JPS6187841A - Nozzle for gas turbine - Google Patents

Nozzle for gas turbine

Info

Publication number
JPS6187841A
JPS6187841A JP23122185A JP23122185A JPS6187841A JP S6187841 A JPS6187841 A JP S6187841A JP 23122185 A JP23122185 A JP 23122185A JP 23122185 A JP23122185 A JP 23122185A JP S6187841 A JPS6187841 A JP S6187841A
Authority
JP
Japan
Prior art keywords
nozzle
contg
temperature
gas turbine
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23122185A
Other languages
Japanese (ja)
Other versions
JPS6210289B2 (en
Inventor
Hiroshi Fukui
寛 福井
Hiromi Kozobara
楮原 広美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23122185A priority Critical patent/JPS6187841A/en
Publication of JPS6187841A publication Critical patent/JPS6187841A/en
Publication of JPS6210289B2 publication Critical patent/JPS6210289B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To obtain the titled nozzle having superior corrosion resistance and ductility at high temp. and satisfactory weldability by using an alloy having a specified composition consisting of C, Cr, W, Mo. Ta, Hf, Zr, B and Ni and a cast structure contg. dispersed carbides contg. Cr. CONSTITUTION:A nozzle for a gas turbine is made of a heat resistant Ni superalloy consisting of, by weight, >0.3-1% C, 20-40% Cr, 5-20% W and/or Mo, 0.2-1% at least one among Ta, Hf and Za, 0.005-0.1% B and the balance essentially Ni or further contg. 5-15% Co and/or 0.05-1% Y and/or Al and having a cast structure contg. dispersed carbides contg. Cr. The nozzle has superior corrosion and oxidation resistances at high temp. and is easily welded and repaired. The nozzle can be manufactured by melting and casting in the air.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は新規なガスタービン用ノズルに係り、特に耐高
温腐食性及び高温延性に優れたNi基耐熱超合金に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a novel nozzle for a gas turbine, and particularly to a Ni-based heat-resistant superalloy having excellent high-temperature corrosion resistance and high-temperature ductility.

〔発明の背景〕[Background of the invention]

ガスタービンノズルは精密鋳造で製造され、それに用い
る材料としてGo基耐熱超合金あるいはNi基耐熱超合
金がある。Go基耐熱超合金は、1000℃以下での耐
高温腐食性に優れている反面1000℃以上での耐高温
耐化性に劣る。また高温延性が低く特に使用中に脆化し
、熱応力等の外力の作用で割れを生ずる。またAlの拡
散コーテングを施す場合co−AΩのσ相により脆化を
きたす。
Gas turbine nozzles are manufactured by precision casting, and the materials used therein include Go-based heat-resistant superalloys and Ni-based heat-resistant superalloys. Go-based heat-resistant superalloys have excellent high-temperature corrosion resistance at temperatures below 1000°C, but are inferior in high-temperature corrosion resistance above 1000°C. In addition, it has low high-temperature ductility and becomes brittle, especially during use, and cracks occur under the action of external forces such as thermal stress. Furthermore, when applying a diffusion coating of Al, embrittlement occurs due to the σ phase of co-AΩ.

溶接性も悪い。またCOは非常に高価である。一方、従
来のNi基合金は1000℃以上での耐高温酸化性に優
れている反面TiとAlとを含み、γ′相で強化してい
るので高温強度は大きいが延性はGo基よりさらに省り
、ノズルのような熱応力のくり返しを受ける部品には不
適当である。一方、γ′を含まないN1−C,rで代表
されるNi基合金もあるがこの場合逆に強度が低くその
ままでは高温溝造部材としては不適当である。またγ′
を析出させたNi基合金は真空溶解、真空鋳造の技術が
必要でありまた溶接性は悪く、補修溶接は困難である8
゛またγ′を含ませるためCr量が10〜15%と低く
、1000℃以下での耐高温腐食性が著しく乏しい。
Weldability is also poor. Also, CO is very expensive. On the other hand, conventional Ni-based alloys have excellent high-temperature oxidation resistance at temperatures above 1000°C, but because they contain Ti and Al and are strengthened with a γ' phase, they have high high-temperature strength but have lower ductility than Go-based alloys. Therefore, it is unsuitable for parts such as nozzles that are subject to repeated thermal stress. On the other hand, there is also a Ni-based alloy represented by N1-C,r which does not contain γ', but in this case the strength is low and it is unsuitable as a high-temperature groove forming member. Also γ′
Ni-based alloys precipitated require vacuum melting and vacuum casting techniques and have poor weldability, making repair welding difficult8.
Furthermore, since γ' is included, the Cr content is as low as 10 to 15%, and the high temperature corrosion resistance at temperatures below 1000°C is extremely poor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は高温腐食性及び高温耐酸化性に優れかつ
溶接補修が容易でありしかも大気溶解大気鋳造で製造が
可能なガスタービンノズル材用Ni基耐熱超合金を提供
するにある。
An object of the present invention is to provide a Ni-based heat-resistant superalloy for gas turbine nozzle materials that has excellent high-temperature corrosion resistance and high-temperature oxidation resistance, is easy to repair by welding, and can be manufactured by atmospheric melting and atmospheric casting.

