JPS6187802A - Production of aluminum-titanium alloy powder - Google Patents

Production of aluminum-titanium alloy powder

Info

Publication number
JPS6187802A
JPS6187802A JP59210707A JP21070784A JPS6187802A JP S6187802 A JPS6187802 A JP S6187802A JP 59210707 A JP59210707 A JP 59210707A JP 21070784 A JP21070784 A JP 21070784A JP S6187802 A JPS6187802 A JP S6187802A
Authority
JP
Japan
Prior art keywords
powder
alloy
titanium
aluminum
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59210707A
Other languages
Japanese (ja)
Inventor
Takashi Kizaki
木崎 誉志
Masashi Oi
大井 正史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59210707A priority Critical patent/JPS6187802A/en
Publication of JPS6187802A publication Critical patent/JPS6187802A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain Al-Ti alloy powder suitable for production of a product having an improved electrical characteristic in the stage of converting a powder mixture composed of Al powder and Ti powder by a heating treatment to an Al-Ti alloy and crushing said alloy by controlling the density of the powder mixture and subjecting the powder mixture to the heating treatment. CONSTITUTION:The alloy powder is produced by subjecting the powder mixture composed of the aluminum powder and titanium hydride powder or the aluminum powder and titanium powder to the heating treatment to form the aluminum-titanium alloy and crushing the alloy. The heating treat is executed in this stage by controlling the density of the powder mixture to a 1/15d+0.35-1/15d+1.6 range (d is the average grain size of the titanium hydride powder or titanium powder in micron). The aluminum-titanium alloy powder suitable for the anode electrode of an electrolytic capacitor in thus obtd.

Description

【発明の詳細な説明】 (技術分野) 本発明はアルミニウムとチタンの合金を陽極金属とする
電解コンデンサに使用するアルミニウムとチタンの合金
粉末の製造方法に関し、特にアルミニウムとチタンの混
合粉末の否度を規定して、加熱処理し、それた粗砕する
方法に関するものである。゛ (従来技術) 従来から、異種の粉末を原料として、粉末冶金手法で多
元素の組成物体を製造する場合には、まず原料粉末を混
合し、それを予備的に加熱処理したのち粗砕して目的と
する形状に近く成形した後書度加熱処理をして、目的形
状の製品を製造していた。この粉末冶金手法は焼結型の
’ttMコンデンサ用粉末金粉末する場合にも、通常用
いられている。一般にアルミニウム−チタン合金の粉末
を用いる焼結型電解コンデンサの焼結体は多孔質で、か
つ表面積が大きくなるように設計されている。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for producing an aluminum and titanium alloy powder used in an electrolytic capacitor using an aluminum and titanium alloy as an anode metal, and particularly relates to a method for producing an aluminum and titanium alloy powder used in an electrolytic capacitor using an aluminum and titanium alloy as an anode metal. The present invention relates to a method for defining, heat-treating, and then crushing. (Prior art) Traditionally, when producing a multi-element composition using powder metallurgy techniques using different types of powders as raw materials, the raw material powders are first mixed, preheat-treated, and then coarsely crushed. After molding into a shape close to the desired shape, a product with the desired shape was manufactured by subjecting it to heat treatment. This powder metallurgy technique is also commonly used to produce powdered gold powder for sintered 'ttM capacitors. Generally, the sintered body of a sintered electrolytic capacitor using aluminum-titanium alloy powder is porous and designed to have a large surface area.

この場合にはアルミニウムとチタンの合金粉末の程度お
よび空孔構造が焼結体を製造する上で重要な因子となる
。合金粉末の粒度が細かいと粉末の流れ性が悪くなり、
粉末を自動的に金型に充填し成形する工程で、粉末を充
填するのに時間がかかったり、充填した粉末のばらつき
竜が大きくなる欠点を有する。また合金粉末内部の空孔
構造が微細化すると、製品である電解コンデンサの誘電
損失が大きくなったり、静電容量の周波数変化が大きく
なる欠点を有する。すなわち加熱処理をする時のアルミ
ニウムとチタンの混合粉末の密度が極度に小さい場合は
、その後加熱処理して粗砕した合金粉末の粒度が細かく
なり、逆に混合粉末の密度を大きくすると、加熱処理し
た合金のブロックが固くなって粗砕する作業に困難を来
たしたり、合金粉末の空孔構造が微細化したりする。
In this case, the degree of aluminum and titanium alloy powder and the pore structure are important factors in producing the sintered body. If the particle size of the alloy powder is fine, the flowability of the powder will be poor.
The process of automatically filling a mold with powder and forming the mold has the drawbacks that it takes time to fill the powder and that the filled powder varies greatly. Furthermore, when the pore structure inside the alloy powder becomes finer, it has the disadvantage that the dielectric loss of the electrolytic capacitor product becomes larger and the frequency change of capacitance becomes larger. In other words, if the density of the mixed powder of aluminum and titanium during heat treatment is extremely low, the particle size of the alloy powder that is coarsely crushed by heat treatment will become finer. Conversely, if the density of the mixed powder is increased, the heat treatment The resulting alloy blocks become hard, making it difficult to crush them, and the pore structure of the alloy powder becomes finer.

