JPS6188501A - Manufacture of voltage non-linear resistance element - Google Patents

Manufacture of voltage non-linear resistance element

Info

Publication number
JPS6188501A
JPS6188501A JP59209202A JP20920284A JPS6188501A JP S6188501 A JPS6188501 A JP S6188501A JP 59209202 A JP59209202 A JP 59209202A JP 20920284 A JP20920284 A JP 20920284A JP S6188501 A JPS6188501 A JP S6188501A
Authority
JP
Japan
Prior art keywords
granulated powder
density
resistance element
bulk density
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59209202A
Other languages
Japanese (ja)
Inventor
哲 丸山
向江 和郎
永沢 郁郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59209202A priority Critical patent/JPS6188501A/en
Publication of JPS6188501A publication Critical patent/JPS6188501A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は過電圧保護に用いられ、酸化亜鉛を主成分とす
る電圧非直線抵抗素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for manufacturing a voltage nonlinear resistance element that is used for overvoltage protection and has zinc oxide as a main component.

〔従来技術とその問題点〕[Prior art and its problems]

電圧非直線抵抗素子などセラミックス電子部品は、通常
原料から混合、造粒、成形、焼成の一連の過程を経て製
造されている。とくに大量の原料を処理する場合には造
粒に際して噴霧乾燥する方法がとられる。この方法は原
料粉末に有機バインダを混合したスラリーを高温気流中
に噴霧し、瞬時に乾燥することにより、球形の粒子が得
られやすい。しかしこの噴霧乾燥による造粒方法は、造
粒条件によって、得られる造粒粉粒子が種々の形態をと
り、とくに内部が中空になったかさ密度の低い造粒粉と
なることが多い。
Ceramic electronic components such as voltage nonlinear resistance elements are usually manufactured through a series of processes of mixing raw materials, granulating, molding, and firing. Particularly when processing a large amount of raw materials, a method of spray drying is used during granulation. In this method, spherical particles are easily obtained by spraying a slurry of raw material powder mixed with an organic binder into a high-temperature air stream and instantaneously drying the slurry. However, in this granulation method using spray drying, the resulting granulated powder particles take various forms depending on the granulation conditions, and in particular, granulated powder particles with a hollow interior and a low bulk density are often obtained.

内部が中空になったかさ密度の低い造粒粉を使用して焼
成体をつくるとその過程で種々の問題を生ずる。例えば
造粒粉が中空であるために、成形時における圧力伝達が
悪く、それが原因となって成形体にクラックやラミネー
ションを発生させる。
When a fired body is made using granulated powder with a low bulk density and a hollow interior, various problems occur during the process. For example, since the granulated powder is hollow, pressure transmission during molding is poor, which causes cracks and lamination in the molded product.

このように成形体内部における圧力の不均一性を生ずイ
)ことから、酸化亜鉛を主成分とする電圧非直線抵抗素
子のように、素子内部の密度が均一となることを高度に
要求されるものでは、かさ密度の低い造粒粉を用いるこ
とは大きな障害をもたらすことになり、したがってかさ
密度の高い造粒粉が会費とされる。内部が中実でかさ密
度の高い造粒粉を得るためには、スラリ〜の粉末濃度を
高くして噴霧乾燥することによって可能となる。スラリ
ーを高濃度化することは原料粉末処理量を大巾に増すこ
とができるので、製造プロセスの効率を向上させるとい
う点でも効果的である。
In this way, non-uniformity of pressure inside the compact occurs (a). Therefore, it is highly required that the density inside the element be uniform, such as in voltage nonlinear resistance elements whose main component is zinc oxide. In those cases, using granulated powder with a low bulk density poses a major problem, and therefore, granulated powder with a high bulk density is required as a membership fee. Granulated powder with a solid interior and high bulk density can be obtained by increasing the powder concentration of the slurry and performing spray drying. Increasing the concentration of the slurry can greatly increase the amount of raw material powder processed, and is therefore also effective in improving the efficiency of the manufacturing process.

