JPS6188724A - Load driving circuit - Google Patents

Load driving circuit

Info

Publication number
JPS6188724A
JPS6188724A JP59207711A JP20771184A JPS6188724A JP S6188724 A JPS6188724 A JP S6188724A JP 59207711 A JP59207711 A JP 59207711A JP 20771184 A JP20771184 A JP 20771184A JP S6188724 A JPS6188724 A JP S6188724A
Authority
JP
Japan
Prior art keywords
load
solar cell
relay
voltage
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59207711A
Other languages
Japanese (ja)
Inventor
布川 廣之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP59207711A priority Critical patent/JPS6188724A/en
Publication of JPS6188724A publication Critical patent/JPS6188724A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は太陽電池のエネルギーをコンデンサに蓄積し
、太陽電池の起電力とコンデンサの電荷を電源として負
荷を駆動する負荷駆動回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application This invention relates to a load drive circuit that stores energy from a solar cell in a capacitor and drives a load using the electromotive force of the solar cell and the charge of the capacitor as power sources.

(0)従来の技術 従来のこの陣の負荷駆動回路は例えば特公昭56−48
989号公報に開示されているように(第2図4照)、
太:陽1反池(1)を直列に並べて、太陽電池の出力電
圧V。を発生させ、これを逆流防止用のダイオード(2
)を介してコンデンサ(3)に電荷としてたくわえ、コ
ンデンサ(3)の両端から出力を取り出すようにした電
源回路(4)を使用している。
(0) Conventional technology The conventional load drive circuit of this group is, for example,
As disclosed in Publication No. 989 (see Figure 2, 4),
The output voltage of the solar cell is V by arranging solar cells (1) in series. is generated, and this is connected to a diode (2) for backflow prevention.
) A power supply circuit (4) is used in which the electric charge is stored in the capacitor (3) via the capacitor (3), and the output is taken out from both ends of the capacitor (3).

このような電源回路(4)を用いてFσ流モータ等の負
荷(5)を駆動する場合、第3図に示すよ5vて、コン
デンサ(3)と並列にマグネットリレー(6)と、コン
デンサ(3)保護用のダイオード(7)と、マグネット
リレー(6)のリレー接点(6a)および負荷(5)の
直列回路とをそれぞれ設け、太陽電池(1)の出力電圧
■。
When using such a power supply circuit (4) to drive a load (5) such as an Fσ-flow motor, a magnetic relay (6) and a capacitor ( 3) A protection diode (7) and a series circuit of the relay contact (6a) of the magnetic relay (6) and the load (5) are provided, respectively, to increase the output voltage of the solar cell (1).

がマグネットリレー(6)の動作′電圧V。8以上のと
ぎにリレー接点(6a)が閉じて負荷(F3) K給電
し、出力電圧vDがマグネットリレー(6)の復帰電圧
■。r2以下のときにリレー接点(6a)が開放して負
荷(5)を電源回路(4)から切離すようにしている。
is the operating voltage V of the magnetic relay (6). 8 or more, the relay contact (6a) closes and supplies power to the load (F3) K, and the output voltage vD becomes the return voltage of the magnetic relay (6) ■. When the voltage is below r2, the relay contact (6a) opens to disconnect the load (5) from the power supply circuit (4).

ところで、上述した負荷駆動回路は太陽光の照射が十分
に行なわれず、太陽電池(1)のエネルギーレベルがあ
る範囲にあるときに次の問題かあった。
By the way, the above-described load driving circuit does not receive enough sunlight and has the following problem when the energy level of the solar cell (1) is within a certain range.

すなわち、出力′電圧VDかゆっくりと増加してV1以
上になると、負荷(5)に給電さ2Lるか、出力市圧V
0は負荷(5)の運転を継続させるのに十分でなく、第
4図に示す太陽電池(1)の出力電圧−出力電流特性(
定電流特性)に従って徐々に低下する。
That is, when the output 'voltage VD slowly increases and exceeds V1, the load (5) is supplied with 2L or the output voltage VD increases slowly.
0 is not sufficient to continue the operation of the load (5), and the output voltage-output current characteristic of the solar cell (1) shown in Fig. 4 (
(constant current characteristics).