(発明の目的) 本発明はこれらの欠点をなくするためになされたもので
ある。
(Object of the Invention) The present invention has been made to eliminate these drawbacks.

(発明の構成) 本発明はアルミニウム−チタン合金粉末の製造方法にお
いて、混合粉末の密度を1/15 d+0.35から1
/15 d + 1.6の範囲にすることを特徴とする
ものである。
(Structure of the Invention) The present invention provides a method for producing aluminum-titanium alloy powder, in which the density of mixed powder is reduced from 1/15 d+0.35 to 1
/15 d + 1.6.

(実施例1) 本実施例では平均粒径かつ3.0μmの水素化チタン粉
末と5.0μmの水素化チタン粉末および5.5μmの
アルミニウム粉末を開用した。水素比チタン粉末とアル
ミニウム粉末を重歌比で59:41の割合で混合し、そ
れらの混合粉末を圧縮して、第1表に示す条件の密度に
して温度650℃、初胡圧力10−3mmHg  以下
の条件で高温真空中で加熱処理をした。なお、この混合
粉末のかさ密度は3μmの水素化チタン粉末では0.4
1 g/ c m 3で、5μmの水素化チタン粉末で
は0.55g/am”であった。この加熱処理された合
金のブロックを、44μm(メツシュナンバー325)
のふるいを使用し市販の電幼ふるい機にかけて、合金ブ
ロックから粒度の細かい粉末がどれだけとれるかを調べ
た。
(Example 1) In this example, titanium hydride powder with an average particle size of 3.0 μm, titanium hydride powder with an average particle size of 5.0 μm, and aluminum powder with an average particle size of 5.5 μm were used. Hydrogen ratio titanium powder and aluminum powder were mixed at a ratio of 59:41, and the mixed powder was compressed to a density under the conditions shown in Table 1 at a temperature of 650°C and a pressure of 10-3 mmHg. Heat treatment was performed in a high-temperature vacuum under the following conditions. In addition, the bulk density of this mixed powder is 0.4 for titanium hydride powder of 3 μm.
1 g/cm3, and 0.55 g/am'' for 5 μm titanium hydride powder.This heat-treated block of alloy was 44 μm (mesh number 325).
Using a commercially available electronic sieve, we investigated how much fine-grained powder could be removed from the alloy block.

