JPS618697A - Afterward provided stop system constitutional part for high-temperature gas furnace - Google Patents

Afterward provided stop system constitutional part for high-temperature gas furnace

Info

Publication number
JPS618697A
JPS618697A JP59129195A JP12919584A JPS618697A JP S618697 A JPS618697 A JP S618697A JP 59129195 A JP59129195 A JP 59129195A JP 12919584 A JP12919584 A JP 12919584A JP S618697 A JPS618697 A JP S618697A
Authority
JP
Japan
Prior art keywords
temperature gas
helium
nickel
gas furnace
stop system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59129195A
Other languages
Japanese (ja)
Inventor
荒井 真次
眞人 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59129195A priority Critical patent/JPS618697A/en
Publication of JPS618697A publication Critical patent/JPS618697A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Air Bags (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高温ガス炉で用いられる後備停止系構成部品に
関する。詳くは、高温ガス炉のヘリウムガス環境中の腐
食を防止するための表面処理を施した部品に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to backup shutdown system components used in high temperature gas reactors. More specifically, the present invention relates to parts that have been surface-treated to prevent corrosion in the helium gas environment of a high-temperature gas furnace.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ヘリウムを冷却材とする高温ガス炉においては、後備停
止系の構成材料は約400℃の高温で用いられ、炉内部
では、高温ヘリウム環境下に置かれる。本来不活性のヘ
リウムも高温では、種々の不純物の担体の役割を果たし
、特殊な腐食環境をもたらす。すなわち炉心の黒鉛自体
からの水分および配管に侵入する水分などと黒鉛の反応
によってH2)Co、 CO2)CH,が生成するため
、ヘリウム中には微量のこれらの不純成分が含まれその
量と成分比によシ左右される腐食環境が耐熱合金である
構成部材の腐食挙動、機械的強度に大きく影響すること
が知られている。高温ガス炉の一次糸循循ヘリウム中で
は、酸素分子(0□)が黒鉛と共存せず事実上存在しな
いため、構造材料に対しては微量のH20、CO2によ
る低い酸化性と併せて浸炭性の環境となる。高温ガス炉
の後備停止糸は、制御棒とは別途に原子炉を停止させる
ための糸で、原子炉停止時に炉心上部に装備された制御
素子(中性子吸収用ボロン球)を炉心内に投入する機構
を有して訃り、制御素子とこの制御素子を収容するホッ
パーと、制御素子の炉心内投入時に破裂されるラブチャ
ーディスクとこのラブチャーディスクを支持するホルダ
ーと、投入後の制御素子を炉心に導くための案内管とホ
ッパー内をヘリウムガスで加圧するためのガス導入管等
から構成されている。これらの後備停止系構成部品は前
述のような腐食性の高温ヘリウムガス環境条件下に置か
れるため、耐熱性、高温強度に加え、とりわけ耐食性が
優れていることが要求される。部品の耐食性の優劣は、
使用期間中の機械的強度の信頼性に影響をおよばずばか
シでなく、腐食生成物の表面からの離脱や腐食皮膜の剥
離などKよるヘリウム循環系の放射化汚染の問題を左右
している。したがって、後備停止系構成部品の耐久性を
向上させ、使用期間中の後備停止系の健全な動作を保証
するためには、何らかの耐食性向上策を施す必要がある
In a high-temperature gas reactor that uses helium as a coolant, the constituent materials of the backup shutdown system are used at a high temperature of about 400° C., and the reactor is placed in a high-temperature helium environment. Helium, which is essentially inert, also acts as a carrier for various impurities at high temperatures, creating a special corrosive environment. In other words, H2)Co and CO2)CH are produced by the reaction of graphite with moisture from the graphite itself in the reactor core and moisture that has entered the piping, so helium contains trace amounts of these impurity components, and their amounts and composition vary. It is known that the corrosion environment, which depends on the ratio, greatly affects the corrosion behavior and mechanical strength of structural members made of heat-resistant alloys. In the primary circulating helium of a high-temperature gas furnace, oxygen molecules (0□) do not coexist with graphite and are virtually non-existent, so structural materials have low oxidizing properties due to trace amounts of H20 and CO2, and carburizing properties. environment. The high-temperature gas reactor standby shutdown string is a string that is used to stop the reactor separately from the control rods, and is used to inject the control elements (neutron absorption boron balls) installed at the top of the reactor core into the reactor core when the reactor is shut down. A control element with a mechanism, a hopper that accommodates the control element, a loveture disk that ruptures when the control element is thrown into the reactor core, a holder that supports this loveture disk, and a control element that holds the control element after being thrown into the reactor core. It consists of a guide tube to guide the reactor to the core, a gas introduction tube to pressurize the inside of the hopper with helium gas, etc. These backup shutdown system components are placed in the corrosive high-temperature helium gas environment as described above, so they are required to have excellent corrosion resistance in addition to heat resistance and high-temperature strength. The corrosion resistance of parts is
It does not significantly affect the reliability of mechanical strength during use, but also affects the problem of radioactive contamination of the helium circulation system due to K, such as detachment of corrosion products from the surface and peeling of the corrosion film. . Therefore, in order to improve the durability of the components of the backup shutdown system and ensure healthy operation of the backup shutdown system during use, it is necessary to take some measures to improve corrosion resistance.