しかしながら1本発明者らが電圧非直線抵抗素子を製造
したとき、たとえス2り一濃度を高めかさ密度の大きな
造粒粉を使用しても、従来と同一製造条件で行なったの
では、得られた焼成体のVlmA値が極端に高く、もれ
電流が犬となり、しかも長波尾サージ耐量も不十分であ
って、電圧非直線抵抗素子として満足できるものとはな
らなかった。
However, when the present inventors manufactured a voltage nonlinear resistance element, even if they used granulated powder with a high concentration of sulfur and a large bulk density, it was difficult to obtain any advantage by using the same manufacturing conditions as before. The VlmA value of the fired body was extremely high, the leakage current was high, and the long wave tail surge resistance was insufficient, so that it was not satisfactory as a voltage nonlinear resistance element.

この原因を調べるために、これらの成形体を詳しく観察
した結果、従来の素子の場合に比べて造粒粉が十分に圧
縮されておらず、成形体内部における空隙が多く、この
空隙が焼成後も残存していることがわかった。すなわち
、スラリーを高濃度化した造粒粉は製造条件によっては
従来の素子よυ焼成密度の低いものしか得られず、焼結
が十分く進行しないために高いV1飄や大きなもれ電流
の値を示すのである。
In order to investigate the cause of this, we closely observed these molded bodies and found that the granulated powder was not sufficiently compressed compared to the case of conventional elements, and there were many voids inside the molded bodies. It was also found that some remained. In other words, depending on the manufacturing conditions, granulated powder made from highly concentrated slurry can only have a lower υ firing density than conventional elements, and because sintering does not progress sufficiently, it may have a high V1 value or a large leakage current value. It shows.

また、これら特性値の劣る素子について、粒子の粒径分
布を調査した結果、素子の周辺部ではとくに小さな粒径
からなる領域が存在し、この小粒径領域が内部までかな
り広範囲に形成されていることがわかった。このことは
成形体に空隙が多いだめに、焼成に際して周辺部から粒
成長に寄与する成分が蒸発しやすいことに起因するもの
であり、周辺部に広い高抵抗領域が形成される結果、中
心部への電流集中が大きくなり、長波尾サージ耐量を低
下させるのである。
In addition, as a result of investigating the particle size distribution of these elements with poor characteristic values, it was found that there was a region of particularly small particles in the periphery of the device, and that this small particle size region was formed over a fairly wide area even inside the device. I found out that there is. This is due to the fact that the more voids there are in the compact, the more easily the components that contribute to grain growth evaporate from the periphery during firing. This increases the current concentration in the area, reducing the long wave tail surge resistance.

以上のことから、かさ密度の高い造粒粉を用いて、電流
電圧特性、長波尾サージ耐量のすぐれた電圧非直線抵抗
素子をつくるためにとくに製造工程と素子特性との関連
において、適切な成形条件を定めることが望ましい。
Based on the above, in order to create a voltage nonlinear resistance element with excellent current-voltage characteristics and long-wave tail surge resistance using granulated powder with high bulk density, appropriate molding is necessary, especially in relation to the manufacturing process and element characteristics. It is desirable to establish conditions.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものでちり、その目
的はかさ密度の高い造粒粉を用いて、電流電圧特性およ
び長波尾サージ耐量のすぐれた電圧非直線抵抗素子の製
造方法を提供することにある。
The present invention has been made in view of the above points, and its purpose is to provide a method for manufacturing a voltage nonlinear resistance element with excellent current-voltage characteristics and long wave tail surge resistance using granulated powder with high bulk density. It's about doing.

〔発明の要点〕[Key points of the invention]

本発明は酸化亜鉛を主成分とする電圧非直線抵抗素子を
製造するに当り、噴霧乾燥により得られるかさ密度1.
4gr15以上の造粒粉を用いて成形圧Cπ 力を0.3〜0.4t0−とじ、焼成体の密度を5.3
5g−〜5.50g73  とすることにより、電流電
圧特性。
In the present invention, when manufacturing a voltage nonlinear resistance element mainly composed of zinc oxide, the bulk density obtained by spray drying is 1.
Using granulated powder of 4gr15 or more, the molding pressure Cπ force is set to 0.3 to 0.4t0-, and the density of the fired body is set to 5.3.
5g- to 5.50g73, the current-voltage characteristics.

