JPS6187792A - Lubricating oil or hydraulic fluid composition - Google Patents

Lubricating oil or hydraulic fluid composition

Info

Publication number
JPS6187792A
JPS6187792A JP20829884A JP20829884A JPS6187792A JP S6187792 A JPS6187792 A JP S6187792A JP 20829884 A JP20829884 A JP 20829884A JP 20829884 A JP20829884 A JP 20829884A JP S6187792 A JPS6187792 A JP S6187792A
Authority
JP
Japan
Prior art keywords
oil
leakage
lubricating oil
hydraulic oil
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20829884A
Other languages
Japanese (ja)
Inventor
Kiyohiko Inaba
稲葉 清彦
Kenji Akatsuka
賢次 赤塚
Mitsushi Kishimoto
岸本 充司
Hitoshi Kumagai
仁志 熊谷
Motofumi Kurahashi
倉橋 基文
Tetsuo Ichimaru
一丸 哲夫
Masao Ando
正夫 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Cosmo Co Ltd
Original Assignee
Nippon Steel Corp
Cosmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Cosmo Co Ltd filed Critical Nippon Steel Corp
Priority to JP20829884A priority Critical patent/JPS6187792A/en
Publication of JPS6187792A publication Critical patent/JPS6187792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PURPOSE:To provide the titled compsn. which can prevent external and internal leakage without detriment to the general performance of lubricating oil or hydraulic fluid, by blending polyisobutylene having a high MW with a base oil. CONSTITUTION:A lubricating oil or hydraulic fluid compsn. is obtd. by blending 0.005-1.0wt% polyisobutylene having a high degree of polymn., which has a weight-average MW of 200,000 or above, with a base oil such as mineral or synthetic oil. The compsn. can prevent external and internal leakage without detriment to the general performance of lubricating oil and hydraulic fluid and hence it can contribute to resource and energy saving.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は基油[20万以上の重量平均分子量を有する高
重合度ポリイソブチレンQ、005〜1.0重’fR%
を配合してなる潤滑油又は作動油組成物に係るものであ
り、更に詳細には外部漏れを防止させることにより省資
源に寄与し、内部漏れを低下させることによシ省エネル
ギー化を目的とした潤滑油又は作動油組成物に関するも
のである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is based on a base oil [highly polymerized polyisobutylene Q having a weight average molecular weight of 200,000 or more, 005 to 1.0 wt'fR%
It relates to a lubricating oil or hydraulic oil composition that is formulated with The present invention relates to lubricating oil or hydraulic oil compositions.

〔技術的背景〕    ゛ 石油ショック以降、産業界ばかシでなく、一般消費者に
至るまで、省エネルギー、省資源の概念が定着しつつあ
る。そのなかで、潤滑油又は作動油の分野でも省エネル
ギー化、すなわち、使用電力の節減、燃料消費量の低減
が重要な課題となっている。最近の動向として、省エネ
ルギー化に対して装置の面から様々な検討が行われてお
シ、また潤滑油又は作動油の面からも低粘度化、高粘度
指数化、摩擦低減等について検討が行われている。潤滑
油又は作動油の低粘度化は流体摩、擦の減少によシ機械
効率が増加し、それに伴い、省エネルギー効果が期待で
きる妙ζ逆に容積効率の減少、耐摩耗性の低下等マイナ
ス面での問題を考慮する必要がある。また、高粘度指数
化は始動、停止が頻繁に行われる場合には、確かに効果
があるが、長時間一定温度で使用する場合にはあまち効
果が期待できない。
[Technical background] ゛Since the oil shock, the concepts of energy conservation and resource conservation have become firmly established not only in industry but also among general consumers. Among these, energy conservation, that is, reduction in power consumption and fuel consumption, has become an important issue in the field of lubricating oils and hydraulic oils. As a recent trend, various studies have been conducted to save energy from the perspective of equipment, and studies have also been conducted from the perspective of lubricating oil or hydraulic oil, such as lowering the viscosity, increasing the viscosity index, and reducing friction. It is being said. Decreasing the viscosity of lubricating oil or hydraulic oil increases mechanical efficiency by reducing fluid friction and friction, which can be expected to have an energy-saving effect.On the other hand, it has negative aspects such as a decrease in volumetric efficiency and a decrease in wear resistance. issues need to be considered. In addition, increasing the viscosity index is certainly effective when starting and stopping are frequently performed, but it cannot be expected to be very effective when used at a constant temperature for a long period of time.

また、摩擦低減は摩擦低減剤を加えることで摩擦係数を
小さくシ、省エネルギーには効果が期待できるが、油の
物性を変えることはできず、漏れ防止には効果が期待で
きない。
Additionally, adding a friction reducer can reduce the coefficient of friction, which can be expected to be effective in saving energy, but it cannot change the physical properties of the oil and cannot be expected to be effective in preventing leakage.