〔発明の目的〕[Purpose of the invention]

この発明は、高温ガス炉の後備停止系に係ふ上記の特殊
事情に照らし、1次系循環ヘリウム中において、機械的
強度の維持および放射化汚染の低減に極めて効果のある
耐食性に優れた後備停止系構成部品を提供することを目
的とする。
In light of the above-mentioned special circumstances related to the backup shutdown system of high-temperature gas reactors, this invention has been developed to provide a backup shutdown system with excellent corrosion resistance that is extremely effective in maintaining mechanical strength and reducing radioactive contamination in the primary circulating helium system. The purpose is to provide stop system components.

〔発明の概要〕[Summary of the invention]

本発明は、高温ガス炉後備停止系の構成部品として使用
されるオーステナイト系ステンレス鋼。
The present invention is an austenitic stainless steel used as a component of a high-temperature gas reactor backup shutdown system.

ニッケル基合金等の部材表面にニッケル被覆層を形成し
たことによシ、使用環境下の部品の耐食性を向上させた
ことを特徴とする。
It is characterized by improving the corrosion resistance of parts under the usage environment by forming a nickel coating layer on the surface of a member such as a nickel-based alloy.

前述したように、高温ガス炉ヘリウム環境中の腐食は、
ヘリウム中の不純物の量および成分比に左右される。酸
化については例えばHzOとH,の分圧止が部材の合金
元素の酸化特性を支配し、また浸炭については例えばC
H,やCOの分圧が浸炭特性を支配する。部材の合金元
素のうち、AA 、 Ti。
As mentioned above, corrosion in the helium environment of a high temperature gas reactor is
It depends on the amount and component ratio of impurities in helium. For oxidation, for example, the partial pressure of HzO and H governs the oxidation characteristics of the alloying elements of the member, and for carburization, for example, C
Partial pressures of H and CO govern carburizing characteristics. Among the alloying elements of the member, AA and Ti.

Si などの酸化されやすい元素は、ヘリウム中で選択
酸化を受け、その結果粒界侵食や内部酸化等の局部的侵
食が助長され機械的性質の劣化をまねき、また酸化皮膜
の密着性不良が発生する。
Elements that are easily oxidized, such as Si, undergo selective oxidation in helium, which promotes localized erosion such as grain boundary erosion and internal oxidation, leading to deterioration of mechanical properties and poor adhesion of oxide films. do.

一方、炭素との親和力の大きい元素であるCrは、炭素
の侵入によ)クロム炭化物を形成するが。
On the other hand, Cr, which is an element with a high affinity for carbon, forms chromium carbide (due to the intrusion of carbon).

この反応が進むと、合金基体の耐酸化性が失われるとと
もに、脆化した表面層の剥離と合金基体の機械的性質の
劣化をもたらす。しかるにNiは、低酸化性かつ浸炭性
のヘリウム環境においては酸素および炭素の両者に対し
て極めて安定な元素でちゃ、上記のような酸化や浸炭に
よる変質物の形成が起こらず耐食性は良好である。本発
明はこの点に着目し1部材の材料の種類を問わず部材表
面にニッケルの被覆層を形成させることが耐食性向上に
多大な効果を発揮することを見いだしたものである。
As this reaction progresses, the oxidation resistance of the alloy substrate is lost, the brittle surface layer peels off, and the mechanical properties of the alloy substrate deteriorate. However, Ni is an element that is extremely stable against both oxygen and carbon in a low oxidizing and carburizing helium environment, so the formation of altered products due to oxidation and carburization does not occur as described above, and corrosion resistance is good. . The present invention focused on this point and found that forming a nickel coating layer on the surface of a member, regardless of the type of material of the member, has a great effect on improving corrosion resistance.