その結果を百分率で第1表に記入する。さらに44μm
のふるいに残った合金のブロックを500μm(メツシ
ュナンバー32)のふるいに移し、ウレタンコートの鉛
芯ボールを入れて、電動ふるい機にかけた。この作業は
ふるいの上で合金のブロックを粗砕し、500μm以下
になったらふるいでふるい分け、500μm以下の合金
粉末を得ることを意味する。なお、この時の電動ふるい
にかける粗砕時間を5分とし、ふるいの上に5%以上の
合金ブロックが残った場合には、さらに時間を延長して
5チ以下になるまでふるい分けした。この時の粗砕時間
を第1表に記入する。なお1時間実施しても5チ以下に
ならなかった場合には、ふるいに残った合金ブロックの
量を記入した。このようにして得られた粉末と光に44
μmのふるいを通過させて得られた粉末を混ぜてからカ
ンファーをバインダーとして調合した。この粉末を自動
粉末充填できる自動粉末成形機で成形し、温度1150
℃、真空度10−3mmHg以下で真空焼結して焼結体
を製造した。この焼結体20個の重量を測定し、その重
量のばらつきからσ値を計算し、σ値を百分率(σ値/
平均値)で第1表に記入した。さらにこの焼結一体を公
知の固体電解コンデンサ形成方法により陽極化成して酸
化皮膜をつけ誘電体層を設けた後、酸化マンガン層およ
び陰極層を形成し、絶縁外装して固体電解コンデンサを
作製した。この固体電解コンデンサ10個の静電容量の
周波数依存性を測定した。周波数120Hzと1QkH
zの靜゛亀容量の変化分を出し、10個の平均値を百分
率で第1表に記入した。
Enter the results in percentages in Table 1. Further 44μm
The alloy block remaining on the sieve was transferred to a 500 μm (mesh number 32) sieve, a urethane-coated lead core ball was placed therein, and the mixture was passed through an electric sieve. This operation means coarsely crushing the alloy block on a sieve, and when it becomes 500 μm or less, sifting it with a sieve to obtain alloy powder with a size of 500 μm or less. At this time, the time for coarse crushing through the electric sieve was set at 5 minutes, and if 5% or more of the alloy blocks remained on the sieve, the time was further extended to sieve until 5% or less of the alloy blocks remained. The rough crushing time at this time is entered in Table 1. In addition, if the number of alloy blocks did not decrease to 5 or less even after carrying out the test for 1 hour, the amount of alloy blocks remaining on the sieve was recorded. The powder thus obtained and the light
The powder obtained by passing through a μm sieve was mixed and then compounded with camphor as a binder. This powder is molded using an automatic powder molding machine capable of automatic powder filling, and the temperature is 1150.
A sintered body was produced by vacuum sintering at a temperature of 10-3 mmHg or less. Measure the weight of these 20 sintered bodies, calculate the σ value from the variation in weight, and calculate the σ value as a percentage (σ value/
The average value) was entered in Table 1. Furthermore, this sintered body was anodized using a known solid electrolytic capacitor forming method to form an oxide film and provide a dielectric layer, and then a manganese oxide layer and a cathode layer were formed, and an insulating exterior was applied to produce a solid electrolytic capacitor. . The frequency dependence of the capacitance of these 10 solid electrolytic capacitors was measured. Frequency 120Hz and 1QkHz
The changes in the static capacitance of z were calculated, and the average values of the 10 values were entered in percentages in Table 1.

第1表 以上、第1表に記入した結果から混合粉末をかさ密度の
ままで加熱処理をして得られたアルミニウム−チタン合
金粉末は極端にくずれ易く、44μm以下の粉末が多く
なって粉末の流れ性が悪くなり、焼結体の重量ばらつき
が大きくなる。密度をあげることによってこのばらつき
が小さくなってゆく。焼結体の重量は静電容量に比例し
、静電容量の規格範囲は日本工業規格では±20チであ
るから、静電容量ばらつきの3σ値を約20チ以内にす
ることが工業的に価値があり、その意味では焼結体の重
量ばらつきのσ値が6.6チ以内でなければならない。
From Table 1 and above, from the results entered in Table 1, the aluminum-titanium alloy powder obtained by heat-treating the mixed powder while keeping the bulk density is extremely easy to crumble, and there are many powders with a diameter of 44 μm or less. The flowability deteriorates and the weight variation of the sintered body increases. This variation becomes smaller by increasing the density. The weight of the sintered body is proportional to the capacitance, and the standard range of capacitance is ±20 inches according to the Japanese Industrial Standards, so it is industrially desirable to keep the 3σ value of capacitance variation within about 20 inches. In this sense, the σ value of the weight variation of the sintered body must be within 6.6 inches.

これを満足する最も密度の低い点を第1図にプロットす
る。混合粉末の密度を大きくしてゆくと、加熱処理した
合金のブロックが固くなり、粗砕が困難となってくる。
The points with the lowest density that satisfy this are plotted in FIG. As the density of the mixed powder increases, the heat-treated alloy blocks become harder and coarse crushing becomes difficult.

本実施例の方法で1時間粗砕して500μmのふるいに
残った合金のブロックをメノウ乳鉢を使用して手作業で
粗砕しても非常に固く粗砕が困難となってくる。
Even if the alloy blocks remaining on the 500 μm sieve after being crushed for 1 hour using the method of this example are crushed manually using an agate mortar, they become very hard and difficult to crush.

特に500μmのふるいに50チ以上も残った場合には
、手作業では粉砕できないことがわかった。
In particular, it was found that if more than 50 pieces remained on a 500 μm sieve, it could not be crushed manually.