そして、この電圧低下によりVDがv07.以下になる
と、リレー接点(6a)が開放して負荷(5)の通電が
断たれる。ところが、リレー接点(6a)が開放すると
、太陽電池(1)の出力電圧は開放電圧に向って急激に
上昇するため、出力電圧v0が再びV。、以上となり、
リレー接点(6a)が閉路する。以下、これの繰返しに
より、負荷(5)に断続的に通電が行なわれることにな
る。
Then, due to this voltage drop, VD becomes v07. When the temperature is below, the relay contact (6a) opens and the load (5) is de-energized. However, when the relay contact (6a) opens, the output voltage of the solar cell (1) rapidly increases toward the open voltage, so the output voltage v0 becomes V again. , and above.
The relay contact (6a) is closed. Thereafter, by repeating this process, the load (5) is intermittently energized.

このように従来の負荷駆動回路は太陽光の照射量が少な
く、太陽電池のエネルギーレベルがある範囲内にあると
きに、太陽゛電池(1)と負荷(5)とが頻繁に接離す
るハンチング現象を起こし、マグネットリレー(6)や
負荷(5)の寿命を縮める心配があった。
In this way, conventional load drive circuits suffer from hunting, where the solar cell (1) and the load (5) frequently come into contact and separate when the amount of sunlight irradiation is low and the energy level of the solar cell is within a certain range. There was a concern that this would cause a phenomenon and shorten the life of the magnetic relay (6) and load (5).

もちろん、太陽電池(1)を多く使用すれば・・ンテン
グを少なくできるが、太陽電池が高価であるため経済的
でない。
Of course, if more solar cells (1) are used, the cost can be reduced, but this is not economical since solar cells are expensive.

()→ 発明が解決しようとする問題点この発明の課題
は太陽電池のエネルギーレベルがある範囲内のとき、太
陽電池の特性により生じるハンチング現象を、太陽電池
の使用量を増やすことなく、極力防止することである。
() → Problem to be solved by the invention The problem of this invention is to prevent the hunting phenomenon caused by the characteristics of solar cells as much as possible when the energy level of the solar cells is within a certain range, without increasing the amount of solar cells used. It is to be.

に)問題点を解決するための手段 上記の課題はこの発明によれば、冒頭で述べた負荷駆動
回路において、太陽′電池の出力電圧を検出する電圧検
出手段と、この電圧検出手段の出力に応じて負荷および
この負荷より軽い軽負荷を交互に太陽電池と接離するス
イッチ手段とを備えたことにより解決される。
B) Means for Solving the Problems According to the present invention, the above-mentioned problem can be solved by providing a voltage detection means for detecting the output voltage of the solar cell and a voltage detection means for detecting the output voltage of the solar cell in the load driving circuit mentioned at the beginning. This problem can be solved by providing a switch means for alternately connecting and disconnecting a load and a light load lighter than the load to and from the solar cell accordingly.

((ホ)作用 太陽電池の出力電圧が一定値以上になると、電圧検出手
段によりスイッチ手段が作動し、スイッチ手段は負荷を
太陽電池に接続する。そして、負荷には太陽電池の起電
力とコンデンサの充電電荷とが電源として印加される。
((E) Operation When the output voltage of the solar cell exceeds a certain value, the voltage detection means activates the switch means, and the switch means connects the load to the solar cell.The load is connected to the electromotive force of the solar cell and the capacitor. A charging charge of is applied as a power source.

太陽電池の出力電圧が一定値以下になると、′T!L圧
検出手段の出力により、スイッチ手段が太陽電池と負荷
とを切離すとともに、太陽電池と軽負荷とを接続する。
When the output voltage of the solar cell falls below a certain value, 'T! Based on the output of the L pressure detection means, the switch means disconnects the solar cell from the load and connects the solar cell to the light load.

このため、太陽電池の出力電圧は開放電圧まで上昇せず
、軽負荷とつりあった出力電圧となる。この出力電圧を
適当に調整してお(ことにより、スイッチ手段の・・ン
テング動作が少なくなる。
Therefore, the output voltage of the solar cell does not rise to the open-circuit voltage, and becomes an output voltage that is in balance with the light load. By appropriately adjusting this output voltage, the switching operation of the switching means can be reduced.

(へ)実施例 以下、この発明を図面に示す実施例について説明する。(f) Example Hereinafter, embodiments of the present invention shown in the drawings will be described.

