces the fixed multiphase AC armature winding; and the rotation forming either an outgoing path or a returning path of the unipolar magnetic field. A rotating conductor arranged in a magnetic path so as to be interlinked with a unipolar magnetic field, and a current collector for causing a DC current to flow through the rotating conductor, the fixed superconducting field winding being DC excited, and A DC current is passed through the rotating conductor to drive it as a DC motor and generate a multiphase AC voltage in the fixed multiphase AC armature winding,
In addition, in a rotary current transformer that converts AC power to DC power, a fixed superconducting field winding, a fixed magnetic path, and a rotating magnetic path that form a unipolar magnetic field, and one of the outgoing and return paths of this unipolar magnetic field. A fixed multiphase AC 1! is arranged so as to be interlinked with a unipolar magnetic field in the gap between the fixed magnetic path and the rotating magnetic path forming the fixed magnetic path. Isogo winding; a first rotating conductor disposed in a portion of the rotating magnetic path facing the fixed multiphase AC armature winding;
a second rotating conductor disposed in the rotating magnetic path that forms either an outgoing path or a returning path of the unipolar magnetic field so as to be interlinked with the unipolar magnetic field; and direct current power is supplied from the second rotating conductor. the fixed superconducting field winding is DC-excited, and the fixed multiphase AC armature winding is AC-excited to drive it as an induction motor and the second rotating It is characterized by 5K to generate DC voltage in the conductor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示の実施例に基づいて詳111DK説
明する。
Hereinafter, the present invention will be explained in detail based on the illustrated embodiment.

第1図は本発明の一実施例に係る回転変流機の一部破断
斜視図、第2図は右半部が第1図のA−A線、左半部が
第1図のB−B線に沿う断面図である。
1 is a partially cutaway perspective view of a rotary current transformer according to an embodiment of the present invention, and in FIG. 2, the right half is taken along the line A-A in FIG. 1, and the left half is taken along the line B-- It is a sectional view along the B line.

この実施例の回転変流機は、回転子8とその外周に所定
間隔をあけて設けられた固定子9からなっている。回転
子8は磁性回転子胴体10とその外周に嵌合固着された
例えば銅などの非磁性4電材料からなる導電円筒11で
構成されている。一方、固定子9はリング状に巻回され
た超を堺界磁巻線12と、この巻線12を支持、冷却す
るための容器13と、継鉄14と、ブラシ保持器15内
16に接続された出力端子17と、界磁巻線12に接続
された外部の直流励磁電源18と、回転子8と固定子9
の継鉄14との間の空隙に配置されて継鉄14の内周面
に固着された多相交流電機子巻線19と、この電機子巻
線19による交流磁界から超電導界磁巻線12を保鰻す
る電磁イールド板20と、回転子を支承する軸受21と
から構成されている。なお、磁性回転子胴体10の回転
軸方向においてに機子巻線19と対向する部分には、そ
の周方向に所定の数だけ凹部10αと凸部10bが交互
に形成され・ており、かつ回転軸方向において電機子巻
線19と対応しない部分は平滑円柱状になっている。ま
た、電機子巻線19は各コイルが電気角で180度スキ
ューされた、いわゆるヘリカル構造となっている。
The rotary current transformer of this embodiment consists of a rotor 8 and a stator 9 provided at a predetermined interval on the outer periphery of the rotor 8. The rotor 8 is composed of a magnetic rotor body 10 and a conductive cylinder 11 made of a non-magnetic quaternary material such as copper, which is fitted and fixed to the outer periphery of the body. On the other hand, the stator 9 has a ring-wound superstructure connected to the Sakai field winding 12, a container 13 for supporting and cooling the winding 12, a yoke 14, and a brush holder 15 inside 16. The connected output terminal 17, the external DC excitation power supply 18 connected to the field winding 12, the rotor 8 and the stator 9
A multiphase AC armature winding 19 is disposed in the gap between the yoke 14 and the yoke 14 and is fixed to the inner circumferential surface of the yoke 14. It consists of an electromagnetic yield plate 20 that protects the rotor, and a bearing 21 that supports the rotor. Note that a predetermined number of concave portions 10α and convex portions 10b are alternately formed in the circumferential direction of the portion of the magnetic rotor body 10 that faces the armature winding 19 in the direction of the rotation axis. The portion that does not correspond to the armature winding 19 in the axial direction has a smooth cylindrical shape. Further, the armature winding 19 has a so-called helical structure in which each coil is skewed by 180 electrical degrees.