また、省資源の観点からとらえると潤滑油又は作動油の
補油量の低減すなわち、装置からの1漏れ′の減少が重
要な課題となっている。油の漏れは非常にやっかいな問
題であシ、この問題を解決する為に装置面からの改善・
改良も行われてきたにもかかわらず、現在に至るも漏れ
の起こらない装置は開発されていない。既設装置につい
てみると、その老朽化に従い漏れは増、加する傾向にあ
シ、部品等の交換でも十分な対策とはなシえず、また部
品等の交換を行う場合には、稼動時においては装置を一
時停止しなければならないので事実上運転中の交換は不
可能なことが多い。更に装置の大型化、高圧化あるいは
複雑化により漏れの発生けよシ起こりやすい状況になっ
てきている。
Furthermore, from the perspective of resource saving, reducing the amount of supplementary lubricating oil or hydraulic oil, that is, reducing the number of leaks from the device, is an important issue. Oil leakage is a very troublesome problem, and in order to solve this problem, improvements and improvements from the equipment side are required.
Although improvements have been made, no leak-free device has been developed to date. Looking at existing equipment, leakage tends to increase as it ages, and even replacing parts is not a sufficient countermeasure, and when replacing parts, etc., it is necessary to Since the equipment must be temporarily stopped, replacement during operation is often impossible. Furthermore, as equipment becomes larger, pressurized, or more complex, leaks are more likely to occur.

一般に油漏れには、シール、継手等から機器系外へ油が
流出する外部漏れと、圧力損失・流量損失等の形で機器
内部で起こる効率のロス分と見られる内部漏れとの2つ
がある。外部漏れは油が系外に漏洩するため、床に流れ
出るばかシでなく、火災、スリップ等の事故を招く要因
ともなる。更に下水等へ混入し、時には公害の原因にも
つながる。また、製品等を汚損する可能性もあり、装置
が焼き付く等の重大な問題を生ずる危険性もはらんでい
る。また、当然のことながら漏れた量に見合う油を補給
する必要があり、これに要する仕費は相当なものとなる
In general, there are two types of oil leaks: external leaks, in which oil flows out of the equipment system from seals, joints, etc., and internal leaks, which are seen as efficiency losses occurring inside the equipment in the form of pressure loss, flow loss, etc. . External leakage causes oil to leak outside the system, which not only causes oil to flow out onto the floor, but also causes accidents such as fire and slips. Furthermore, it can get mixed into sewage, etc., and sometimes lead to pollution. Furthermore, there is a possibility that products etc. may be contaminated, and there is also the risk of causing serious problems such as burning of the device. Furthermore, it is necessary to replenish the amount of oil corresponding to the amount that has leaked, and the cost required for this is considerable.

一方、内部漏れが増大すれば、油圧機器等に於ける回路
中の圧力損失が増加し、更にポンプ等の容積効率も低下
し、これに伴い、使用電力は増加し、省エネルギーに逆
行してしまう。更には圧力維持の調整が困難になるとい
う複雑な問題も生ずる。
On the other hand, if internal leakage increases, the pressure loss in the circuits of hydraulic equipment will increase, and the volumetric efficiency of pumps will also decrease, resulting in an increase in power consumption, which goes against energy conservation. . Furthermore, a complicated problem arises in that it becomes difficult to adjust the pressure maintenance.

以上のように、外部漏れ、内部漏れ共に重要な課題であ
シ、装置面から設計、構造、材質あるいは設置について
様々な改良、改善を行ってはいるものの、末だH,?、
 X (Hydraullc IPlullIndex
 :年間の作動油の消費量を油タンクの総容量で除した
価)は最高水準の場合でも1程度である。特に、装置の
稼動時に於いて漏洩が発見された場合、部品の交換組み
付けは装置を停止させる必要があシ、実際には困難なこ
とが多い。更に老朽化した装置に於いては部品の交換、
組み付は等だけでは抜本的な解決には至らないことが多
い。
As mentioned above, both external leakage and internal leakage are important issues, and although various improvements have been made to the design, structure, materials, and installation of the equipment, there is still no end in sight. ,
X (Hydraullc IPlullIndex
: The value obtained by dividing the annual hydraulic oil consumption by the total capacity of the oil tank) is approximately 1 even at the highest level. In particular, if a leak is discovered while the device is in operation, it is necessary to stop the device to replace or assemble parts, which is often difficult in practice. In addition, replacement of parts in aging equipment,
Assembly alone often does not lead to a fundamental solution.

従って、油自体によシ油漏れを防止することが可能とな
れば現状では総合的にみて最良の方法で、特に経済的に
極めて優位な方法といえる。
Therefore, if it were possible to prevent oil leakage by using the oil itself, it would be the best method overall at present, and in particular, it would be an extremely advantageous method economically.

一般に油の粘度が高くなれば外部漏れが減少する傾向と
なり、これがH,ll’、 Xの値を減少させることに
つながろうが、逆に流体摩擦抵抗が上がり、機械効率が
低下するため、使用電力の低減を期待することはできな
い。更に、粘度が高過ぎると、内部摩擦の増大による温
度の上昇、油圧回路中の圧力損失の増大等の種々な問題
を引き起こす要因ともなり、単に粘度を高くすることで
は問題の解決には至らない。また、省エネルギーの方法
として低粘度化をめざしていることにも逆行する。
In general, as the viscosity of oil increases, external leakage tends to decrease, which would lead to a decrease in the values of H, ll', and It is not possible to expect a reduction in power consumption. Furthermore, if the viscosity is too high, it can cause various problems such as an increase in temperature due to increased internal friction and an increase in pressure loss in the hydraulic circuit, and simply increasing the viscosity will not solve the problem. . It also runs counter to the goal of lowering viscosity as a way to save energy.

従って、油の粘度を上げることなしにアンチリーク剤(
潤滑油又は作動油に添加することにより漏れを防止する
物質)を添加することにより1、漏れを防止する方法の
開発が望まれる。
Therefore, the anti-leak agent (
It is desired to develop a method of preventing leakage by adding a substance (substance that prevents leakage by adding it to lubricating oil or hydraulic oil).