第1図において、(8)は太陽電池、(9)は逆流防止
用のダイオード、(101は太陽′電池のエネルギーを
ダイオード(9)を介して蓄積する電解コンデンサ、0
υは電解コンデンサ(1G保護用のダイオード、CIカ
は電圧検出手段としての電圧検出回路であり、単極双投
のリレー接点(13a)、抵抗α似マグネットリレー0
5)およびマグネッ) IJシレー9の短時間保持用の
コンデンサ(I6)を備えている。また、(15a)は
マグネットリレー05)の単極双投のリレー接点、(I
7)は直流モータ等の負荷、031はリレー接点(13
a)駆動用のマグネットリレー、u阻マ逆起電圧防止用
のダイオード、([町マ、負荷(Iでよりも軽い軽負荷
としての抵抗であり、それぞれ図示の〃1」り結線され
ている。
In Figure 1, (8) is a solar cell, (9) is a diode for backflow prevention, (101 is an electrolytic capacitor that stores the energy of the solar cell via diode (9),
υ is an electrolytic capacitor (1G diode for protection, CI is a voltage detection circuit as a voltage detection means, single-pole double-throw relay contact (13a), resistor α-like magnet relay 0
5) and magnet) Equipped with a capacitor (I6) for short-term holding of IJ series 9. In addition, (15a) is the single-pole double-throw relay contact of magnetic relay 05), (I
7) is a load such as a DC motor, 031 is a relay contact (13
a) A magnetic relay for driving, a diode for preventing back electromotive force, (a resistor for a light load that is lighter than the load (I), and is connected as shown in the figure. .

太14電池(8)K太陽光が照射されると、太I4電池
(8)のエネルギーがコンデンサ中))に電荷とし℃蓄
積される。また、太陽電池(8)は無負荷でないため、
出力電圧が開放電圧まで上昇せず、抵抗09の抵抗値と
つりあった電圧となる。そして、太陽光強度の増加に伴
ない、太陽電池(8)の出力電圧が抵抗)11)にて調
整されたマグネットリレー09の動作電圧以上になると
、リレー05)がオンとなり、リレー接点(15a)を
介して負荷(17)K給電が行なわれる。このとき、マ
グネットリレーOJKも通’fK’3れ、リレー接点(
13a)が切り換わって抵抗04)を煙路するため、リ
レー(ISKは太陽電池の出力電圧が「σ接供給される
ようになる。また、この切換えの際、リレー(151は
コンデンサ06)の放電により通電が保持されるため、
瞬時的にオフになる心配がない。このように、抵抗a9
から負荷αηに切り換えが行なわれると、太陽電池(8
)の出力電圧は6干低下するが、抵抗09を短絡した分
だけ、リレー05)の印加屯田が増加するため、リレー
a9は安定動作を続ける。
When exposed to sunlight, the energy of the thick I4 battery (8) is stored as a charge in the capacitor (°C). Also, since the solar cell (8) is not under no load,
The output voltage does not rise to the open circuit voltage and becomes a voltage balanced with the resistance value of the resistor 09. As the intensity of sunlight increases, when the output voltage of the solar cell (8) exceeds the operating voltage of the magnetic relay 09 adjusted by the resistor) 11), the relay 05) turns on, and the relay contact (15a) ) is used to supply the load (17)K. At this time, the magnet relay OJK is also passed through 'fK'3, and the relay contact (
13a) is switched to provide a smoke path to the resistor 04), so that the output voltage of the solar cell is supplied to the relay (ISK). Because electricity is maintained by discharging,
There is no need to worry about it turning off instantly. In this way, resistance a9
When switching from load αη to solar cell (8
Although the output voltage of relay a9 decreases by six times, the applied voltage of relay a9 increases by the amount that resistor a9 is shorted, so relay a9 continues to operate stably.

太陽光の照射量が減少するか、負荷(17)が増大し、
太陽型?12 !8)の出力電圧がリレーa5)の復帰
電圧以下に下がると、リレーθ9がオフし、負荷07)
及びリレー03)の迫五が切られる。そして、抵抗09
)に通電が行なわれるとともに、リレー(15)には抵
抗04)にて減圧された電圧が供給される。このように
、リレー05)がオフになると、太l!!!電池(8)
には負荷(17)に代わって抵抗■が接続されるため、
太陽電池(8)の出力電圧が開放電圧まで上昇しないよ
うにでき、しかも抵抗(1・0((てリレー05)の動
作電圧がみかけ上剥上げられるため、リレー0■がすぐ
にオンにならないようにできる。
The amount of sunlight irradiation decreases or the load (17) increases,
Solar type? 12! When the output voltage of 8) falls below the reset voltage of relay a5), relay θ9 turns off and load 07)
and Relay 03)'s third half is cut off. And resistance 09
) is energized, and the voltage reduced by the resistor 04) is supplied to the relay (15). In this way, when relay 05) is turned off, tai! ! ! Battery (8)
Since a resistor ■ is connected instead of the load (17),
It is possible to prevent the output voltage of the solar cell (8) from rising to the open circuit voltage, and in addition, the operating voltage of the resistor (1・0 ((relay 05) is apparently lifted, so the relay 0■ does not turn on immediately. You can do it like this.