〔発明の概要〕[Summary of the invention]

本発明は重量で、C0,3%を越え1%以下、Cr20
〜40%、W及びMoの少なくとも一方を5〜20%、
Ta、Hf及びZrの少なくとも1つを0.2〜1%、
Bo、005〜0.1  %と含み、残部が実質的にN
iからなり、Crを含む炭化物が分散した鋳造組織を有
することを特徴とするガスタービン用ノズルにある。
The present invention is based on weight of more than 0.3% of CO and less than 1% of Cr20.
~40%, 5 to 20% of at least one of W and Mo,
0.2 to 1% of at least one of Ta, Hf and Zr;
Contains Bo, 0.005 to 0.1%, and the remainder is substantially N.
A nozzle for a gas turbine is characterized in that it has a cast structure in which carbide containing Cr is dispersed.

更に本発明は前述の合金にCo 5〜15%及び、Y及
びAlの少なくとも1種0.05〜1%の片方又は両方
とを含むものである。
Further, in the present invention, the aforementioned alloy contains 5 to 15% Co and 0.05 to 1% of at least one of Y and Al, or both.

ガスタービンのノズルには一般にGo基鋳造超合金が使
用されているが、高温で長時間使用すると脆化し熱疲労
による割れを生ずる。また1000℃以上で使用される
場合は耐酸化性が悪い。一方、まれにはNi基超超合金
使用されるがガスタービン用に使用されるNi基超超合
金γ′を析出させた強析出型強化合金である。Ni基超
超合金ほとんどがブレードとして使用されているがノズ
ルとして使用する場合もある。しかし、γ′を析出させ
ているため高温強度には優れているが高温延性に乏しく
溶接が困難であり又真空溶解、真空鋳造されて使用され
る。本発明合金はノズル用Ni基超合金でγ′を含まず
、従ってCr量を非常に多くしたもので大気溶解でも製
造可能で延性が大で溶接性にも優れている。また高温強
度はCを高くしまた固溶強化を主体とするのでMo、W
を含む。
Go-based cast superalloys are generally used for gas turbine nozzles, but when used at high temperatures for long periods of time, they become brittle and crack due to thermal fatigue. Furthermore, when used at temperatures above 1000°C, oxidation resistance is poor. On the other hand, although Ni-base superalloy is rarely used, it is a strong precipitation-strengthened alloy in which Ni-base superalloy γ', which is used for gas turbines, is precipitated. Most Ni-based superalloys are used as blades, but they may also be used as nozzles. However, since γ' is precipitated, although it has excellent high-temperature strength, it has poor high-temperature ductility and is difficult to weld, and is used after being vacuum melted or vacuum cast. The alloy of the present invention is a Ni-based superalloy for nozzles that does not contain γ' and therefore has a very high Cr content, can be manufactured by atmospheric melting, has high ductility, and has excellent weldability. In addition, high-temperature strength is achieved by increasing C and mainly by solid solution strengthening, so Mo, W
including.

またGoが非常に高価であるのでその点Niをベースと
しているので安価なノズル材である。ノズルとして最も
要求される熱疲労と高温腐食性に優けたNi基耐熱超合
金である。
Furthermore, since Go is very expensive, it is an inexpensive nozzle material because it is based on Ni. This is a Ni-based heat-resistant superalloy with excellent thermal fatigue and high-temperature corrosion resistance, which are most required for nozzles.