しかもアンチリーク剤は、潤滑油又は作動油としての本
来の性能を損うことがあってはならず、また、添加によ
るコストアップも極力抑える必要がある。一つの方法と
して、アンチリーク剤としてポリフッ化エチレン等の固
体微粒子を含有したものも市販されてはいるが、これら
固体微粒子を含んだもののうち、ある程度の大きさの粒
子のものは、渥れを防止するのに有効であるが粒子が大
きくなると分散性が悪く、フィルター等に目詰まりを起
し、キャビテーションを起こしやすぐ、さらに、電磁切
換弁のスプール固着等の管理上の問題が多く、またポリ
フッ化エチレン等の固体微粒子は現状では高価であり、
経済的に不利な面があシ、必ずしも有効な手段とはいえ
ない。
Moreover, the anti-leak agent must not impair its original performance as a lubricating oil or hydraulic oil, and it is also necessary to minimize the increase in cost due to its addition. As one method, anti-leak agents containing solid fine particles such as polyfluoroethylene are commercially available, but among these anti-leak agents, those containing particles of a certain size are difficult to prevent from fraying. However, when the particles become large, they have poor dispersibility, can clog filters, cause cavitation, and have many management problems such as the spool of the electromagnetic switching valve sticking. Solid particles such as polyfluoroethylene are currently expensive;
There are economic disadvantages, and it is not necessarily an effective method.

従って潤滑油又は作動油に添加した場合潤滑油又は作動
油本来の性能を損わず、十分なる油溶性をもちかつ低価
格のアンチリーク剤が存在すれば極めて有効な物質とし
て使用出来る。
Therefore, when added to lubricating oil or hydraulic oil, if there is an anti-leak agent that does not impair the inherent performance of the lubricating oil or hydraulic oil, has sufficient oil solubility, and is inexpensive, it can be used as an extremely effective substance.

〔発明の目的〕[Purpose of the invention]

本発明は、これらの問題点に鑑みて種々の検討を行った
ところ、基油に20万以上の重量平均分子量を有する高
重合度ポリイソブチレンを0、0 O5〜1.0重量%
の如く微量配合した潤滑油又は作動油組成物が、潤滑油
又は作動油の漏れを減少させるのに優れた特性を示すこ
とを見い出17たことに基くもので、本発明の目的とす
るところは潤滑油又は作動油としての性能を何ら損うこ
となしに、外部漏れ及び内部漏れを減少させ、時代の要
請からくる省資源、省エネルギーに著しく貢献しうる潤
滑油又は作動油組成物を提供することである。
In view of these problems, various studies were carried out in the present invention, and the results were obtained by adding 0.05 to 1.0% by weight of highly polymerized polyisobutylene having a weight average molecular weight of 200,000 or more to the base oil.
This is based on the discovery that a lubricating oil or hydraulic oil composition blended in a small amount as shown in FIG. However, the present invention provides a lubricating oil or hydraulic oil composition that can reduce external and internal leakage without impairing its performance as a lubricating oil or hydraulic oil, and can significantly contribute to resource and energy conservation in line with the demands of the times. It is to be.

〔発明の構成〕[Structure of the invention]

本発明は、鉱油ないしは合成油を基油とl、、これに2
0万以上の重量平均分子量を有するポリイソブチレンを
CLOO5〜1.0重量%の微量配合してなる潤滑油又
は作動油組成物である。
The present invention uses mineral oil or synthetic oil as a base oil, and 2
This is a lubricating oil or hydraulic oil composition containing a trace amount of 5 to 1.0% by weight of polyisobutylene having a weight average molecular weight of 00,000 or more.

以下、本発明の構成を詳細に説明する。Hereinafter, the configuration of the present invention will be explained in detail.

基油は例えばパラフィン系炭化水素油、ナフテン系炭化
水素油等広く一般に石油系鉱油と呼ばれるもので税源、
溶剤精製、脱ろう、水素化精製及び水素化分解等の方法
により得られたものでもよい。また基油として例えばα
−オレフィンオリコマ−、ホリエーテル、ジエステル等
一般に合成油と呼ばれるものを用いてもよい。基油にア
ンチリーク剤として配合される高分子量ポリインブチレ
ンは、インブチレン単独、または、これを含むC4ガス
を原料とし、7フ化ホウ素触媒を用いて種々の温度で重
合を行なうことによシ得られる。一般に、温度が低く触
媒の作用を害する不純物が存在せずまた重合熱の除去が
よく行なわれると重合度が高くなる。
Base oils are generally called petroleum-based mineral oils, such as paraffinic hydrocarbon oils and naphthenic hydrocarbon oils, and are tax sources.
It may be obtained by methods such as solvent refining, dewaxing, hydrorefining, and hydrocracking. Also, as a base oil, for example α
-Olefin olicomers, polyethers, diesters, etc., which are generally called synthetic oils, may also be used. High molecular weight polyimbutylene, which is blended into base oil as an anti-leak agent, is synthesized by polymerizing inbutylene alone or a C4 gas containing it at various temperatures using a boron heptafluoride catalyst. can get. Generally, the degree of polymerization will be higher if the temperature is low, there are no impurities that impair the action of the catalyst, and the heat of polymerization is removed well.