このように構成された回転変流機において、電機子巻線
19より交流出力を得る場合には、まず外部直流励磁電
源18により超電導界磁巻線12を直流励磁して単極磁
束Φ、を発生し、継鉄14、lR1111i;−ヱQ七
ト1K・旧煽ヱ喜迫10ん#出す人出がミ界を形成する
。前記磁束Φ、は、継鉄14よりまず回転子80反電機
子巻線側の平滑状になっている導電円筒11および磁性
回転子胴体10に空間的に均一に入射する。次に磁性回
転子胴体10内を回転軸方向に通過した磁束Φは、電気
予巻519と対向する回転軸方向部分において、磁性回
転子胴体10が周方向に交互に凹部10α、凸部10b
に形成されているため、磁気抵抗の小さい凸部10bに
集中し、空間的に周方向にみて交互に粗密状に分布する
ことになる。
In the rotary current transformer configured as described above, when obtaining an AC output from the armature winding 19, first the superconducting field winding 12 is DC excited by the external DC excitation power supply 18 to generate a single pole magnetic flux Φ. The number of people who appear, 14, 1111i; The magnetic flux Φ is first spatially uniformly incident on the smooth conductive cylinder 11 and the magnetic rotor body 10 on the side opposite to the armature winding of the rotor 80 from the yoke 14. Next, the magnetic flux Φ that has passed through the inside of the magnetic rotor body 10 in the direction of the rotation axis is transmitted to the magnetic rotor body 10 alternately in the circumferential direction by recesses 10α and convex portions 10b in the portion in the rotation axis direction opposite to the electric prewinding 519.
Since the magnetism is formed in a large area, the magnetism is concentrated in the convex portion 10b having a small magnetic resistance, and is spatially distributed alternately in a dense and dense manner when viewed in the circumferential direction.

この状況を展開図で示すと第3図のようになる。This situation is shown in a developed diagram as shown in Figure 3.

すなわち、回転子8の磁性回転子胴体10における凹部
10aでは、固定子9の継鉄14との間の空隙長が凸部
10bと継鉄14との間の空隙長よりも長いので、この
凹部10αに対応する空隙部の磁束密度BTの分布は凹
状となり、逆に凸部1010hに対応する空隙部の磁束
密aBrの分布は凸状となる。
That is, in the concave portion 10a of the magnetic rotor body 10 of the rotor 8, the gap length between the stator 9 and the yoke 14 is longer than the gap length between the convex portion 10b and the yoke 14; The distribution of the magnetic flux density BT in the gap corresponding to 10α is concave, and conversely, the distribution of the magnetic flux density aBr in the gap corresponding to the convex portion 1010h is convex.

このように空間的に周方向にみて交互に粗密状に分布す
る磁束Φは、電機子巻線19を切り、ついで継鉄14に
入射するが、この継鉄14内を通過しているうちK、や
がて平滑な分布となる。
The magnetic flux Φ, which is spatially distributed alternately in a dense and dense manner when viewed in the circumferential direction, cuts the armature winding 19 and then enters the yoke 14, but as it passes through the yoke 14, K , the distribution eventually becomes smooth.

一方、これと同時に、ブラシ16を介して外部から回転
子8に直流電流1dを供給すると、この直流電流Idは
導体円ftJ11を回転軸方向に流れて、回転子8の電
機子巻線19と対向する回転軸方向部分の表面で単極磁
束φと鎖交し、その相互作用罠より回転トルクが発生す
るため、回転子8が回転する。この回転子8の回転数N
は界磁巻線12の電流や前記直流!R,Idを増減する
ことにより所定の値に制御することができる。
On the other hand, at the same time, when a DC current 1d is supplied from the outside to the rotor 8 via the brush 16, this DC current Id flows through the conductor circle ftJ11 in the direction of the rotation axis and connects to the armature winding 19 of the rotor 8. The rotor 8 rotates because it interlinks with the unipolar magnetic flux φ on the surface of the opposing rotating shaft direction portion, and rotational torque is generated by the interaction trap. The rotation speed N of this rotor 8
is the current in the field winding 12 or the direct current! It can be controlled to a predetermined value by increasing or decreasing R and Id.

回転子8が回転すると、電機子巻線19の部分を前記し
た空間的に凹凸状に分布している単% m束Φが時間的
に順次移動していくので、このDL8a子巻線19には
、磁性回転子胴体10の凹凸部10α、10bの数かと
回転子8の回転数Nに比例した周波数の多相交流電圧が
誘起され、これが図示しない出力端子から出力されるこ
とになる。
When the rotor 8 rotates, the single %m flux Φ, which is spatially distributed unevenly in the armature winding 19, moves sequentially in time, so that the DL8a child winding 19 A multiphase AC voltage having a frequency proportional to the number of uneven portions 10α, 10b of the magnetic rotor body 10 and the rotation speed N of the rotor 8 is induced, and this is outputted from an output terminal (not shown).