部材表面にニッケル被覆層を形成させる方法には、ニッ
ケル塩水溶液からニッケルを析出させる電気メツキ法や
溶融状態のニッケル粒子を吹き付けて被覆する金属溶射
法や真空蒸着(PVD)、化学的蒸着(CVD)によシ
気相からニノケールを析出させる気相メッキ法等が上げ
られる。本発明は、ニッケル被覆層を形成する方法を限
定するものではないが、適用部材、適用箇所および部材
の使用条件、必要なニッケル被覆層厚さ等を考慮して最
適な方法を採用すれば良い。電気メツキ法によシ形成さ
れたニッケル被覆層は、素地金属との密着性および厚さ
の均一性が良好でちゃ高純度のニッケル析出層が得られ
る特徴がある。金属溶射法は被覆層を厚くできることに
利点が有シ、また化学的蒸発法では複雑な形状の部材に
対しても密着強度の優れた被覆を均一に被覆できること
が利点である。
Methods for forming a nickel coating layer on the surface of a component include electroplating, which involves depositing nickel from an aqueous nickel salt solution, metal spraying, which involves spraying molten nickel particles for coating, vacuum vapor deposition (PVD), and chemical vapor deposition (CVD). ) and a gas phase plating method in which Ninocale is precipitated from the gas phase. The present invention does not limit the method of forming the nickel coating layer, but an optimal method may be adopted in consideration of the applicable member, application location, usage conditions of the member, required thickness of the nickel coating layer, etc. . The nickel coating layer formed by the electroplating method is characterized by good adhesion to the base metal and good uniformity in thickness, resulting in a highly pure nickel precipitated layer. The metal spraying method has the advantage of being able to thicken the coating layer, and the chemical evaporation method has the advantage of being able to uniformly coat members with a complex shape with a coating having excellent adhesion strength.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

〔発明の実施例〕[Embodiments of the invention]

第1図には、高温ガス炉後備停止系におけるラブチャー
ディスク取付部の構成図を示す。ラブチャーディスク取
付部はラブチャーディスク(1)と。
FIG. 1 shows a configuration diagram of a lubrication disk attachment part in a high-temperature gas reactor backup shutdown system. The Loveture Disk mounting part is Loveture Disc (1).

ホルダー(2)とホッパー(3)とボルト・ナツト(4
)と案内管(5)等で構成される。これらの部材のうち
オーステナイト系ステンレス鋼製であるラブチャーディ
スクホルダーへの電気メツキ法によるニッケル被覆処理
を行なった。ホルダーを脱脂し水洗した後、15饅塩酸
水溶液(20℃)中で15分間の酸洗を行なった。これ
を水洗したーたちに乾燥窒素により乾燥させ硫酸ニッケ
ル(NiSO4、150r/l)−塩化アンモニウム(
NH2Ot 、 15 f/l )  −ホウ酸(H諺
BOs 、 15 f/l)電解浴を用い、電流密度0
.8A/dm’ 、温度25℃にて電気ニッケルメッキ
を行なった。電解のための陽極としては高純度(99,
95%)のNi板を用い、電流密度の均一性を得るため
に被処理部材であるサポートの外面側と内面側に陽極材
と同一材の補助陽極を使用した。
Holder (2), hopper (3) and bolt/nut (4)
), a guide tube (5), etc. Among these members, a loveture disk holder made of austenitic stainless steel was coated with nickel by electroplating. After the holder was degreased and washed with water, it was pickled for 15 minutes in a 15% aqueous hydrochloric acid solution (20°C). After washing it with water, it was dried with dry nitrogen and nickel sulfate (NiSO4, 150r/l) - ammonium chloride (
NH2Ot, 15 f/l) - using a boric acid (HBOs, 15 f/l) electrolytic bath at a current density of 0
.. Electrolytic nickel plating was performed at 8 A/dm' and a temperature of 25°C. High purity (99,
95%) Ni plate was used, and auxiliary anodes made of the same material as the anode material were used on the outer and inner surfaces of the support, which is the member to be treated, in order to obtain uniformity of current density.

この処理によシ、サポート部材の表面に約15μmの厚
さの被覆層を形成させた。ニッケル被覆処理されたサポ
ート部材には被膜の剥離およびメッキむら等は観察され
ず健全な外観であった。またニッケル被覆層は高純度(
99,9%)のNi  であり各部においてほぼ均一厚
さに形成されていることを確認した。本発明のサポート
部材の高温不純ヘリウム中の耐食性を確認するため次の
ような比較実験を実施した。サポート部材と同一材料で
ある小形試料を準備して、上記と同様々方法でニッケル
被覆処理を施した試料と脱脂し水洗を行なっただけの未
処理試料について、高温不純ヘリウム(温度ニア00℃
、不純物としてH2:約200μatm。
Through this treatment, a coating layer with a thickness of about 15 μm was formed on the surface of the support member. The nickel-coated support member had a healthy appearance with no peeling of the coating or uneven plating observed. In addition, the nickel coating layer has high purity (
99.9%) of Ni, and it was confirmed that the thickness was approximately uniform in each part. In order to confirm the corrosion resistance of the support member of the present invention in high-temperature impure helium, the following comparative experiment was conducted. A small sample made of the same material as the support member was prepared, and a sample coated with nickel in the same manner as above and an untreated sample that had been degreased and washed with water were coated with high-temperature impure helium (temperature near 00℃).
, H2 as an impurity: about 200 μatm.