たとえば、三7ツ化ホウ素0.5%を触媒とし、沸とう
エチレン中で重合させると重合度1000ないしそれ以
上のものが得られる。これまでに比較的高分子量のポリ
マーが漏れ防止性能を有することは知られているが、高
分子量ポリイソブチレンを極く微量配合した場合に効果
のあるものは、知られていない。本発明は重量平均分子
量20万以上のポリイソブチレンがo、 o o s〜
1.0重量%の微量の配合によシ有効なアンチリーク剤
となシうることを見い出したことを特徴とする。
For example, if 0.5% boron triseptide is used as a catalyst and polymerization is carried out in boiling ethylene, a polymerization degree of 1000 or more can be obtained. Although it has been known that relatively high molecular weight polymers have leak-preventing properties, it is not known that polymers with a relatively high molecular weight are effective when a very small amount of high molecular weight polyisobutylene is blended. In the present invention, polyisobutylene having a weight average molecular weight of 200,000 or more is o, o o s~
The present invention is characterized in that it has been found that a trace amount of 1.0% by weight can be used as an effective anti-leak agent.

このようなアンチリーク剤は、せん断を受けることによ
シ粘度低下が著るしく漏れ防止性能の低下が懸念される
が本発明のアンチリーク剤はせん断後においても優れた
漏れ防止性能を示すものである。
When such anti-leak agents are subjected to shearing, the viscosity decreases significantly and there is a concern that the leak-preventing performance may deteriorate, but the anti-leak agent of the present invention shows excellent leak-preventing performance even after shearing. It is.

潤滑油又は作動油組成物における20万以上好ましくは
、30万〜150万の重量平均分子量を有するポリイソ
ブチレンの配合割合は、潤滑油又は作動油組成物に対し
o、 o o s〜1.0重量%で、特に本発明の目的
に対して0,01〜0.2重量%が適している。高分子
量ポリイソブチレンの配合割合が多い場合は、せん断に
よシ粘度が低下し、逆に外部漏れ、内部漏れ共増加する
The blending ratio of polyisobutylene having a weight average molecular weight of 200,000 or more, preferably 300,000 to 1,500,000 in the lubricating oil or hydraulic oil composition is o, o o s to 1.0 with respect to the lubricating oil or hydraulic oil composition. In % by weight, 0.01 to 0.2 % by weight are particularly suitable for the purposes of the invention. When the blending ratio of high molecular weight polyisobutylene is high, the viscosity decreases due to shearing, and conversely both external leakage and internal leakage increase.

また経済的観点からも添加量は、少ない方が望ましい。Also, from an economic point of view, it is desirable that the amount added be small.

本発明の潤滑油又は作動油組成物は、前記の高分子量ポ
リインブチレンを必須の成分とするがこの他にも公知の
潤滑油又は作動油添加剤を1種又はそれ以上併用してよ
い。具体的には、これらの添加剤としては、耐摩耗剤(
例えばジアルキルジチオリン酸亜鉛)、清浄分散剤(例
えば塩基性スルホネート)、摩擦低減剤(フリクション
モディファイア:例えば二硫化モリブテン)、粘度指数
向上剤(例えばポリメタクリレート、オレフィン共重合
体)、酸化防止剤(例えばアミン系又はヒンダードフェ
ノール系のもの)、消泡剤(例えば、シリコーン油)、
流動点降下剤(例えばポリメタクリレート)、金属不活
性化剤(例えばベンゾトリアゾール及びその誘導体)、
抗乳化剤(例えばカチオン系界面活性剤)等がある。
The lubricating oil or hydraulic oil composition of the present invention contains the above-mentioned high molecular weight polyimbutylene as an essential component, but in addition to this, one or more known lubricating oil or hydraulic oil additives may be used in combination. Specifically, these additives include anti-wear agents (
detergent dispersants (e.g. basic sulfonates), friction modifiers (friction modifiers e.g. molybdenum disulfide), viscosity index improvers (e.g. polymethacrylates, olefin copolymers), antioxidants (e.g. zinc dialkyldithiophosphates), (e.g. amine-based or hindered phenol-based), antifoaming agents (e.g. silicone oil),
pour point depressants (e.g. polymethacrylates), metal deactivators (e.g. benzotriazoles and their derivatives),
Examples include demulsifiers (eg, cationic surfactants).

高分子量ポリイソブチレン倉基油に配合すると粘度は増
加するが他の物性に対しほとんど影響を及ぼさない。ま
た、他の添加剤との相互作用は皆無で現在広く使用され
ている潤滑油又は作動油に更に漏れ防止という新たな性
能を付与することが可能となる。
When blended with high molecular weight polyisobutylene base oil, the viscosity increases, but it has almost no effect on other physical properties. In addition, there is no interaction with other additives, and it becomes possible to further impart new leak prevention performance to lubricating oils or hydraulic oils that are currently widely used.

以上の様に、高分子量ポリイソブチレンを配合した潤滑
油又は作動油組成物は、潤滑油又は作動油としての一般
的な性能を何ら損うことなく外部漏れ、内部漏れを防止
することにより省資源、省エネルギーに貢献することが
できる。
As described above, lubricating oil or hydraulic oil compositions containing high molecular weight polyisobutylene can save resources by preventing external and internal leakage without impairing the general performance of lubricating oils or hydraulic oils. , can contribute to energy conservation.

以下、作動油についての実施例、並びに比較例によって
本発明にかかる組成物の効果を詳細に説明するが、本発
明はこれらの実施例によって限定されるものではない。
Hereinafter, the effects of the composition according to the present invention will be explained in detail using Examples and Comparative Examples regarding hydraulic oil, but the present invention is not limited by these Examples.