長波尾サージ耐量のすぐれた素子を得るものである。This provides an element with excellent long wave tail surge resistance.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

酸化亜鉛を主成分とし副成分を添加した粉末を純水、有
愼バインダーとともにボールミルで混合してスラリ〜を
つくり、このスラリーを並流式スプレードライヤを用い
て噴霧乾燥し造粒粉を得た。
Powder containing zinc oxide as the main component and supplementary components was mixed in a ball mill with pure water and a binder to create a slurry, and this slurry was spray-dried using a co-current spray dryer to obtain granulated powder. .

この造粒粉はスラリーを高濃度にしてあり、従来の造粒
粉のかさ密度が1.2甥r/45であるのに対し本実施
例で得られた造粒粉のかを密度は1.43gr/、5で
あった。次にこの造粒粉を用いて成形圧力を0.2〜0
.5t01の範囲として6040 の成形体をつくり、
さらに有機バインダーを除去した後、 1250℃で3
時間焼成する。得られた焼成体は両面を研磨して鍜1L
極を焼きつけ、素子特性を測定した。特性値は素子に電
流が10μA 、 1mA 、 l0KA流れるときノ
ミ圧VlOμA+ VImA 、 ”l0KAを求めた
041図はVlmA / vloμAT VIOKA 
/ ”mAの焼成密度依存性を示しfc線図である。第
1図において曲線(1)はVlmA l vlo/lA
+曲勝(2)はVIOKA / VlmAの場合である
。第1図から明らかなように、かさ密度の高い造粒粉を
用いたとき焼成密度が5.35g′r/、3 以上で■
11nA/v10μA<1・5Iv10KA/v1mA
<1・8  となり良好な電流電圧特性が得られる。
This granulated powder has a highly concentrated slurry, and while the bulk density of conventional granulated powder is 1.2/45, the bulk density of the granulated powder obtained in this example is 1.2/45. It was 43 gr/.5. Next, using this granulated powder, the molding pressure was set to 0.2 to 0.
.. A molded body of 6040 was made as a range of 5t01,
After further removing the organic binder, 3
Bake for an hour. The obtained fired body was polished on both sides and heated to 1L.
The electrodes were baked and the device characteristics were measured. The characteristic value is the chisel pressure VlOμA + VImA when a current of 10μA, 1mA, 10KA flows through the element.
/ " is an fc diagram showing the firing density dependence of mA. In Figure 1, curve (1) is VlmA l vlo/lA
+ Song win (2) is for VIOKA/VlmA. As is clear from Figure 1, when granulated powder with high bulk density is used, the firing density is 5.35 g'r/, 3 or more.
11nA/v10μA<1・5Iv10KA/v1mA
<1.8, and good current-voltage characteristics can be obtained.

一方、長波尾サージ耐量は、各素子あたり8KJ相当の
2ms矩形波を印加し、試験後のVlmAの変化率を測
定することにより求めた。
On the other hand, the long wave tail surge resistance was determined by applying a 2 ms rectangular wave equivalent to 8 KJ to each element and measuring the rate of change in VlmA after the test.

第2図は、これらの結果と、素子の焼成密度との関係を
表わした腺図であり、第2図から焼成密度が5.31j
’=1☆以上でV1鮎の灰化率はユo%以下となるが、
焼成密度が” 50g7m’以上になるとVImAの変
化率が再び10係を超えてしまうことがわかる。
Figure 2 is a graph showing the relationship between these results and the firing density of the element.
If '=1☆ or more, the ashing rate of V1 sweetfish will be less than yuo%,
It can be seen that when the firing density exceeds 50g7m', the rate of change in VImA again exceeds the factor of 10.