なお、磁性回転子胴体10の凹凸部10α。Note that the uneven portion 10α of the magnetic rotor body 10.

10bから離れるに従って単極磁束Φの凹凸状分布は次
第に平坦化してくるので、交流出力を有効に発生させる
ためには、電機子巻線19を出来るだけ回転子8に近付
けて配置するのが望ましい。
The uneven distribution of the monopole magnetic flux Φ gradually flattens as it moves away from the rotor 10b, so in order to effectively generate AC output, it is desirable to place the armature winding 19 as close to the rotor 8 as possible. .

以上は直流電力を交流電力に変換する場合について述べ
たが、これとは逆に交流電力を直流電力に変換すること
もできる。この場合には、前記の場合と同様に超電導界
磁巻線12を直流励磁して単極磁界を形成するとともに
、電機子巻線19を図示しない外部交流電源により交流
励磁して、多相の回転磁界を形成する。この回転磁界に
より回転子8の導電円筒11に二次誘導電流が発生し、
導電円筒11が誘導電動機の回転子ダンバーとして作用
して始動トルクを生じ、回転子8が始動する。回転子8
0回転数が上昇して同期速度に達すると、電機子巻線1
9による回転磁界と磁性回転子胴体10の凸部1ozと
の間の電磁石作用により同期電動機として回転する。
Although the case where DC power is converted to AC power has been described above, it is also possible to convert AC power to DC power in the opposite manner. In this case, as in the previous case, the superconducting field winding 12 is DC excited to form a unipolar magnetic field, and the armature winding 19 is AC excited by an external AC power source (not shown) to generate a multi-phase Forms a rotating magnetic field. This rotating magnetic field generates a secondary induced current in the conductive cylinder 11 of the rotor 8,
The conductive cylinder 11 acts as a rotor damper of the induction motor to generate a starting torque, and the rotor 8 is started. Rotor 8
When the zero rotation speed increases and reaches the synchronous speed, armature winding 1
The rotor rotates as a synchronous motor due to the electromagnetic action between the rotating magnetic field produced by 9 and the 1 oz convex portion of the magnetic rotor body 10.

このようにして回転子8が回転すると、導電円筒11の
電機子巻線19と対向する回転軸方向部とになるため、
この部分に直流電圧が誘起され、両端に配置されたブラ
シ16より直流電力を取り出すことができる。
When the rotor 8 rotates in this way, the part in the direction of the rotation axis faces the armature winding 19 of the conductive cylinder 11.
A DC voltage is induced in this portion, and DC power can be extracted from the brushes 16 arranged at both ends.

この実施例によれば、次のような種々の効果が得られる
According to this embodiment, the following various effects can be obtained.

(1)  従来の回転変流機のように交流側と直流側の
電機子巻線が共用されず、それぞれ固定子側と回転子側
に分けて配置されそおり、交流側の擾乱は一旦回転子表
面に被せた導電円筒11のダンバー効果により吸収され
るので、直接直流側に影響を及ぼすことが少なく、安定
した運転特性が得られる。
(1) Unlike conventional rotary current transformers, the armature windings on the AC side and DC side are not shared, but are arranged separately on the stator side and rotor side, respectively. Since it is absorbed by the damper effect of the conductive cylinder 11 placed over the child's surface, there is little direct influence on the direct current side, and stable operating characteristics can be obtained.

(2)  電機子巻線19を電気角で180度空間約に
傾斜させて配置した、いわゆるヘリカル講造を採用した
ので、凹凸状に分布する磁束Φの高調波成分に起因する
交流出力電圧の歪みが打消され、正弦波状のきれいな波
形の交流電力が得られる。
(2) Since we adopted a so-called helical structure in which the armature winding 19 is arranged with a spatial inclination of about 180 electrical degrees, the AC output voltage caused by the harmonic components of the magnetic flux Φ distributed in an uneven manner is reduced. Distortion is canceled and AC power with a clean sinusoidal waveform is obtained.