〔実験1〕 アンチリーク剤として高分子物質を配合した油の外部漏
れの防止効果を検討するために、%インチ鉄ニップルユ
ニオンスリーブとエルボでU字形にした第1図に示す装
置により試験を行った。
[Experiment 1] In order to examine the effect of preventing external leakage of oil containing a polymeric substance as an anti-leak agent, a test was conducted using the device shown in Figure 1, which was made into a U-shape with a % inch iron nipple union sleeve and an elbow. Ta.

漏れ部は、鉄ニップル11とユニオンスリーブ12との
すき間13であ180kl?mのトルクで締めつけ、さ
らに250−の試験油を入れU字形の両端より窒素ガス
で2.1kg/1M?の圧力をかける。温度は25±1
℃に保ちこの状態で20分間放置し、流出した試験油を
集め秤量した。
The leakage area is 180kl in the gap 13 between the iron nipple 11 and the union sleeve 12? Tighten with a torque of 2.1kg/1M, then add 250mm test oil and apply nitrogen gas from both ends of the U-shape to 2.1kg/1M? apply pressure. The temperature is 25±1
The test oil was kept at 0.degree. C. and left in this state for 20 minutes, and the test oil that flowed out was collected and weighed.

配合した高分子物質の重量平均分子量は、ゲルバーミュ
エーションクロマトグラム法ニヨリ求めた。なお、検量
線には、市販の標準ポリスチレンを用いた。実験に際し
て、流体が小さい隙間を通過して漏れる場合流体力学的
にはその漏れ特性(漏れ速度又は漏れ量)は隙間、流体
の圧力、流体の動粘度の関数として示されるため同一粘
度の試作油について検討を行った。
The weight average molecular weight of the blended polymeric substance was determined by gel vermutation chromatography. Note that commercially available standard polystyrene was used for the calibration curve. During experiments, when fluid leaks through a small gap, the leak characteristics (leak rate or leakage amount) are expressed as a function of the gap, fluid pressure, and fluid kinematic viscosity in fluid dynamics. We considered the following.

試験油として様々な分子量のポリイソブチレン、ポリブ
テン、ポリメタクリレート、オレフィン共重合体、ポリ
アルキルスチレンの高分子゛物質を基油に添加したもの
を用いた。比較として上記ポリマーを含まない無添加ベ
ース油を漏れ量の基準とするため使用した。結果を次の
第1表、第2表、第2図に示す。
The test oils used were base oils containing polymeric substances of various molecular weights such as polyisobutylene, polybutene, polymethacrylate, olefin copolymers, and polyalkylstyrene. For comparison, an additive-free base oil that does not contain the above polymer was used as a reference for leakage amount. The results are shown in Table 1, Table 2, and Figure 2 below.

第1表、第2表及び第2図よシ各種の油溶性ポリマーの
うち重量平均分子i2o万以上のポリインブチレンをI
&量配合した油に優れた漏れ防止効果が認められる。
Table 1, Table 2 and Figure 2 show that among various oil-soluble polymers, polyimbutylene with a weight average molecular weight of I200,000 or more is
The oil containing the above amount has an excellent leak-preventing effect.

〔実験2〕 本発明作動油組成物の高圧下に於ける外部漏れの防止効
果を検討するために、一方を盲としたステンレス製にイ
ンチNPT管用おす、めすねじ部の締め付けを調整し漏
れ防止効果を示さない無添加油が120±2 mt /
 hの漏れ量(初期設定量)となるように締付は漏れ部
を設定し試験を行った。測定方法は、この装置に充填予
約250−の試験油を入れ、温度を25±1℃に保ち、
窒素ガスで70klil/、Jの圧力をかける。
[Experiment 2] In order to examine the effectiveness of the hydraulic oil composition of the present invention in preventing external leakage under high pressure, leakage was prevented by adjusting the tightening of the male and female threads of an inch NPT pipe made of stainless steel with one side blind. 120±2 mt of additive-free oil that has no effect
The test was conducted by tightening the leakage part so that the leakage amount (initial setting amount) was h. The measurement method is to fill the device with 250-liter test oil, maintain the temperature at 25±1℃,
Apply a pressure of 70kli/J with nitrogen gas.

この状態で3Q分間放置し、流出した試験油を集め秤量
する。漏れ量は1時間当シの量に換算して表示する。こ
の操作を数回繰り返し、漏れ防止効果の経時変化をみる
Leave in this state for 3Q minutes and collect and weigh the spilled test oil. The amount of leakage is converted to the amount per hour and displayed. Repeat this operation several times to see how the leakage prevention effect changes over time.

実施例1〜5 次の組成をもつ本発明の作動油組成物を調製した。Examples 1-5 A hydraulic oil composition of the present invention having the following composition was prepared.