CO:約100μatm 、 HIO:約5 p at
m 、 CH,:約5μatm  、 CO2:約2μ
atmを含むHe )中で、1000時間の暴露試験を
行なった。
CO: approx. 100μ atm, HIO: approx. 5 p atm
m, CH,: approx. 5 μ atm, CO2: approx. 2 μ
A 1000 hour exposure test was conducted in He (including ATM).

その結果、ニッケル被覆を有しない未処理材の表面には
腐食皮膜の形成と部分的な皮膜の剥離が観察されたが、
ニッケル被覆処理材の表面には。
As a result, formation of a corrosion film and partial peeling of the film were observed on the surface of the untreated material without nickel coating.
On the surface of nickel-coated materials.

変質および剥離も認められず健全な外観であった。It had a healthy appearance with no deterioration or peeling observed.

これらの試料の断面を研磨しEPMAKよる表面から深
さ方向にCrの分析を行なった結果を第2図及び第3図
に示す。ニッケル被覆処理材ではCr濃度の深さ方向の
変化はみられないが、未処理材では表面の腐食皮膜直下
から約100μmの深さまで基体にくらべて低いCr濃
度を示す領域が存在する。すなわちクロム欠乏層が形成
されていることが明らかである。未処理材におけるこの
ようなCr欠乏層と腐食皮膜の存在は、炭素が侵入して
Cr と結合したため耐酸化性を失い表面は、酸化され
表面近傍でクロム炭化物が形成されたことによるものと
考えられる。
The cross sections of these samples were polished and analyzed for Cr in the depth direction from the surface using EPMAK. The results are shown in FIGS. 2 and 3. In the nickel-coated material, there is no change in the Cr concentration in the depth direction, but in the untreated material, there is a region that exhibits a lower Cr concentration than the base material from just below the corrosion film on the surface to a depth of about 100 μm. In other words, it is clear that a chromium-deficient layer is formed. The existence of such a Cr-depleted layer and corrosion film in the untreated material is thought to be due to the intrusion of carbon and bonding with Cr, which resulted in loss of oxidation resistance, and the surface was oxidized, forming chromium carbide near the surface. It will be done.

〔発明の効果〕〔Effect of the invention〕

以上の実施例で示したよう罠5本発明によれば高温ガス
炉の低酸化性かつ浸炭性の高温ヘリウム環境においても
優れた耐食性および耐熱性を示す。
As shown in the above examples, Trap 5 according to the present invention exhibits excellent corrosion resistance and heat resistance even in the low-oxidizing and carburizing high-temperature helium environment of a high-temperature gas furnace.

後備停止系構成部材が実現する。すなわち、部材表面の
ニッケル被覆層が浸炭や酸化に対して強い抵抗作用を示
し部材の素地を保護する役割を果たすため、浸炭や酸化
に起因する反応生成物が形成されることがない。したが
って使用期間中に腐食に起因して機械的強度が低下する
ことはなく、また反応生成物等の部材表面からの離脱に
よるヘリウム循環系の放射化汚染の拡大を防止すること
が可能となる。
Backup shutdown system components are realized. That is, since the nickel coating layer on the surface of the member exhibits a strong resistance to carburization and oxidation and plays a role in protecting the base material of the member, reaction products resulting from carburization and oxidation are not formed. Therefore, the mechanical strength does not decrease due to corrosion during the period of use, and it is possible to prevent the spread of radioactive contamination of the helium circulation system due to separation of reaction products and the like from the surface of the member.