(3)  交流出力の周波数を高くするためには、前述
のように、回転数Nを増すか、あるいは磁注回せばよい
が、本実施例の回転子8は何ら巻線を持たず、回転軸方
向の一部に凹凸部10α、10bを有する塊状の磁性回
転子胴体10と、その外周に嵌合固着されて一体となっ
た導電円筒11とからなる単純構造であるため、遠心力
に対する機械的強度が太き(、容易に高速回転すること
が可能で、周波数の高い交流出力を得ることができる。
(3) In order to increase the frequency of the AC output, it is possible to increase the number of rotations N or to rotate the magnetic flux as described above, but the rotor 8 of this embodiment does not have any windings and does not rotate. Since it has a simple structure consisting of a block-shaped magnetic rotor body 10 having uneven parts 10α and 10b in a part in the axial direction, and a conductive cylinder 11 that is fitted and fixed to the outer circumference of the body 10, the mechanical structure is strong against centrifugal force. It has a large target strength (can be easily rotated at high speed and can obtain high frequency AC output.

(4)  回転子8の外周面が平滑構造となっているた
め、高速回転による風損の増大を抑制することができる
(4) Since the outer circumferential surface of the rotor 8 has a smooth structure, an increase in windage loss due to high-speed rotation can be suppressed.

(5)  従来の鉄心スロット巻線方式では、出力周波
数が高くなる程、電機子巻線自体のりアクタンスが増大
し、電圧降下して出力を有効に取り出せないという問題
があったが、本実施例では、空隙巻線方式を採用してい
るため、リアクタンスを大幅に低減することができ、前
記の問題もなくなる。
(5) In the conventional iron core slot winding system, there was a problem that the higher the output frequency, the more the armature winding itself increases, resulting in a voltage drop and the inability to effectively extract the output. In this case, since the air gap winding method is adopted, the reactance can be significantly reduced, and the above-mentioned problem is also eliminated.

(6)電機子巻線19はヘリカル構造で、径方向外側に
延びるコイルエンド部分がな(、全体として円筒状をな
しているため、回転変流1機をコンパクトにすることが
できる。
(6) The armature winding 19 has a helical structure, with no coil end portion extending outward in the radial direction, and has a cylindrical shape as a whole, making it possible to make one rotary current transformer compact.

(7)超電導界磁巻線12と電機子巻線19がいずれも
固定子側に配置されているため、前者に対しては真空断
熱やヘリウムの給排などの保守が容易となって機械の信
頼性を向上することができ、また、後者に対しては集電
環などの集を装置を介することなく交流出力を取り出し
得るため、高電圧大電力を容易に取り出すことができる
(7) Since both the superconducting field winding 12 and the armature winding 19 are placed on the stator side, maintenance of the former, such as vacuum insulation and helium supply and discharge, is easy, and the machine Reliability can be improved, and since AC output can be taken out without using a collector such as a current collecting ring, high voltage and large power can be easily taken out.

なお、前記実施例では、直流電力を交流電力に、また交
流電力を直流電力に変換し得るように構成しているが、
単に直流電力を交Rt力に変換するように構成したり、
あるいは単に交流電力を直流電力に変換するように構成
することもできる。
In addition, in the above embodiment, the configuration is such that DC power can be converted to AC power, and AC power can be converted to DC power.
It can be configured to simply convert DC power into AC Rt power,
Alternatively, it may be configured to simply convert AC power into DC power.

すなわち、単に直流電力を交流電力に変換する場合には
、導電円筒11に前記回転磁界による二 ゛次誘導電流
を発生させる機能を持たせる必要はなく、例えば導電円
筒11の電機子巻線19と対向する回転軸方向部分を省
略し、それとは反対側の回転軸方向部分の両端にブラシ
を設けてこの部分に直流を流すように構成することがで
きる。また、単に交流電力を直流電力に変換する場合に
は、電機子巻線19と対向する回転子部分の磁束分布を
周方向において交互に粗密にする手段、つまり磁性回転
子胴体10の凹凸部10α、10hを省略してこの部分
を平滑にすることもできる。ただ、この場合には、常に
電機子巻線19と導電円筒11による誘4送動機として
のみ回転駆動され、同期電動機としては回転駆動されな
い。
That is, when simply converting DC power to AC power, it is not necessary to provide the conductive cylinder 11 with a function of generating a secondary induced current due to the rotating magnetic field, and for example, the armature winding 19 of the conductive cylinder 11 and It is possible to omit the opposing portion in the direction of the rotation axis, and to provide brushes at both ends of the portion in the direction of the rotation axis on the opposite side, so that a direct current flows through this portion. In addition, when simply converting AC power into DC power, a means for alternately making the magnetic flux distribution of the rotor portion facing the armature winding 19 denser and denser in the circumferential direction, that is, the uneven portion 10α of the magnetic rotor body 10 is used. , 10h can be omitted to make this part smooth. However, in this case, the armature winding 19 and the conductive cylinder 11 are always driven to rotate only as an induction motor, and not as a synchronous motor.