実施例1   実施例2  実施例3 作動油基油A1)          9a7重量%t
t    B2)  9&85ii%        
   9a88fflfi%高分子物質A3)[1,0
5p   Q、2   tttt   B4)0.02
   tr 流動点降下剤6)0.5tt   Q、3   tt 
  O,!+   tt消泡剤   10ppm   
10ppm   10ppm1)無添加タービン油 工
So V 52のもの2)無添加タービン油 工So 
 V  46 のもの5)ポリイソフ゛チレン1重方評
均勺→−i  656,0004)ポリイソフナレフ2
重量平均分→七歌 87へ0005)市販耐摩耗性作動
油用パッケージ添加剤6)ポリメタクリレート系の市販
流動点降下剤7)シリコーン油 比較例1〜2 比較例として以下に示す作動油組成物(比較例1)、及
びポリブテンを含有する作動油(比較例2)、を調製し
た。なお使用した作動油基油は、実施例に示したものと
同じである。
Example 1 Example 2 Example 3 Hydraulic oil base oil A1) 9a7 wt%t
t B2) 9&85ii%
9a88ffflfi% polymeric substance A3) [1,0
5p Q, 2 tttt B4) 0.02
tr Pour point depressant 6) 0.5tt Q, 3tt
O,! + tt antifoaming agent 10ppm
10ppm 10ppm1) Additive-free turbine oil So V 52 2) Additive-free turbine oil So
V 46 5) Polyisofethylene 1 double weight → -i 656,0004) Polyisofylene 2
Weight average content → Nanaka Go to 87 0005) Commercially available packaging additive for wear-resistant hydraulic oil 6) Commercially available pour point depressant based on polymethacrylate 7) Silicone oil Comparative Examples 1 and 2 Hydraulic oil compositions shown below as comparative examples (Comparative Example 1) and a hydraulic oil containing polybutene (Comparative Example 2) were prepared. The hydraulic oil base oil used was the same as that shown in the examples.

比較例1    比較例2 作動油基油A    50 鶴%   95.lはチ作
動油基油B    4&9 高分子物質C8)    −五5 流動点降下剤    Q、3      0.5消泡剤
  10ppm   10ppm8)ポリブテン(ポリ
ブテン濃度2&2チ)重量子均分日刊1139,000
第3表に漏れ防止効果の経時変化を示す。
Comparative Example 1 Comparative Example 2 Hydraulic oil base oil A 50 Tsuru% 95. l is Ti Hydraulic oil base oil B 4&9 Polymer substance C8) -55 Pour point depressant Q,3 0.5 Antifoaming agent 10ppm 10ppm8) Polybutene (Polybutene concentration 2&2H) Weight molecular weight daily 1139,000
Table 3 shows the change over time in the leakage prevention effect.

第  3  表   漏 れ 漏れ 実施例1  120   86   82実施例2  
120   86   78実施例5  120   
94   90比穀例1  120  12Q   1
20  1比較例2  120  120  119 
 1防止性能の評価 量  (d/h) 20 1’20 120 120  ’  020  
j19 119 119  1比較例1及び2では全期
間を通じて初期設定量と全く変わらずかつ経時変化も認
められない。
Table 3 Leakage Example 1 120 86 82 Example 2
120 86 78 Example 5 120
94 90 ratio grain example 1 120 12Q 1
20 1 Comparative Example 2 120 120 119
1 Prevention performance evaluation amount (d/h) 20 1'20 120 120' 020
j19 119 119 1 In Comparative Examples 1 and 2, the amount did not change at all from the initial setting amount throughout the entire period, and no change over time was observed.

これに対し高分子物質を添加したもの(実施例1.2及
び3)では180分後で漏れ防止率(無添加油の漏れ量
に対する相対値)32〜48チを示している。
On the other hand, those to which a polymeric substance was added (Examples 1.2 and 3) showed a leakage prevention rate (relative value to the leakage amount of oil without additives) of 32 to 48 after 180 minutes.

〔実験3〕 本発明の作動油組成物のせん折抜の漏れ防止効果を検討
するため噴射ノズル式せん断安定度試験後の試験油につ
き、実験2の方法で評価した。
[Experiment 3] In order to examine the leakage prevention effect of the hydraulic oil composition of the present invention during shear breakage, the test oil after the injection nozzle type shear stability test was evaluated by the method of Experiment 2.

結果を第4表に示す。The results are shown in Table 4.

試験油として次の組成をもつ作動油組成物を調製した。A hydraulic oil composition having the following composition was prepared as a test oil.

なお、使用した作動油基油及び添加剤は実験2で使用し
たものと同じである。
The hydraulic base oil and additives used were the same as those used in Experiment 2.

実施例4    比較例3 作動油基油C9&5鶴チ 作動油基油D2)           9a1重量%
高分子物質A    O,4、IF     1.1 
 p流動点降下剤   0.5  #     0.5
 1/消泡剤  10ppm   10ppm本発明の
作動油組成物のうち高分子物質を微量配合したものはせ
ん折抜においても粘度低下はわずかであシしかも優れた
潴れ防止効果を示すのに対し配合量が多くなるとせん折
抜において程度の著しい低下を招き漏れ防止効果も低下
している。比較例3においては逆に漏れが増大している
Example 4 Comparative Example 3 Hydraulic oil base oil C9 & 5 Tsuruchi hydraulic oil base oil D2) 9a1% by weight
Polymer substance A O, 4, IF 1.1
p pour point depressant 0.5 # 0.5
1/Antifoaming agent 10ppm 10ppm Among the hydraulic oil compositions of the present invention, those containing a small amount of polymeric substances show only a slight decrease in viscosity even when punched out, and exhibit an excellent anti-sagging effect. When the amount increases, the degree of punching and punching is significantly reduced, and the leakage prevention effect is also reduced. In Comparative Example 3, on the contrary, leakage increased.