本芙施例によれば、リレー(151がオフとなり、負荷
(17)の通電が切られているときでも、太陽電池(8
)に抵抗(191を接続し、無負荷としないので、太陽
電池の出力電力が開放電圧まで上昇することがない。
According to this embodiment, even when the relay (151 is turned off and the load (17) is de-energized, the solar cell (8)
) is connected to the resistor (191) and there is no load, so the output power of the solar cell does not rise to the open circuit voltage.

このため、抵抗Ofの抵抗値を適宜設定することにより
、リレー(15)がオフになった後、すぐにオンになる
ハンチング動作を惰力することができる。また、リレー
αωと直列に抵抗0滲を設け、この抵抗側をリレー(1
5jと連動するリレー03で短絡するよつにしたので、
リレー09はみかげ上の動作電圧が引上げられ、オン、
オフのディファレンシャルが広がってリレー動作が安定
する。さらにまた、抵抗G、l)、(11の選定により
、太陽電池(8)と負荷α力の容量を整合させることも
可能である。
Therefore, by appropriately setting the resistance value of the resistor Of, it is possible to force the hunting operation to turn on immediately after the relay (15) turns off. In addition, a zero resistance is provided in series with the relay αω, and this resistance side is connected to the relay (1
I made a short circuit with relay 03 that works with 5j, so
The apparent operating voltage of relay 09 is raised, and it turns on.
The OFF differential widens and stabilizes relay operation. Furthermore, by selecting the resistors G, l) and (11), it is possible to match the capacity of the solar cell (8) and the load α force.

(ト)発明の効果 この発明は以上のように構成されているので、負荷が太
陽電池から切離されているときでも、太陽電池の出力電
圧が開放電圧にならないようにでき、太陽電池のエネル
ギーレベルがある範囲内のときに太陽電池の特性に起因
して生じるハンチング動作を極力防止することが可能で
あり、スイッチ手段や負荷の寿命を損わないようにでき
る。また、軽負荷の設定により、太陽電池と負荷の容量
を整合させることも可能であり、太陽電池の使用量を増
やすことなく、負荷を安定作動させることができるなど
、経済的な負荷駆動回路を提供できるものである。
(g) Effects of the Invention Since this invention is configured as described above, even when the load is disconnected from the solar cell, the output voltage of the solar cell can be prevented from becoming an open circuit voltage, and the energy of the solar cell can be reduced. It is possible to prevent as much as possible the hunting operation that occurs due to the characteristics of the solar cell when the level is within a certain range, and it is possible to prevent the life of the switch means and the load from being impaired. In addition, by setting a light load, it is possible to match the capacities of the solar cells and the load, making it possible to operate the load stably without increasing the amount of solar cells used, making it possible to create an economical load drive circuit. This is something that can be provided.

第1図はこの発明による負荷駆動回路の一実べを示す電
気回路図、第2図は一般に使用される太陽電池を用いた
電源回路の基本回路図、第3図は従°来の負荷駆動回路
の1例を示す電気回路図、第4図は太陽電池の゛磁圧−
電流特性説明図である。
Figure 1 is an electric circuit diagram showing a load driving circuit according to the present invention, Figure 2 is a basic circuit diagram of a commonly used power supply circuit using solar cells, and Figure 3 is a conventional load driving circuit. An electric circuit diagram showing an example of the circuit, Figure 4 shows the magnetic pressure of the solar cell.
FIG. 3 is a current characteristic explanatory diagram.

(8)・・・太陽電池、 QO)・・・コンデンサ、 
Qツ・・・電圧検出回路(電圧検出手段)、 α■・・
・マグネットリレー(スイッチ手段)、 07)・・・
負荷、 (14・・・抵抗(軽負荷)。
(8)...Solar cell, QO)...Capacitor,
Qtsu...Voltage detection circuit (voltage detection means), α■...
・Magnetic relay (switch means), 07)...
Load, (14...resistance (light load).