第4図は本発明の他の実施例に係る回転変流機の一部破
断斜視図、第5図は第4図のC−C線に沿う側面図であ
る。
FIG. 4 is a partially cutaway perspective view of a rotary current transformer according to another embodiment of the present invention, and FIG. 5 is a side view taken along line CC in FIG. 4.

この実施例では、前記実施例の導電円筒11の代りに、
銅などの導電材料からなる断面ダブティル状の複数本の
導電バー22が周方向に等しい間隔をあけて磁性回転子
胴体10中に遠心力で飛び出さないように埋設されると
ともに、磁性回転子胴体10の凹部10α中にステンレ
ス鋼などの非磁性体からなる充填部材23が同じ(遠心
力で飛び出さないように埋め込まれて回転子8の外周面
が平滑に形成されており、さらに各ブラシ16が短絡片
24により互に−に気的に接続されている。″したがっ
て、この実施例によれば、前記実施例と同様な作用効果
が得られるほか、さらに各導電バー22はブラシ16お
よび短絡片24により短絡されるので、過渡的なダンパ
電流が整然と流れ易くなって、単相や不平衡負荷運転時
の電機子巻線19からの逆相分による電機子反作用を吸
収することができ、このような異常運転時においても電
機子誘起電圧の波形歪みや機械の振動を低減することが
できるとともに、交流側から回転子8を駆動する場合に
は、ダンバー電流が流れ易いので、起動時をも含めて回
転トルクを増大することができる。
In this embodiment, instead of the conductive cylinder 11 of the previous embodiment,
A plurality of conductive bars 22 made of a conductive material such as copper and having a dovetail cross section are buried in the magnetic rotor body 10 at equal intervals in the circumferential direction so as not to be ejected due to centrifugal force. A filling member 23 made of a non-magnetic material such as stainless steel is filled in the recess 10α of the rotor 8 (embedded so as not to pop out due to centrifugal force, and the outer circumferential surface of the rotor 8 is formed smoothly. are electrically connected to each other by the shorting piece 24. Therefore, according to this embodiment, in addition to obtaining the same effect as the previous embodiment, each conductive bar 22 is electrically connected to the brush 16 and the shorting piece 24. Since it is short-circuited by the piece 24, the transient damper current can easily flow in an orderly manner, and the armature reaction due to the negative phase component from the armature winding 19 during single-phase or unbalanced load operation can be absorbed. Even during such abnormal operation, it is possible to reduce the waveform distortion of the armature induced voltage and the vibration of the machine, and when driving the rotor 8 from the AC side, damper current tends to flow, so it is possible to reduce the waveform distortion at startup. It is possible to increase the rotational torque including the

また、第6図は本発明のさらに他の実施例に係る回転変
流機の一部破断斜視図である。
Moreover, FIG. 6 is a partially cutaway perspective view of a rotary current transformer according to still another embodiment of the present invention.

この実施例が第1図の実施例と異なる点は、電機子巻線
19側の軸端に配置されていたブラシ16などの集電装
置を電機機子巻線側の軸端部に配置することにより、回
転子8上における7I流回路を直流側と交流側に分離し
たことと、継鉄14の電機子巻線19と対向する内周部
分を回転軸方向に積み重ねた積層鉄心25としたことで
ある。
This embodiment differs from the embodiment shown in FIG. 1 in that a current collector such as a brush 16, which was placed at the end of the shaft on the side of the armature winding 19, is placed at the end of the shaft on the side of the armature winding. As a result, the 7I current circuit on the rotor 8 is separated into a DC side and an AC side, and the inner peripheral portion of the yoke 14 facing the armature winding 19 is made into a laminated iron core 25 stacked in the direction of the rotation axis. That's true.

したがって、第1図の実施例と同様な作用効果が得られ
るほか、さらに交流側と直流側の相互干渉をなくして、
交流機の負荷特性を向上できるとともに、単極磁束Φの
前記凹凸状分布によって継鉄14に発生する鉄損や電機
子反作用磁束によって継鉄14に発生する鉄損な低減す
ることもできる。
Therefore, in addition to obtaining the same effects as the embodiment shown in FIG. 1, mutual interference between the AC side and the DC side is eliminated, and
The load characteristics of the AC machine can be improved, and the iron loss generated in the yoke 14 due to the uneven distribution of the unipolar magnetic flux Φ and the iron loss generated in the yoke 14 due to the armature reaction magnetic flux can also be reduced.