次に成分を限定した理由について説明する6CTCは高
温強度を向上するのに必須の元素であり、本発明材にお
いても非常に重要な役割を示す。従来のガスタービン用
Ni基超合金はγ′を析出させているためCが低い。γ
′はN1x(Al。
Next, the reason for limiting the components will be explained. 6CTC is an essential element for improving high temperature strength, and also plays a very important role in the material of the present invention. Conventional Ni-based superalloys for gas turbines have a low C content because they precipitate γ'. γ
' is N1x(Al.

T i )であり、Tiを多く含む。Cが多いとTiC
が析出し、N1aAl を主体としたγ′となり。
T i ) and contains a large amount of Ti. If there is a lot of C, TiC
precipitates and becomes γ' mainly composed of N1aAl.

好ましくない。またCrが高いOr炭化物が過剰に析出
したりまた高温長時間使用中に成長、粗大化が進み、脆
化、強度の低下をきたす。従ってCrとの関係もありC
を1%以上にするのは好ましくなくまた0、3  %以
下では高CrJtとの関係からσ相が出やすくまた十分
な高温強度も得られない。Cは0.3〜0.6 %が最
も好ましい。
Undesirable. Moreover, Or carbide with high Cr precipitates excessively, and during long-term use at high temperatures, it grows and becomes coarser, resulting in embrittlement and a decrease in strength. Therefore, there is a relationship with Cr, and C
It is not preferable to make the content more than 1%, and if it is less than 0.3%, σ phase tends to appear due to the relationship with high CrJt, and sufficient high temperature strength cannot be obtained. Most preferably, C is 0.3 to 0.6%.

Cr;γ′を析出ぎせている従来のNi基超超合金σ相
の析出をきらうのでCrを多くできない。
Cr: Cr cannot be increased because the precipitation of the conventional Ni-based superalloy σ phase, which precipitates γ', is discouraged.

また高温強度を主体に考慮された合金なのでγ′量が多
くこのためAl+Ti量が多くなっている。
Furthermore, since the alloy is mainly designed for high-temperature strength, the amount of γ' is large, and therefore the amount of Al+Ti is large.

一方、Ni基としての残量に限度があるので必然的にC
rが低く抑えられている。又、COを含み、Cr量を多
くするとγ′の固溶温度が下がりγ′が析出しにくくな
る。このため高温腐食性が低下することを覚悟で強度上
Crを低くしている。これは応力的に厳しいブレード用
材としてNi基超超合金発展してきたためである。ノズ
ルはブレード程の応力す要求されずむしろ熱疲労性向上
のために高温延性が必要である1本発明合金はγ′を含
まないのでCr量を十分高く選ぶことが可能である。高
温腐食、耐酸化性の点から20%以上必要であり、また
、炭化物の過剰析出、脆化の点で40%以上は適当でな
いので20〜40%と限定する。この内でも25〜30
%が最も適している。
On the other hand, since there is a limit to the remaining amount of Ni groups, C
r is kept low. Furthermore, when CO is included and the amount of Cr is increased, the solid solution temperature of γ' is lowered, making it difficult for γ' to precipitate. For this reason, the Cr content is lowered for strength reasons, with the expectation that high-temperature corrosivity will be lowered. This is because Ni-based superalloys have been developed as blade materials with severe stress. The nozzle is not required to have as much stress as the blade, but rather requires high-temperature ductility to improve thermal fatigue resistance.1 Since the alloy of the present invention does not contain γ', it is possible to select a sufficiently high Cr content. A content of 20% or more is necessary from the viewpoint of high temperature corrosion and oxidation resistance, and a content of 40% or more is inappropriate from the viewpoint of excessive precipitation of carbides and embrittlement, so it is limited to 20 to 40%. Among these, 25 to 30
% is most suitable.