このように1本発明の部材は高温ガス炉後備停止系の構
成部材として十分な耐久性を有し、使用期間中の健全な
動作を保証できるものである。また従来使用されている
部材に対して前述した処理を施すのみで多大な効果を発
揮するため従来部品の設計条件(材料、形状2寸法等)
を大巾に変更する必要はなくその工業的価値は太きい。
As described above, the member of the present invention has sufficient durability as a component of a high-temperature gas reactor backup shutdown system, and can guarantee sound operation during the period of use. In addition, the design conditions of conventional parts (materials, shape, 2 dimensions, etc.) can produce great effects simply by applying the above-mentioned processing to conventionally used parts.
There is no need to change it to a large cloth, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る実施例の部材に係る後備停止系ラ
ブチャーディスク取付部の構成を表す断面図、第2図及
び第3図は本発明に係る部材のCr濃度の分布状態を示
す曲線図。 l・・・ホッパー、2・・・ホルダー、3・・・ホルダ
ー、4・・・ラブチャーディスク、5・・・案内管。
FIG. 1 is a cross-sectional view showing the configuration of the lubture disk attachment part of the backup stop system of a member according to an embodiment of the present invention, and FIGS. 2 and 3 show the distribution of Cr concentration in the member according to the present invention. Curve diagram. l...Hopper, 2...Holder, 3...Holder, 4...Loveture disk, 5...Guide tube.

Claims (1)

【特許請求の範囲】 1)表面がニッケル層で被覆されていることを特徴とす
る高温ガス炉用後備停止系構成部品 2)特許請求の範囲第1項記載の部品がオーステナイト
系ステンレス鋼であることを特徴とする高温ガス炉用後
備停止系構成部品
[Claims] 1) A component for a high-temperature gas reactor backup shutdown system whose surface is coated with a nickel layer. 2) The component according to claim 1 is made of austenitic stainless steel. Back-up shutdown system components for high-temperature gas reactors characterized by
JP59129195A 1984-06-25 1984-06-25 Afterward provided stop system constitutional part for high-temperature gas furnace Pending JPS618697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59129195A JPS618697A (en) 1984-06-25 1984-06-25 Afterward provided stop system constitutional part for high-temperature gas furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59129195A JPS618697A (en) 1984-06-25 1984-06-25 Afterward provided stop system constitutional part for high-temperature gas furnace

Publications (1)

Publication Number Publication Date
JPS618697A true JPS618697A (en) 1986-01-16

Family

ID=15003490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59129195A Pending JPS618697A (en) 1984-06-25 1984-06-25 Afterward provided stop system constitutional part for high-temperature gas furnace

Country Status (1)

Country Link
JP (1) JPS618697A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443797A (en) * 1987-08-11 1989-02-16 Hitachi Ltd Nuclear reactor shut-down device
JPH01294616A (en) * 1988-05-20 1989-11-28 Nippon Korumaa Kk Aromatic for shower

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443797A (en) * 1987-08-11 1989-02-16 Hitachi Ltd Nuclear reactor shut-down device
JPH01294616A (en) * 1988-05-20 1989-11-28 Nippon Korumaa Kk Aromatic for shower

Similar Documents

Publication Publication Date Title
CN105671482B (en) A kind of pack aluminizing agent and nickel base superalloy alitizing method
US4962005A (en) Method of protecting the surfaces of metal parts against corrosion at high temperature, and a part treated by the method
CA2205052C (en) Method of producing reactive element modified-aluminide diffusion coatings
Alperine et al. Structure and high temperature performance of various palladium-modified aluminide coatings: a low cost alternative to platinum aluminides
US6613452B2 (en) Corrosion resistant coating system and method
US2894320A (en) Coating uranium from carbonyls
JPS6117912B2 (en)
JPS618697A (en) Afterward provided stop system constitutional part for high-temperature gas furnace
US2664873A (en) Coated metal product and method of producting same
US4349390A (en) Method for the electrolytical metal coating of magnesium articles
JPS60211097A (en) Electrochemical and chemical coating method of niobium
CA1063445A (en) Electroless plating of peroxide forming metals
WO2019223138A1 (en) Multi-element alloy coating, zirconium alloy cladding, and fuel assembly
US3888744A (en) Method for electrodeposition of nickel-chromium alloys and coating of uranium
Fukumoto et al. Effect of Al electrodeposition treatment using molten salt on the high-temperature oxidation of TiAl
US2819208A (en) Chromizing and analogous methods
JPH0365438B2 (en)
US3668084A (en) Process for plating uranium with metal
Lillard et al. Corrosion of uranium and uranium alloys
JPS58126971A (en) Iron-nickel composite covering method
JPH0357184B2 (en)
US20230399732A1 (en) Method for making a braking band of a cast iron brake disc with increased resistance to wear and corrosion and braking band thus obtained
JP3220012B2 (en) Hard plating film coated member and method of manufacturing the same
KR900008909B1 (en) Graphite fix and surface-treatment method therefor
Hood Coating methods for use with the platinum metals