前記各実施例では、電機子巻線および超電導界磁巻線を
回転軸方向にそれぞれ1個ずつ設けているが、本発明は
これに限らず、前記各巻線を回転軸方向にそれぞれ複数
個設けて縦続接続することもでき、このようにすればさ
らに大容量の回転変流機を得ることが可能となる。
In each of the above embodiments, one armature winding and one superconducting field winding are provided in the direction of the rotation axis, but the present invention is not limited to this. They can also be connected in cascade, and in this way it is possible to obtain a rotating current transformer with an even larger capacity.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、交流側と直流側
の電機子巻線を共用せず、それぞれ固定子側と回転子側
に分けて配置したので、交流側と直流側の相互干渉を少
なくして安定した運転特性が得られるとともに、固定子
側の超電導界磁巻線による単極磁束と回転子の一部に形
成した磁束分布を粗密にする手段との相互作用により空
隙巻線式電機子巻線に交流出力を発生するようにしたの
で、信頼性を向上しかつ低リアクタンス化により高周波
出力に対しても大容量、高効率の発電を行なうことがで
きる。また、回転子の高速回転か容易であるため、周波
数の高い交流出力を得ることが可能である。
As explained above, according to the present invention, the armature windings on the AC and DC sides are not shared and are arranged separately on the stator and rotor sides, so that mutual interference between the AC and DC sides In addition, stable operating characteristics can be obtained by reducing the air gap winding due to the interaction between the unipolar magnetic flux generated by the superconducting field winding on the stator side and the means for making the magnetic flux distribution coarse and dense formed in a part of the rotor. Since alternating current output is generated in the type armature winding, reliability is improved and reactance is reduced, making it possible to generate large capacity and highly efficient power even with high frequency output. Furthermore, since the rotor can easily rotate at high speed, it is possible to obtain high-frequency AC output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る回転変流機の一部破断
斜視図、第2図は右半部が第1図のA−A線、左半部が
第1図のB−B線に沿う断面ば、第3図は同回転変流機
の動作説明図、第4図は本発明の他の実施例に係る回転
変流機の一部破断斜視図、第5図は第4図のC−C線か
ら見た何回図、8・・・・・・回転子、9・・・・・・
固定子、10・・・・・・磁性回転子胴体、10α・・
・・・・凹部、10b・・・・・・凸部、11・・・・
・・導電円筒、12・・・・・・超電導界磁巻線、14
・・・・・・継鉄、16・・・・・・ブラシ、19・・
・・・・多相交流電機子巻線、22・・・・・・導電バ
ー。 第1図 第2図 第3図 第4図 第6図 第7図
1 is a partially cutaway perspective view of a rotary current transformer according to an embodiment of the present invention, and in FIG. 2, the right half is taken along the line A-A in FIG. 1, and the left half is taken along the line B-- 3 is an explanatory diagram of the operation of the rotary current transformer, FIG. 4 is a partially cutaway perspective view of a rotary current transformer according to another embodiment of the present invention, and FIG. 5 is a cross-sectional view taken along line B. Number of times seen from line C-C in Figure 4, 8... Rotor, 9...
Stator, 10...Magnetic rotor body, 10α...
...Concave portion, 10b...Convex portion, 11...
...Conducting cylinder, 12...Superconducting field winding, 14
...Yoke, 16...Brush, 19...
... Polyphase AC armature winding, 22 ... Conductive bar. Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、直流電力を交流電力に変換する回転変流機において
、単極磁界を形成する固定超電導界磁巻線、固定磁路お
よび回転磁路と、この単極磁界の往路または帰路のいず
れか一方を形成する前記固定磁路と前記回転磁路との間
の間隙に単極磁界と鎖交するように配設された固定多相
交流電機子巻線と、前記回転磁路の前記固定多相交流電
機子巻線と対向する部分の磁束分布を周方向において交
互に粗密にする手段と、前記単極磁界の往路または復路
のいずれか一方を形成する前記回転磁路に単極磁界と鎖
交するように配設された回転導体と、この回転導体に直
流電流を流すための集電装置とを備え、前記固定超電導
界磁巻線を直流励磁し、かつ前記回転導体に直流電流を
流して、直流電動機として駆動させるとともに前記固定
多相交流電機子巻線に多相交流電圧を発生させるように
したことを特徴とする回転変流機。 2、特許請求の範囲第1項において、前記固定多相交流
電機子巻線をヘリカル構造としたことを特徴とする回転
変流機。 3、特許請求の範囲第1項において、前記回転導体は導
電円筒体からなることを特徴とする回転変流機。 4、特許請求の範囲第1項において、前記回転導体は周
方向に互に間隔をあけて配設された複数個の導電バーか
らなることを特徴とする回転変流機。 5、特許請求の範囲第1項において、前記単極磁界の往
路または帰路のいずれか一方に前記固定多相交流電機子
巻線を、他方に前記回転導体をそれぞれ配設したことを
特徴とする回転変流機。 6、交流電力を直流電力に変換する回転変流機において
、単極磁界を形成する固定超電導界磁巻線、固定磁路お
よび回転磁路と、この単極磁界の往路また帰路のいずれ
か一方を形成する前記固定磁路と回転磁路との間の間隙
に単極磁界と鎖交するように配設された固定多相交流電
機子巻線と、前記回転磁路の前記固定多相交流電機子巻
線と対向する部分に配設された第1の回転導体と、前記
単極磁界の往路または復路のいずれか一方を形成する前
記回転磁路に単極磁界と鎖交するように配設された第2
の回転導体と、この第2の回転導体から直流電力を取出
すための集電装置とを備え、前記固定超電導界磁巻線を
直流励磁し、かつ前記固定多相交流電機子巻線を交流励
磁して、誘導電動機として駆動させるとともに前記第2
の回転導体に直流電圧を発生させるようにしたことを特
徴とする回転変流機。 7、特許請求の範囲第6項において、前記第1の回転導
体を前記第2の回転導体として兼用したことを特徴とす
る回転変流機。 8、特許請求の範囲第6項において、前記固定多相交流
電機子巻線をヘリカル構造としたことを特徴とする回転
変流機。 9、特許請求の範囲第6項において、前記第1および第
2の回転導体は導電円筒体からなることを特徴とする回
転変流機。 10、特許請求の範囲第6項において、前記第1および
第2の回転導体は周方向に互に間隔をあけて配設された
複数個の導電バーからなることを特徴とする回転変流機
。 11、特許請求の範囲第6項において、前記単極磁界の
往路または復路のいずれか一方に前記固定多相交流電機
子巻線を、他方に前記第2の回転導体をそれぞれ配設し
たことを特徴とする回転変流機。 12、特許請求の範囲第6項において、さらに前記回転
磁路の前記固定多相交流電機子巻線と対向する部分の磁
束分布を周方向において交互に粗密にする手段を備え、
前記固定超電導界磁巻線を直流励磁し、かつ前記固定多
相交流電機子巻線を交流励磁して、誘導同期電動機とし
て駆動させるとともに第2の回転導体に直流電圧を発生
させるようにしたことを特徴とする回転変流機。