W、 M o ; W、 M oはC,Crに次いで重
要である6本発明合金ではガスタービン用に使用されて
いる一般のNi基超超合金違い、γ′を析出させないの
で高温強度が小さい。W、Moは基地の固溶強化を目的
として添加されるものである。もちろん1強力な炭化物
形成元素であるのでCr炭化物のCrの一部が置き代っ
た(Cr、Mi、W)とCが結びついた型となっている
がこれらはそれ程重要でないmW、Moとも少ないと固
溶強化の役は果さず多(なりすぎるとσ相等の好ましく
相の析出により逆に高温度を低下させる。またW。
W, Mo; W, Mo are the second most important after C and Cr.6 Unlike general Ni-based superalloys used for gas turbines, the alloy of the present invention has low high-temperature strength because γ' does not precipitate. . W and Mo are added for the purpose of solid solution strengthening of the base. Of course, it is a strong carbide-forming element, so it is a type in which C is combined with (Cr, Mi, W) that replaces a part of Cr in Cr carbide, but these are not so important, mW and Mo are also small. W does not play the role of solid solution strengthening (if it is too large, it will cause the precipitation of preferable phases such as σ phase, thereby lowering the high temperature.

MOは単独でも十分な効果を示すが複合添加の方が効果
が大きい。従って各々、5〜20%が好ましくその内で
も7〜13%が最も適している。
Although MO alone exhibits a sufficient effect, the effect is greater when added in combination. Therefore, each content is preferably 5 to 20%, and 7 to 13% is most suitable.

Zr、Hf、Ta ;これらの元素はW、Moと違って
炭化物の析出に期待するため添加される6W、MoがC
r炭化物のCrの一部と置き代ったのに対し、これらの
元素はMC型炭化物を形成する。このMはCPを含まず
、Zr単独の場合はZ r C+ Hf t T aと
複合添加した場合は(Zr。
Zr, Hf, Ta; Unlike W and Mo, these elements are added because they are expected to cause carbide precipitation.
These elements form MC-type carbides, whereas r replaces part of the Cr in carbides. This M does not contain CP, and when it is Zr alone, it is Z r C + When it is added in combination with Hf t Ta (Zr.

Hf、Ta)Cの如<MCのMの中に各元素が含有され
て行く。MC型炭化物の析出により基地中のC量が低く
なり、Cr炭化物の析出が抑制される。Cr炭化物は粒
界近傍には微細にまた粒界には連続的に出るのでCr炭
化物の析出を適当に抑える事が重要でこれらはZr、H
f、Ta等のMC型炭化物を作る元素である。これらの
元素が少ない場合は効果は小さくまた多くなると逆に高
温強度が低下する。原子比でM/C(MはMC型炭化物
を作る元素の和)が0.2〜0.3 が最も好ましい。
Each element is contained in M of <MC, such as Hf, Ta)C. Precipitation of MC type carbides lowers the amount of C in the matrix, suppressing the precipitation of Cr carbides. Cr carbides appear finely near grain boundaries and continuously at grain boundaries, so it is important to appropriately suppress the precipitation of Cr carbides.
It is an element that forms MC type carbides such as f and Ta. If the content of these elements is small, the effect will be small, and if the content is large, the high temperature strength will decrease. Most preferably, the atomic ratio of M/C (M is the sum of elements forming the MC type carbide) is 0.2 to 0.3.

T a T Z r + Hfはそれぞれ0.2〜1%
で、各々単独又は複合で効果が大きいがTaとZr、Z
rとHfを組合せた方がより効果が大きい。
T a T Z r + Hf are each 0.2 to 1%
Each of them has a great effect singly or in combination, but Ta, Zr, and Z
The effect is greater when r and Hf are combined.

Co : Coは基地を強化させるために固溶強化を目
的で添加するものであるが多くなると高価の割りには効
果が小さいので5〜15%が適当である。
Co: Co is added for the purpose of solid solution strengthening to strengthen the base, but if it is too large, the effect is small considering the high price, so 5 to 15% is appropriate.

Y、Al :Y、Alは耐酸化性、耐高温腐食性向上の
度で添加されるものであり強度向上を目的としてもので
はない、特にAlは従来のNi基超超合金見られるγ′
析出のためでない。少ないと効果がなく多くなると溶接
性が悪くなりまた脆化をきたす好ましくない相が析出す
るのでYをO,OS〜1%、Alを0.05〜1%に限
定した。
Y, Al: Y and Al are added to improve oxidation resistance and high-temperature corrosion resistance, and are not added for the purpose of improving strength. In particular, Al is added to γ′, which is found in conventional Ni-based superalloys.
Not for precipitation. If the amount is too low, the effect is ineffective, and when the amount is too high, weldability worsens and undesirable phases that cause embrittlement are precipitated. Therefore, Y was limited to O and OS to 1%, and Al was limited to 0.05 to 1%.