したがって、第1図、第2図の結果から焼成体の密度は
5.35〜5.50g7S の範囲とするのが最もOπ 好ましいと云える。また造粒粉のかさ密度の大きさにつ
いて本実施例に用いた1、””gr/、n’  の造粒
粉と、従来の1.2’1g”/ S  の造粒粉とでそ
れぞれ同一〇π 条件で焼成体をつくり、2ms長波尾サージ耐量試験後
のVlmAの変化率で比較してみると、例えば本実施例
に用いた造粒粉のものが−0,2チ  を示すとき、従
来の造粒粉を使ったものは−8,5チ  となり、造粒
粉のかさ密度が大きい方がVlmAの変化率が小さく、
長波尾サージ耐量のすぐれたものが得られる。
Therefore, from the results shown in FIGS. 1 and 2, it can be said that it is most preferable for the density of the fired body to be in the range of 5.35 to 5.50 g7S. In addition, the bulk density of the granulated powder is the same between the granulated powder of 1,""g/,n' used in this example and the conventional granulated powder of 1.2'1g"/S. When a fired body is made under 10π conditions and compared with the rate of change in VlmA after a 2ms long wave tail surge resistance test, for example, when the granulated powder used in this example shows -0.2ch. , that using conventional granulated powder is -8.5 cm, and the larger the bulk density of granulated powder is, the smaller the rate of change in VlmA is.
Excellent long wave tail surge resistance can be obtained.

以上述べたごとく、かさ密度の高い造粒粉を用いて、最
終的に得られる焼成体の密匿が5.35gシー以上5.
50g7s 以下の範囲となるようにすることによシ、
電流電圧特性、長波尾サージ耐量にすぐれた電圧非直線
抵抗素子を得ることができ、焼成体の密度を上記の範囲
内にするためには、前述したようにとくに成形圧力を0
.2〜o 、5t% に設定するのがよいが、成形時に
発生しやすいクラックやラミネーションを回避すること
を考慮すれば成形圧力の最適範囲を0.3〜o、4to
n/、とすることにより本発明は実現される。
As stated above, by using granulated powder with a high bulk density, the final fired product has a sealing capacity of 5.35 g or more.5.
By making it within the range of 50g7s or less,
In order to obtain a voltage nonlinear resistance element with excellent current-voltage characteristics and long-wave tail surge resistance, and to keep the density of the fired product within the above range, the molding pressure must be reduced to 0, as described above.
.. It is best to set the molding pressure to 2 to 5 t%, but if you consider avoiding cracks and lamination that are likely to occur during molding, the optimum molding pressure range is 0.3 to 4 t%.
The present invention is realized by setting n/.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、電圧非直線抵抗素子を製造すると
きは、噴霧乾燥により得られる造粒粉としてスラリー濃
度を高めたかさ密度の高いものを用いた方がよいが、か
さ密度の高い造粒粉を用いる場合、これに適した製造条
件を設定しなければならず、各製造工程の中でもとくに
成形条件が最適となるようにし、最終的に得られる焼成
体の密度を好ましい範囲とすることが必要であって、本
発明によれば実施例で述べたように、かさ密度が1.4
g’/ s以上の造粒粉を用いて、成形圧力を0.2f
i 〜” ’ ””cylとし、得られる焼成体の密度を5
.35〜5.50g7sとすることによシ、電流電圧特
性、長波尾サージ耐量のすぐれた電圧非直線抵抗素子を
得ることができる。
As explained above, when manufacturing a voltage nonlinear resistance element, it is better to use granulated powder obtained by spray drying that has a high bulk density and has a high slurry concentration. When using powder, it is necessary to set suitable manufacturing conditions, especially the molding conditions in each manufacturing process, and to keep the density of the final fired product within a preferable range. According to the present invention, as described in the examples, the bulk density is 1.4.
Using granulated powder of g'/s or more, the molding pressure is 0.2f.
i ~"'""cyl, and the density of the obtained fired body is 5
.. By setting it to 35 to 5.50 g7s, a voltage nonlinear resistance element with excellent current-voltage characteristics and long wave tail surge resistance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は素子特性V+mA/ VloltAとvFOK
A / V+臥の焼成密度依存性を示す線図、第2図は
同じ< VlmAの変化率と焼成密度との関係を示す線
図である。 焼成密度 (1/crn3) 第1図
Figure 1 shows the device characteristics V+mA/VloltA and vFOK.
A diagram showing the dependence of A/V + V on firing density, and FIG. 2 is a diagram showing the relationship between the rate of change of VlmA and firing density. Firing density (1/crn3) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)酸化亜鉛を主成分とする電圧非直線抵抗素子の原料
を混合、造粒、成形、焼成する各工程を経て製造する方
法において、噴霧乾燥により得られるかさ密度1.4g
r/cm^3以上の造粒粉を用い、成形圧力を0.3〜
0.4ton/cm^2として成形体となし、次いで焼
成した後密度5.35〜5.50gr/cm^3を有す
る焼成体とすることを特徴とする電圧非直線抵抗素子の
製造方法。
1) A bulk density of 1.4 g obtained by spray drying in a method of manufacturing a voltage non-linear resistance element mainly composed of zinc oxide through the steps of mixing, granulating, molding, and firing.
Using granulated powder of r/cm^3 or more, molding pressure is 0.3~
A method for manufacturing a voltage non-linear resistance element, which comprises forming a molded body with a density of 0.4 ton/cm^2, and then firing it to obtain a fired body having a density of 5.35 to 5.50 gr/cm^3.
JP59209202A 1984-10-05 1984-10-05 Manufacture of voltage non-linear resistance element Pending JPS6188501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209202A JPS6188501A (en) 1984-10-05 1984-10-05 Manufacture of voltage non-linear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209202A JPS6188501A (en) 1984-10-05 1984-10-05 Manufacture of voltage non-linear resistance element