〔実験4〕 本発明の作動油組成物の漏れ防止効果及び電磁切換弁の
スプール固着への影響を検討するため、第5図に示す様
な油圧装置によp圧カフ0kl//dで試験を行った。
[Experiment 4] In order to examine the leakage prevention effect of the hydraulic oil composition of the present invention and the influence on the spool fixation of the electromagnetic switching valve, a test was conducted with a p-pressure cuff of 0 kl//d using a hydraulic device as shown in Fig. 5. I did it.

まず油をポンプ3により圧送し、油圧シリンダー7のロ
ッドパツキンaの部分からの油漏れ(外部漏れ)量を測
定し、同様に銅パツキンにキズをつけたフランジ部8か
らの外部漏れ及び電磁切換弁からの内部漏れを測定する
と共に歪みゲージによる反力測定を行った。歪みゲージ
による反力測定とは、電磁切換弁のスプールを外力によ
シ作動させるとき生じるスプールの作動に抗する力を歪
みゲージにより測定するものでスプールの作動しやすさ
をみるものである。したがってスプール反力の小さなも
のほど作動しやすいことを意味するものである。漏れ量
の結果は温度の関数として整理した。用いた試験油は実
験2の実施例1及び比較例1に示すものである。
First, oil was pumped through the pump 3, and the amount of oil leakage (external leakage) from the rod packing a part of the hydraulic cylinder 7 was measured, and the amount of oil leakage (external leakage) from the flange part 8, where the copper packing was similarly scratched, and electromagnetic switching were detected. Internal leakage from the valve was measured and reaction force was measured using a strain gauge. Reaction force measurement using a strain gauge is a method of measuring the force that resists the operation of the spool that occurs when the spool of an electromagnetic switching valve is operated by an external force using a strain gauge, and is used to determine how easily the spool operates. Therefore, the smaller the spool reaction force, the easier it is to operate. The leakage results were organized as a function of temperature. The test oils used are those shown in Example 1 and Comparative Example 1 of Experiment 2.

第4図、第5図、第6図、第7図に示すように、本発明
品(実施例1)は外部漏れ、内部漏れ共に比較例1に比
べ22チ〜35チの漏れ防止効果が認められる。また電
磁切換弁のスプール反力についても実施例1は比較例1
に比べ小さく、切換えも滑らかになる。
As shown in Figures 4, 5, 6, and 7, the product of the present invention (Example 1) has a leakage prevention effect of 22 to 35 inches compared to Comparative Example 1 for both external and internal leaks. Is recognized. In addition, regarding the spool reaction force of the electromagnetic switching valve, Example 1 is different from Comparative Example 1.
It is smaller than , and switching is smoother.

以上の結果から本発明により外部漏れ、内部漏れを防止
する効果のある作動油組成物を得ることができることが
明らかである。さらに、本発明により得られた作動油組
成物は、作動油として必要な一般性状、熱安定性、加水
分解安定性、酸化安定性及び耐摩耗性等、優れた性能を
十分有していることも確認している。
From the above results, it is clear that the present invention can provide a hydraulic oil composition that is effective in preventing external leakage and internal leakage. Furthermore, the hydraulic oil composition obtained by the present invention should sufficiently have excellent properties such as general properties, thermal stability, hydrolytic stability, oxidation stability, and wear resistance necessary for a hydraulic oil. has also been confirmed.

なお、上記実施例において、は、作動油について説明し
たが、作動油と同様の基油を用いる潤滑油においても同
じ効果を奏する。
In addition, in the above-mentioned example, explanation was given regarding hydraulic oil, but the same effect can be achieved with a lubricating oil that uses the same base oil as the hydraulic oil.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、油組成物の外部漏れ評価試験機の概略図を示
し、第2図は、高分子物質添加油の漏れ防止性を示し、
第3図は、油組成物の内部漏れ、外部漏れ及び電磁切換
弁のスプール反力を測定する為の油圧装置を示す。 第4図、第5図、第6図は、本発明の油の漏れ防止効果
を示す図であシ、第7図は、電磁切換弁のスプール反力
の結果を示す図であシ、たて軸はストレインメーターの
読みで相対比較をみたものである。 1−1− 泊だめ 2−m−ストレーナ− 3−m−ポンプ 4−−−リリーフ弁 5−−−4ボート電磁切換弁 6−−−チエツク付シーケンス弁 7−−−油圧シリンダー 8−−−7ランジ 9−m−ストレインメーター 10−m−ペンオシロ 第1図 第4図 を屈弁ijL及0C 242526272B  29 30 フランレ 娼5度″C 第6図 シリゾグー〇−/ドーパーAy苧湿&″C第7図 29 30 31 32 33 34 35 3G電珀
奇温及0C :1頁の続き ■Int、CI、4       識別記号  庁内整
理番号内
FIG. 1 shows a schematic diagram of an external leakage evaluation tester for oil compositions, and FIG. 2 shows the leakage prevention properties of oil added with polymeric substances.
FIG. 3 shows a hydraulic system for measuring internal leakage and external leakage of an oil composition and spool reaction force of an electromagnetic switching valve. Figures 4, 5, and 6 are diagrams showing the oil leakage prevention effect of the present invention, and Figure 7 is a diagram showing the results of the spool reaction force of the electromagnetic switching valve. The axis shows relative comparison based on strain meter readings. 1-1- Dock 2-m-Strainer 3-m-Pump 4--Relief valve 5--4 Boat electromagnetic switching valve 6--Sequence valve with check 7--Hydraulic cylinder 8-- 7 lunge 9-m-strain meter 10-m-pen oscilloscope 1 Figure 4 ijL and 0C 242526272B 29 30 Flare 5 degrees "C" Figure 29 30 31 32 33 34 35 3G Denki On and 0C: Continued from page 1 ■Int, CI, 4 Identification code Internal serial number