BIBは高温強度と高温延性向上の両方の効果を期待し
て添加される。少ないと効果はなく、多くなると溶接性
を悪くするのでo、oos〜0.1 %とする。
BIB is added in hopes of improving both high-temperature strength and high-temperature ductility. If it is too little, there will be no effect, and if it is too much, weldability will deteriorate, so the content should be o, oos ~ 0.1%.

実施例 表に供試材の化学成分(重量%)を示す。Nα1゜2は
比較のための従来材で&3〜7が本発明合金である。H
a 1〜7の供試材全ては精密鋳造法により100 r
rn X 200 rye X 15 rn tの板状
の素材とした。Nu 2は10−’Torr真空溶解、
真空鋳造によったが他の全ては大気溶解、大気鋳造によ
った。
The chemical components (% by weight) of the test materials are shown in the Examples table. Nα1°2 is a conventional material for comparison, and &3 to 7 are alloys of the present invention. H
a All sample materials 1 to 7 were cast at 100 r by precision casting.
A plate-shaped material of rn x 200 rye x 15 rn t was used. Nu 2 is 10-'Torr vacuum melting,
Vacuum casting was used, but everything else was done by atmospheric melting and atmospheric casting.

上述の板より各試験片を採取した。クリープ破断試験片
は平行部60+w+φで30mmρを用い、982”C
,3,0kg/no”で試験し、破断時間と破断絞りを
比較した。結果は第1図に示す、Nα2のTi+Afi
を含んだものはγ′で析出強化されているので最も優れ
ているが逆に破断絞りが0%で強くて脆い。また&1は
強度も延性も低い、Cを0.4に上げW、Moで固溶強
化させ、さらにTi。
Each test piece was taken from the above-mentioned board. The creep rupture test piece was 982”C with a parallel part of 60+w+φ and 30mmρ.
, 3,0 kg/no'' and compared the rupture time and rupture area.The results are shown in Figure 1.
The one containing γ' is the best because it is precipitation strengthened, but on the other hand, the reduction area at break is 0%, making it strong and brittle. In addition, &1 has low strength and ductility, C is increased to 0.4, solid solution strengthened with W and Mo, and further Ti.

Nb、Zre Taで強化した本発明材No3〜7は強
度こそNα2に及ばないが総ての合金がNα1より強く
特に延性が大きい。ガスタービンノズルに要求される高
温特性は強度と同時に延性をもかねそなえた合金である
。その点&3〜7はどの合金もノズル材として適してい
る。特に−4および&6が優れている。
Inventive materials No. 3 to 7 strengthened with Nb and Zre Ta are not as strong as Nα2, but all alloys are stronger than Nα1 and particularly ductile. The high-temperature properties required for gas turbine nozzles require an alloy that has both strength and ductility. Regarding points &3 to 7, any alloy is suitable as a nozzle material. In particular, -4 and &6 are excellent.

一方、耐熱衝撃性については10wmφXIO側Ωの試
験片を982℃と水との間を1サイクル6分で200回
繰り返した後たて断面のクラックについて検討した。ク
ラックの長さと数は第2図に示す。高温強度と延性に乏
しいNα1および強度は大きいが延性が著しく悪いNα
2は耐熱衝撃性が悪い、Nα3〜7の本発明合金はほと
んど差はみられないが全体的にNα1,2より優れてお
りその中でもクリープ破断絞りの大きいh4が最もすぐ
れその他も破断絞りとの相関性がみられる。
On the other hand, regarding thermal shock resistance, cracks in the vertical cross section of a test piece of 10 wmφXIO side Ω were examined after repeating 200 cycles between 982° C. and water for 6 minutes per cycle. The length and number of cracks are shown in FIG. Nα1 has poor high temperature strength and ductility, and Nα has high strength but extremely poor ductility.
2 has poor thermal shock resistance, and there is almost no difference between the alloys of the present invention with Nα3 to 7, but they are overall superior to Nα1 and 2.Among them, h4, which has a large creep rupture area, is the best, and the others have a large creep rupture area. There is a correlation.