また混合粉末の密度を大きくしてゆくと加熱処理した合
金の空孔構造が微細化し、粗砕が困難となると共に製品
の静電容量の周波数変化も大きくなる。このことから極
端に混合粉末の密度を大きくすることは工業的価値を損
なう。本実施例の粗砕方法で粗砕できた条件が工業的に
価値があるものと判断し、これを満足する最も密度の高
い点を第1図にプロットする。
Furthermore, as the density of the mixed powder increases, the pore structure of the heat-treated alloy becomes finer, making coarse crushing difficult and increasing the frequency change in the capacitance of the product. For this reason, excessively increasing the density of the mixed powder impairs its industrial value. It was determined that the conditions under which coarse crushing could be achieved by the coarse crushing method of this example were of industrial value, and the points with the highest density that satisfied these conditions were plotted in FIG.

(実施例2) 本実施例では水素化チタンの粉末の粒径をかえた場合、
およびチタン粉末の粒径をかえた場合について、混合粉
末の密度を小さくした場合およびその密度を大きくした
場合について説明する。その実施した条件は第2表で示
す。使用したアルミニウム粉末は実施例1と同様に平均
粒径5.5μmの粉末である。第2表の条件に従って実
施例1と全く同じ方法で固体電解コンデンサを製造し、
また全く同じ方法で各測定値を評価した。それらの結果
を第2表に記入する。なお第2表の条件中で最も密度の
低い条件はかさ密度で実施したものである。
(Example 2) In this example, when the particle size of titanium hydride powder was changed,
In addition, cases in which the particle size of the titanium powder is changed, cases in which the density of the mixed powder is decreased, and cases in which the density is increased will be explained. The conditions under which it was carried out are shown in Table 2. The aluminum powder used had an average particle size of 5.5 μm as in Example 1. A solid electrolytic capacitor was manufactured in exactly the same manner as in Example 1 according to the conditions in Table 2,
In addition, each measurement value was evaluated using exactly the same method. Enter the results in Table 2. Note that among the conditions in Table 2, the condition with the lowest density was the one conducted at the bulk density.

第2表 本実施例からも実施例1と同じ傾向が見られた。Table 2 The same tendency as in Example 1 was observed in this example as well.

実施例1と同様の工業的な価値判断をし、第1図にこれ
を満足する密度の最も低い点と最も高い点をプロットす
る。これらのプロットした点を妥当な線で結んで表現す
ると密度の高い方は(1/15d+ 1.6 ) g/
am3  で表現でき、密度の低い方は(1/15d+
0.35)g/Cm3テ表現スルコトカテキル。
The same industrial value judgment as in Example 1 is made, and the lowest and highest points of density that satisfy this are plotted in FIG. If we connect these plotted points with a reasonable line and express it, the one with higher density is (1/15d+1.6) g/
It can be expressed as am3, and the lower density is (1/15d+
0.35) g/Cm3 expression sulcotocatekyl.

ただし、dは水素化チタンあるいはチタン粉末の平均粒
径で単位はミクロンである。
However, d is the average particle size of titanium hydride or titanium powder, and the unit is micron.

水素化チタン粉末およびチタン粉末の粒径を犬きくして
ゆくと、単位体漬当たりの静電容量が小さくなり、最近
の小型化指向に逆行する。特に粒径が10μm以上にな
るとその傾向が大きくなるのであえて実施例の中では説
明しなかつたが、粒径が10μ嵯上の粉末についても本
発明で第1図の右に外挿できることは明碇である。
As the particle size of titanium hydride powder and titanium powder increases, the capacitance per unit becomes smaller, which goes against the recent trend towards miniaturization. In particular, this tendency increases when the particle size becomes 10 μm or more, so this was not explained in the Examples, but it is clear that the present invention can be extrapolated to the right side of FIG. 1 even for powders with a particle size of 10 μm or more. It is.

(効果) 以上、説明したように本発明の混合粉末の密度を現定し
て処理するアルミニウム・チタン合金粉末の製造方法は
、工程の生産能力を大きくシ、かつ展品の電気的特性を
向上させる工業的な効果を有する。
(Effects) As explained above, the method for producing aluminum-titanium alloy powder according to the present invention, which involves determining the density of mixed powder and processing it, greatly increases the production capacity of the process and improves the electrical characteristics of exhibited products. It has an industrial effect.