[Claims] 1. In a rotary current transformer that converts DC power to AC power, a fixed superconducting field winding, a fixed magnetic path, and a rotating magnetic path that form a unipolar magnetic field, and an outgoing path of this unipolar magnetic field. or a fixed multiphase AC armature winding arranged so as to be interlinked with a unipolar magnetic field in a gap between the fixed magnetic path and the rotating magnetic path forming either one of the return paths; means for alternately making the magnetic flux distribution denser and denser in the circumferential direction in a portion of the path facing the fixed multiphase AC armature winding; A rotating conductor arranged to interlink with a unipolar magnetic field, and a current collector for passing a DC current through the rotating conductor, the stationary superconducting field winding being DC-excited, and the rotating conductor A rotary current transformer characterized in that the rotary current transformer is driven as a DC motor by passing a DC current through the fixed multiphase AC armature winding, and generates a multiphase AC voltage in the fixed multiphase AC armature winding. 2. The rotary current transformer according to claim 1, wherein the fixed multiphase AC armature winding has a helical structure. 3. The rotary current transformer according to claim 1, wherein the rotating conductor is a conductive cylindrical body. 4. The rotary current transformer according to claim 1, wherein the rotating conductor comprises a plurality of conductive bars arranged at intervals in the circumferential direction. 5. Claim 1 is characterized in that the fixed multiphase AC armature winding is disposed on either the outgoing path or the return path of the unipolar magnetic field, and the rotating conductor is disposed on the other side. Rotating current transformer. 6. In a rotary current transformer that converts AC power into DC power, a fixed superconducting field winding, a fixed magnetic path, and a rotating magnetic path that form a unipolar magnetic field, and either the outgoing path or the return path of this unipolar magnetic field. a fixed multiphase AC armature winding disposed so as to be interlinked with a single pole magnetic field in a gap between the fixed magnetic path and the rotating magnetic path forming the fixed multiphase AC armature winding of the rotating magnetic path; A first rotating conductor disposed in a portion facing the armature winding and the rotating magnetic path forming either an outgoing path or a returning path of the unipolar magnetic field are arranged to interlink with the unipolar magnetic field. The second
and a current collector for extracting DC power from the second rotating conductor, the fixed superconducting field winding is DC excited, and the fixed multiphase AC armature winding is AC excited. The second motor is driven as an induction motor.
A rotating current transformer characterized by generating a DC voltage in a rotating conductor. 7. The rotating current transformer according to claim 6, characterized in that the first rotating conductor also serves as the second rotating conductor. 8. A rotary current transformer according to claim 6, wherein the fixed multiphase AC armature winding has a helical structure. 9. The rotary current transformer according to claim 6, wherein the first and second rotating conductors are comprised of conductive cylindrical bodies. 10. The rotary current transformer according to claim 6, wherein the first and second rotating conductors are composed of a plurality of conductive bars arranged at intervals in the circumferential direction. . 11. Claim 6 provides that the fixed multiphase AC armature winding is disposed on one of the outgoing and returning paths of the unipolar magnetic field, and the second rotating conductor is disposed on the other. Characteristic rotating current transformer. 12. Claim 6, further comprising means for alternately making the magnetic flux distribution of a portion of the rotating magnetic path facing the fixed multiphase AC armature winding denser and denser in the circumferential direction,
The fixed superconducting field winding is DC-excited and the fixed multiphase AC armature winding is AC-excited to drive it as an induction synchronous motor and to generate a DC voltage in the second rotating conductor. A rotary current transformer featuring:
JP59207039A 1984-10-04 1984-10-04 Rotary converter Granted JPS6188761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59207039A JPS6188761A (en) 1984-10-04 1984-10-04 Rotary converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59207039A JPS6188761A (en) 1984-10-04 1984-10-04 Rotary converter