高温腐食性については熱衝撃性試験に用いたと同じ10
面φX 10 lff1Qの試片でもって塗布法によっ
て検討した。塗布剤は75%NazSOt十25%Na
Cf1 で750℃、500h腐食後、腐食減量でもっ
て評価した。その結果を第3図に示す、Na2の合金は
Crが15%しか含まれておらずそのため高温腐食性は
著しく悪い0本発明合金ではY、Alを含んだNa 5
が最もすぐれている。
Regarding high temperature corrosion, the same 10 as used in the thermal shock test was used.
A test piece with a surface φX 10 lff1Q was examined by a coating method. The coating agent is 75% NazSOt and 25% Na.
After corrosion at 750° C. for 500 hours with Cf1, the corrosion weight loss was evaluated. The results are shown in Figure 3.The Na2 alloy contains only 15% Cr and therefore has extremely poor high-temperature corrosion resistance.The alloy of the present invention contains Na5 containing Y and Al.
is the best.

その他はNQ 1とほとんど差はない。There is almost no difference from NQ 1 in other respects.

Nα1か現在ノズル材として多く使用されている合金で
特に高温腐食で問題になる事は少ないことから本発明合
金は耐湿腐食性の点からもノズル材として使用に適して
いるものと考えられる。
Since Nα1 is an alloy currently widely used as a nozzle material and rarely causes problems with high-temperature corrosion, the alloy of the present invention is considered to be suitable for use as a nozzle material also from the viewpoint of wet corrosion resistance.

一方、溶接性試験は100mnX100膓×51ffI
ltの板を試験片とし、溶加棒なしで2%ひずみを与え
るパレストレン試験法によって評価した。
On the other hand, the weldability test was 100mm x 100mm x 51ffI
It was evaluated by the Palestrene test method, in which a 1.5 liter plate was used as a test piece and a 2% strain was applied without a filler rod.

その結果Nα2が最も悪く次いでNα1で本発明合金は
Nα6を除いて全てNα1よりすぐれていた。Nα6は
Y、Aを含んでいるため溶接性が悪い。
As a result, Nα2 was the worst, followed by Nα1, and all of the alloys of the present invention were superior to Nα1 except for Nα6. Since Nα6 contains Y and A, it has poor weldability.

Go基超超合金びγ′析析出型Ni超超合金代る本発明
合金は■高温強度と延性の両方をかねそなえている。■
γ′を含まないのでCrを20〜40%含ませ得る。従
って耐高温腐食性に優れている。■溶接性に優れている
。■大気溶解可能。
The alloy of the present invention, which replaces the Go-based superalloy and the γ' precipitation type Ni supersuperalloy, has both high-temperature strength and ductility. ■
Since it does not contain γ', it can contain 20 to 40% Cr. Therefore, it has excellent high temperature corrosion resistance. ■Excellent weldability. ■Can be dissolved in the atmosphere.

■COを含まないので安価。■Inexpensive as it does not contain CO.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はクリープ破断試験結果を示す線図、第2図は熱
m撃試験結果を示す線図および第3図は高温腐食試験結
果を示す線図である。
FIG. 1 is a diagram showing the results of the creep rupture test, FIG. 2 is a diagram showing the results of the thermal shock test, and FIG. 3 is a diagram showing the results of the high temperature corrosion test.

Claims (1)