出1・星貝人 三洋亀(;)株式会社 外1名代理人 
弁理士  佐 野 静 夫 第1図 第2図  2
Outline 1: Hoshikaito Sanyo Kame (;) Co., Ltd. 1 other agent
Patent Attorney Shizuo Sano Figure 1 Figure 2 2

Claims (1)

【特許請求の範囲】[Claims] (1)太陽電池のエネルギーをコンデンサに蓄積し、太
陽電池の起電力とコンデンサの電荷を電源として負荷を
駆動するものにおいて、太陽電池の出力電圧を検出する
電圧検出手段と、この電圧検出手段の出力に応じて負荷
およびこの負荷より軽い軽負荷を交互に太陽電池と接離
するスイッチ手段とを備えたことを特徴とする負荷駆動
回路。
(1) In a device that stores the energy of a solar cell in a capacitor and drives a load using the electromotive force of the solar cell and the charge of the capacitor as a power source, there is a voltage detection means for detecting the output voltage of the solar cell, and a voltage detection means for detecting the output voltage of the solar cell; A load driving circuit characterized by comprising a switch means for alternately connecting and disconnecting a load and a light load lighter than the load to a solar cell according to the output.
JP59207711A 1984-10-03 1984-10-03 Load driving circuit Pending JPS6188724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59207711A JPS6188724A (en) 1984-10-03 1984-10-03 Load driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59207711A JPS6188724A (en) 1984-10-03 1984-10-03 Load driving circuit

Publications (1)

Publication Number Publication Date
JPS6188724A true JPS6188724A (en) 1986-05-07

Family

ID=16544294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59207711A Pending JPS6188724A (en) 1984-10-03 1984-10-03 Load driving circuit

Country Status (1)

Country Link
JP (1) JPS6188724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447535U (en) * 1987-09-16 1989-03-23
JP2014042404A (en) * 2012-08-22 2014-03-06 Sharp Corp Charging device, solar system, electrical system, and vehicle
US9525305B2 (en) 2012-08-22 2016-12-20 Sharp Kabushiki Kaisha Electric system and vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137569A (en) * 1974-04-18 1975-10-31
JPS55166431A (en) * 1979-06-13 1980-12-25 Matsushita Electric Ind Co Ltd Solar battery power supply device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137569A (en) * 1974-04-18 1975-10-31
JPS55166431A (en) * 1979-06-13 1980-12-25 Matsushita Electric Ind Co Ltd Solar battery power supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447535U (en) * 1987-09-16 1989-03-23
JP2014042404A (en) * 2012-08-22 2014-03-06 Sharp Corp Charging device, solar system, electrical system, and vehicle
US9525305B2 (en) 2012-08-22 2016-12-20 Sharp Kabushiki Kaisha Electric system and vehicle

Similar Documents

Publication Publication Date Title
US5179337A (en) Over-discharge protection for rechargeable batteries
US4044268A (en) Multiple power source automatic switching circuitry
US5258244A (en) Reversible automatic cell bypass circuit
EP0851556A3 (en) Battery charger
JPS6258226B2 (en)
US4045720A (en) Automatic resetting temperature controlled battery changing system
JPS6188724A (en) Load driving circuit
EP0237308B1 (en) Capacitor charging circuit
US3652917A (en) Battery charging system using a coulometer as a logic device
JP3522802B2 (en) Overcharge prevention circuit for solar battery storage battery
US5838143A (en) Automatic battery polarity identification circuit having electrode plates, capacitor and relays
GB2081531A (en) Hand lamp
SU1480017A1 (en) Load power supply arrangement
SU843035A1 (en) Device for limiting storage battery power supply discharge
JPH05184083A (en) Power supply
JPH0229789Y2 (en)
SU1064362A1 (en) Automatic reset device
SU943982A2 (en) Device for protecting storage battery
JP3285160B2 (en) Secondary battery protection circuit
RU2012970C1 (en) Device for protection of electric power user from voltage of reversed polarity
JPH03201113A (en) Power control circuit for solar battery
SU1453502A1 (en) Device for protecting users against wrong polarity of power supply source
JPS5915408B2 (en) timer
JPS59139829A (en) Solar battery generating circuit
SU1356120A1 (en) Redundancy d.c.power supply system