Publications (2)

Publication Number Publication Date
JPS6188761A true JPS6188761A (en) 1986-05-07
JPH0564541B2 JPH0564541B2 (en) 1993-09-14

Family

ID=16533191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59207039A Granted JPS6188761A (en) 1984-10-04 1984-10-04 Rotary converter

Country Status (1)

Country Link
JP (1) JPS6188761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219454A (en) * 1988-12-15 1990-09-03 Woo-Sub Lee Multi-purpose unipole rotary electric machine
JP2012139099A (en) * 2012-04-16 2012-07-19 Sumitomo Electric Ind Ltd Superconducting motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219454A (en) * 1988-12-15 1990-09-03 Woo-Sub Lee Multi-purpose unipole rotary electric machine
JP2012139099A (en) * 2012-04-16 2012-07-19 Sumitomo Electric Ind Ltd Superconducting motor

Also Published As

Publication number Publication date
JPH0564541B2 (en) 1993-09-14

Similar Documents

Publication Publication Date Title
US7134180B2 (en) Method for providing slip energy control in permanent magnet electrical machines
US3319100A (en) Dynamoelectric machines
US4959578A (en) Dual rotor axial air gap induction motor
US4896063A (en) Electromagnetic induction devices with multi-form winding and reflected magnetizing impedance
US4058746A (en) Dynamoelectric machinery utilizing superconductive windings
US6949855B2 (en) Transverse flux electrical machine with toothed rotor
KR20190044634A (en) Improved multi-tunnel electric motor / generator
JPH0720360B2 (en) Dynamo Electric Machine and Stator Assembly
US6100620A (en) High frequency synchronous rotary electrical machine
US6891301B1 (en) Simplified hybrid-secondary uncluttered machine and method
EP3416268B1 (en) Three phase flux switching electric machine with orthogonally oriented magnets
JPH02151235A (en) Ac generator having plurality of phase-displaced wave-winding multilayer winding
JPS5837799B2 (en) electric motor device
US4835431A (en) Transformer and synchronous machine with stationary field winding
US6191517B1 (en) Brushless synchronous rotary electrical machine
US2103165A (en) Self starting synchronous inductor motor
US3513342A (en) Rotor for alternating-current machines
JPS6188761A (en) Rotary converter
US11621598B2 (en) Torque density pseudo six-phase induction machine
WO2001073922A2 (en) Improved inductor-type ac power generator
CN102013779B (en) Hybrid excitation permanent magnet motor of quintuple harmonic excitation
RU2079949C1 (en) Electrical machine
US3821573A (en) Multiset polyphase winding
US3075108A (en) Dual rotor electric motor
US1385895A (en) Electricity transforming and converting apparatus