【特許請求の範囲】 1、重量で、C0.3%を越え1%以下、Cr20〜4
0%、W及びMoの少なくとも一方を5〜20%、Ta
、Hf及びZrの少なくとも1つを0.2〜1%、B0
.005〜0.1%と含み、残部が実質的にNiからな
り、Crを含む炭化物が分散した鋳造組織を有すること
を特徴とするガスタービン用ノズル。 2、重量で、C0.3%を越え1%以下、Cr20〜4
0%、Mo及びWの少なくとも一方を5〜20%、Ta
、Hf及びZrの少なくとも1つを0.2〜1%、B0
.001〜0.1%と、Co5〜15%及び、Y及びA
lの少なくとも1種0.05〜1%の片方又は両方とを
含み、残部が実質的にNiからなり、Crを含む炭化物
が分散した鋳造組織を有することを特徴とするガスター
ビン用ノズル。
[Claims] 1. More than 0.3% C and less than 1% by weight, 20 to 4 Cr
0%, at least one of W and Mo 5 to 20%, Ta
, 0.2 to 1% of at least one of Hf and Zr, B0
.. 1. A nozzle for a gas turbine, characterized in that the cast structure includes 0.005 to 0.1%, the remainder substantially consists of Ni, and carbides containing Cr are dispersed therein. 2. By weight, more than 0.3% C and less than 1%, Cr20-4
0%, at least one of Mo and W 5-20%, Ta
, 0.2 to 1% of at least one of Hf and Zr, B0
.. 001~0.1%, Co5~15%, and Y and A
1. A nozzle for a gas turbine, characterized in that the cast structure contains 0.05 to 1% of at least one type of l, the remainder being substantially Ni, and a cast structure in which carbides containing Cr are dispersed.
JP23122185A 1985-10-18 1985-10-18 Nozzle for gas turbine Granted JPS6187841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23122185A JPS6187841A (en) 1985-10-18 1985-10-18 Nozzle for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23122185A JPS6187841A (en) 1985-10-18 1985-10-18 Nozzle for gas turbine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15723478A Division JPS5582737A (en) 1978-12-15 1978-12-15 Gas turbine nozzle material

Publications (2)

Publication Number Publication Date
JPS6187841A true JPS6187841A (en) 1986-05-06
JPS6210289B2 JPS6210289B2 (en) 1987-03-05

Family

ID=16920215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23122185A Granted JPS6187841A (en) 1985-10-18 1985-10-18 Nozzle for gas turbine

Country Status (1)

Country Link
JP (1) JPS6187841A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553555B2 (en) * 2004-12-23 2009-06-30 Nuovo Pignone S.P.A. Vapour turbine
US7556866B2 (en) * 2004-12-23 2009-07-07 Nuovo Pignone S.P.A. Vapour turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582737A (en) * 1978-12-15 1980-06-21 Hitachi Ltd Gas turbine nozzle material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582737A (en) * 1978-12-15 1980-06-21 Hitachi Ltd Gas turbine nozzle material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553555B2 (en) * 2004-12-23 2009-06-30 Nuovo Pignone S.P.A. Vapour turbine
US7556866B2 (en) * 2004-12-23 2009-07-07 Nuovo Pignone S.P.A. Vapour turbine

Also Published As

Publication number Publication date
JPS6210289B2 (en) 1987-03-05

Similar Documents

Publication Publication Date Title
US6387193B1 (en) Repair material, process of repairing using the repair material, and article repaired
US4039330A (en) Nickel-chromium-cobalt alloys
US3542530A (en) Nickel or cobalt base with a coating containing iron chromium and aluminum
US4219592A (en) Two-way surfacing process by fusion welding
US6195864B1 (en) Cobalt-base composition and method for diffusion braze repair of superalloy articles
EP1842934B1 (en) Heat-resistant superalloy
US5320690A (en) Process for repairing co-based superalloy using co-based brazing compositions
US5066459A (en) Advanced high-temperature brazing alloys
US5523170A (en) Repaired article and material and method for making
CA1333342C (en) Nickel-base alloy
JP2007518877A (en) Methods of processing, such as repairing of workpieces such as brazing alloys, the use of brazing alloys, and parts of gas turbines
EP1342803A2 (en) Superalloy material with improved weldability
US6554920B1 (en) High-temperature alloy and articles made therefrom
JPS59143055A (en) Soldering alloy
US4507264A (en) Nickel base brazing alloy and method
CN112853154A (en) Nickel-based intermediate layer alloy material, preparation method thereof, weldment, welding method and application
JPS5845345A (en) Nozzle for gas turbine with superior thermal fatigue resistance
JPS629659B2 (en)
US5882586A (en) Heat-resistant nickel-based alloy excellent in weldability
JPS6326161B2 (en)
US7261783B1 (en) Low density, high creep resistant single crystal superalloy for turbine airfoils
JPS5896846A (en) Nickel base superalloy
JPS6187841A (en) Nozzle for gas turbine
JPS61149450A (en) Novel cobalt base hard alloy, its cast product and welded gas turbine parts
US4626297A (en) Single-crystal alloy