Claims (1)

【特許請求の範囲】 1、基油に20万以上の重量平均分子量を有する高重合
度ポリイソブチレン0.005〜1.0重量%を配合し
た潤滑油又は作動油組成物。 2、基油が鉱油又は合成油である特許請求の範囲第1項
記載の潤滑油又は作動油組成物。
[Scope of Claims] 1. A lubricating oil or hydraulic oil composition containing 0.005 to 1.0% by weight of highly polymerized polyisobutylene having a weight average molecular weight of 200,000 or more in a base oil. 2. The lubricating oil or hydraulic oil composition according to claim 1, wherein the base oil is mineral oil or synthetic oil.
JP20829884A 1984-10-05 1984-10-05 Lubricating oil or hydraulic fluid composition Pending JPS6187792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20829884A JPS6187792A (en) 1984-10-05 1984-10-05 Lubricating oil or hydraulic fluid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20829884A JPS6187792A (en) 1984-10-05 1984-10-05 Lubricating oil or hydraulic fluid composition

Publications (1)

Publication Number Publication Date
JPS6187792A true JPS6187792A (en) 1986-05-06

Family

ID=16553930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20829884A Pending JPS6187792A (en) 1984-10-05 1984-10-05 Lubricating oil or hydraulic fluid composition

Country Status (1)

Country Link
JP (1) JPS6187792A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390595A (en) * 1986-10-03 1988-04-21 World Oil Kk Liquid lubricating oil blend composition
JPS63205396A (en) * 1987-02-20 1988-08-24 World Oil Kk Liquid lubricating oil blended composition
JPS63205395A (en) * 1987-02-20 1988-08-24 World Oil Kk Liquid lubricating oil composition
US4948522A (en) * 1988-02-23 1990-08-14 Exxon Chemical Patents Inc. Dispersant for marine diesel cylinder lubricant
JP2007246771A (en) * 2006-03-17 2007-09-27 Showa Shell Sekiyu Kk Lubricating oil composition
EP2011854A1 (en) * 2006-03-31 2009-01-07 Idemitsu Kosan Co., Ltd. Lubricating oil composition for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390595A (en) * 1986-10-03 1988-04-21 World Oil Kk Liquid lubricating oil blend composition
JPS63205396A (en) * 1987-02-20 1988-08-24 World Oil Kk Liquid lubricating oil blended composition
JPS63205395A (en) * 1987-02-20 1988-08-24 World Oil Kk Liquid lubricating oil composition
US4948522A (en) * 1988-02-23 1990-08-14 Exxon Chemical Patents Inc. Dispersant for marine diesel cylinder lubricant
JP2007246771A (en) * 2006-03-17 2007-09-27 Showa Shell Sekiyu Kk Lubricating oil composition
EP2011854A1 (en) * 2006-03-31 2009-01-07 Idemitsu Kosan Co., Ltd. Lubricating oil composition for internal combustion engine
EP2011854A4 (en) * 2006-03-31 2012-03-07 Idemitsu Kosan Co Lubricating oil composition for internal combustion engine
US8580719B2 (en) 2006-03-31 2013-11-12 Idemitsu Kosan Co., Ltd. Lubricating oil composition for internal combustion engine

Similar Documents

Publication Publication Date Title
RU2352621C2 (en) Lubricating oil composition
KR100855112B1 (en) Vegetable oil lubricant comprising all-hydroprocessed synthetic oils
CN106164232B (en) A kind of water-based lubricant composition and its preparation method and application
CN101812358A (en) High-temperature chain oil composition of mixed base oil
MX2011003154A (en) Lubricant compositions.
CN107099364B (en) Fully-synthesized efficient multifunctional hydraulic oil and preparation method thereof
CN101696369A (en) High-temperature chain oil composition
CN101240219A (en) High temperature chain oil composition
CN101812356A (en) Thickening type high-temperature chain lubricant combination
CN101696368A (en) Water-soluble high-temperature chain lubricant composition
JPS6187792A (en) Lubricating oil or hydraulic fluid composition
CN102337174B (en) Gasholder sealing oil composition with high corrosion resistance and oxidation resistance
JP5122114B2 (en) Hydraulic fluid and hydraulic system using the same
BRPI0707459A2 (en) concentrated compositions of lubricating oil and lubricating oil additives
CN108003995A (en) A kind of dual-purpose oil of hydraulic drive and preparation method thereof
CN112574798A (en) Guide rail oil manufacturing process
US20110195885A1 (en) Vegetable oil-based hydraulic fluid and transmission fluid
CN111718781A (en) Clean long-life hydraulic oil
CN116333698B (en) Use of double-effect inhibitor for inhibiting hydrate aggregation and adhesion to pipe wall in hydrate drilling and production
CN114958462B (en) Synthetic hydraulic oil for wind power generation hydraulic system and preparation method thereof
CN108329979A (en) A kind of long-life energy-saving hydraulic oil and preparation method thereof
US11912951B2 (en) Polybutene-free lubricating composition
EP4211211A1 (en) Lubricating oil composition for transmission
US3694363A (en) Hydraulic oil composition
EP2385097A1 (en) Lubricating composition