【図面の簡単な説明】 第1図は水素化チタン粉末およびチタン粉末の平均粒径
に対する混合粉末の圧縮密度を示す平均粒径−圧縮密度
相関図。なお図において、(A) a・・・・・・本発
明の製造方法に係わる混合粉末の密度の低い点を結んだ
もの、 (B)線・・・・・・本発明の製造方法に係わる混合粉
末の密度の藁い点を結んだものである。 第 f 区 $J勺&f≦  どλりφりp
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an average particle diameter-compression density correlation diagram showing the compaction density of a mixed powder with respect to the mean particle diameter of titanium hydride powder and titanium powder. In the figures, (A) a...connecting points with low density of mixed powder related to the production method of the present invention, (B) line...related to the production method of the present invention It connects the density points of the mixed powder. Section f $J勺&f≦

Claims (1)

【特許請求の範囲】[Claims] アルミニウム粉末と水素化チタン粉末あるいはアルミニ
ウム粉末とチタン粉末の混合粉末を加熱処理してアルミ
ニウム−チタン合金を形成する工程と、前記合金を粗砕
する工程とを有するアルミニウム−チタン合金粉末の製
造方法において、前記混合粉末の密度を1/15d+0
.35から1/15d+1.6の範囲(ただしdは水素
化チタン粉末あるいはチタン粉末の平均粒径で単位はミ
クロン)にすることを特徴とするアルミニウム−チタン
合金粉末の製造方法。
A method for producing an aluminum-titanium alloy powder, comprising the steps of heat-treating aluminum powder and titanium hydride powder or a mixed powder of aluminum powder and titanium powder to form an aluminum-titanium alloy, and coarsely crushing the alloy. , the density of the mixed powder is 1/15d+0
.. 35 to 1/15d+1.6 (where d is the average particle size of titanium hydride powder or titanium powder, expressed in microns).
JP59210707A 1984-10-08 1984-10-08 Production of aluminum-titanium alloy powder Pending JPS6187802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59210707A JPS6187802A (en) 1984-10-08 1984-10-08 Production of aluminum-titanium alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59210707A JPS6187802A (en) 1984-10-08 1984-10-08 Production of aluminum-titanium alloy powder

Publications (1)

Publication Number Publication Date
JPS6187802A true JPS6187802A (en) 1986-05-06

Family

ID=16593765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59210707A Pending JPS6187802A (en) 1984-10-08 1984-10-08 Production of aluminum-titanium alloy powder

Country Status (1)

Country Link
JP (1) JPS6187802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409775A (en) * 2013-08-26 2013-11-27 江苏启迪合金有限公司 Method for producing aluminum-titanium alloy through electrolysis
CN109719298A (en) * 2019-02-15 2019-05-07 长春工业大学 A kind of TiAl-base alloy material and preparation method thereof with core-shell structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409775A (en) * 2013-08-26 2013-11-27 江苏启迪合金有限公司 Method for producing aluminum-titanium alloy through electrolysis
CN109719298A (en) * 2019-02-15 2019-05-07 长春工业大学 A kind of TiAl-base alloy material and preparation method thereof with core-shell structure

Similar Documents

Publication Publication Date Title
CA1335334C (en) Flaked tantalum powder composition and methods for making same
US3647415A (en) Tantalum powder for sintered capacitors
EP0284738B1 (en) Platelet-containing tantalum powders
US4017302A (en) Tantalum metal powder
US5211741A (en) Flaked tantalum powder
US5580367A (en) Flaked tantalum powder and method of using same flaked tantalum powder
JP4267699B2 (en) Deagglomerated tantalum powder and method for preparing the same, and agglomerated tantalum powder
JPH0778241B2 (en) Method for producing tantalum powder composition
US5261942A (en) Tantalum powder and method of making same
US4441927A (en) Tantalum powder composition
JP3434041B2 (en) Tantalum powder and electrolytic capacitor using the same
US3418106A (en) Refractory metal powder
US3445731A (en) Solid capacitor with a porous aluminum anode containing up to 8% magnesium
US3473915A (en) Method of making tantalum metal powder
US3934179A (en) Tantalum anode for electrolytic devices
US3169862A (en) Process for making anodes for electrolytic condensers
JPS6187802A (en) Production of aluminum-titanium alloy powder
CN101523531A (en) Powder modification in the manufacture of solid state capacitor anodes
US3430108A (en) Method for the manufacture of tantalum powder for condenser purposes
JP2000269091A (en) Metal powder for electrolytic capacitor, anode body for electrolytic capacitor using the same, and electrolytic capacitor
US6562097B1 (en) Metal powder for electrolytic condenser, electrolytic condenser anode body using the metal powder, and an electrolytic condenser
JP2003147402A (en) Niobium powder
JP2544017B2 (en) Method for producing copper powder for powder metallurgy
KR100484686B1 (en) Method of Making Tantalum Metal Powder With Controlled Size Distribution and Products Made Therefrom
KR970004575B1 (en) High quantity tantalium electrolytic condenser processing method