Publications (1)

Publication Number Publication Date
JPS6188501A true JPS6188501A (en) 1986-05-06

Family

ID=16569038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209202A Pending JPS6188501A (en) 1984-10-05 1984-10-05 Manufacture of voltage non-linear resistance element

Country Status (1)

Country Link
JP (1) JPS6188501A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683005A (en) * 1979-12-11 1981-07-07 Matsushita Electric Ind Co Ltd Method of manufacturing voltage nonnlinear resistor
JPS57147202A (en) * 1981-03-06 1982-09-11 Meidensha Electric Mfg Co Ltd Method of producing nonlinear resistor
JPS57197804A (en) * 1981-05-29 1982-12-04 Meidensha Electric Mfg Co Ltd Method of producing nonlinear resistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683005A (en) * 1979-12-11 1981-07-07 Matsushita Electric Ind Co Ltd Method of manufacturing voltage nonnlinear resistor
JPS57147202A (en) * 1981-03-06 1982-09-11 Meidensha Electric Mfg Co Ltd Method of producing nonlinear resistor
JPS57197804A (en) * 1981-05-29 1982-12-04 Meidensha Electric Mfg Co Ltd Method of producing nonlinear resistor

Similar Documents

Publication Publication Date Title
US5854586A (en) Rare earth doped zinc oxide varistors
JPS6188501A (en) Manufacture of voltage non-linear resistance element
JPS602763B2 (en) Method for manufacturing metal oxide nonlinear resistor
KR920005155B1 (en) Zno-varistor making method
US2714096A (en) Non-linear resistances
JPS605062A (en) Manufacture of zinc oxide varistor
JPH05258914A (en) Manufacture of voltage non-linear resistor
JPH02241003A (en) Manufacture of zinc oxide type varistor
JP2642690B2 (en) Method of manufacturing voltage non-linear resistor
JPH02164006A (en) Zinc oxide type varistor
JPH0773082B2 (en) Method for producing zinc oxide varistor
JPH0630283B2 (en) Non-linear resistor manufacturing method
JPS6014401A (en) Method of producing nonlinear resistor
CN113716952A (en) Low-gradient large-current impact-stability resistor material and preparation method thereof
CN113506664A (en) Preparation method of high potential gradient voltage-sensitive resistance chip
JPS5814722B2 (en) Method for recycling baking powder for zinc oxide type sintered varistors
JPS63296202A (en) Manufacture of voltage nonlinear resistor device
JPH02119102A (en) Manufacture of voltage non-linear resistor
JPS6250042B2 (en)
JPS62237704A (en) Manufacture of voltage nonlinear resistance element
JPS59108301A (en) Method of producing nonlinear resistor
JPS58188101A (en) Method of producing nonlinear resistor
JPS62237707A (en) Manufacture of voltage nonlinear resistance element
JPH0669004A (en) Manufacture of voltage dependent nonlinear resistor element
JPH1126207A (en) Manufacture of nonlinear resistor