JPS6186501A - Method of recovering steam - Google Patents

Method of recovering steam

Info

Publication number
JPS6186501A
JPS6186501A JP20785684A JP20785684A JPS6186501A JP S6186501 A JPS6186501 A JP S6186501A JP 20785684 A JP20785684 A JP 20785684A JP 20785684 A JP20785684 A JP 20785684A JP S6186501 A JPS6186501 A JP S6186501A
Authority
JP
Japan
Prior art keywords
pressure
temperature
steam
exhaust gas
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20785684A
Other languages
Japanese (ja)
Inventor
博史 中村
博 中沢
阿部 敬士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumikin Wakayama Plant Co Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Sumikin Wakayama Plant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumikin Wakayama Plant Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20785684A priority Critical patent/JPS6186501A/en
Publication of JPS6186501A publication Critical patent/JPS6186501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、高温排ガスを排熱ボイラに誘導して熱回収を
行う蒸気回収方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a steam recovery method for guiding high-temperature exhaust gas to an exhaust heat boiler to recover heat.

;口)従来技術 製鉄所内のプロセス蒸気は、年々省エネルギ等によって
低圧化されている。それに伴って、排熱回収ボイラ等の
回収蒸気圧力も回収熱量全増加させるため、それに追従
する傾向になっている。
;) Conventional technology The pressure of process steam in steel plants has been lowered year by year due to energy conservation and other efforts. Along with this, the recovery steam pressure of exhaust heat recovery boilers and the like also increases the total amount of recovered heat, so there is a tendency to follow this trend.

しかし、回収圧力を下げると、回収熱量は増加するが、
一方、排ガス温度が低下するため、イオウ分の多い排ガ
スから熱回収する排熱ボイラに対しては、低温腐食(排
ガス中のSO3と水分(H2O)とが反応し、硫@ (
H2SO4)となシ、腐食を引き起す。)の問題があり
、排ガス温度がある程度硫酸露点に安全を見積った管理
温度以内に収まるように回収蒸気圧力を高目に設定して
いた。そのために、排ガスとボイラの伝熱部との温度差
が小さくなシ、回収熱量の損失が発生していた。
However, when the recovery pressure is lowered, the amount of recovered heat increases;
On the other hand, as the exhaust gas temperature decreases, low-temperature corrosion (SO3 and moisture (H2O) in the exhaust gas reacts, causing sulfur @ (
H2SO4) causes corrosion. ), and the recovered steam pressure was set high so that the exhaust gas temperature would be within a safe control temperature for the sulfuric acid dew point. As a result, the temperature difference between the exhaust gas and the heat transfer section of the boiler is small, resulting in a loss of recovered heat.

(ハ)発明が解決しよりとする問題点 本発明が解決しようとする問題点は、低温腐食(硫酸腐
食)に影#を及ぼす排ガス中のSO3 量を測定して、
必要最低限の水蒸気圧力全維持しながら最大の回収熱量
を得る方法を提供することにある。
(c) Problems to be solved by the invention The problems to be solved by the invention are to measure the amount of SO3 in the exhaust gas that affects low-temperature corrosion (sulfuric acid corrosion),
The object of the present invention is to provide a method for obtaining the maximum amount of recovered heat while maintaining the minimum necessary steam pressure.

に)間、頂点を解決するための手段 本発明の蒸気回収方法は、高温排ガスを排熱ボイラに誘
導して熱回収を行う蒸気回収方法において、前記排熱ボ
イラの出側において排ガス温度(T)および排ガス中の
SO3量全連続的に計測すること、前記排熱ボイラのド
ラム内の蒸気圧力(Pa) k連続的に計測すること、
前記計測SO2量を予め定めた硫酸露点温度(To)に
換算すること、該換算温度(To)と前記計測温度(T
)との差(Δ’r=’ro−’r)を算出すること、該
温度差(ΔT)を予め定めたドラム内の蒸気設定圧力差
(JP)に換算すること、該換算圧力差(JP)k前記
計測圧力(Pa)に加算して新たな設定圧力(P=Pa
+ΔP)とすること、該設定圧力にもとづいて前砲ドラ
ムの出側に設けた圧力調整弁を制御することによって、
上記問題点を解決している。
The steam recovery method of the present invention is a method for recovering heat by guiding high-temperature exhaust gas to a waste heat boiler, in which the exhaust gas temperature (T ) and the amount of SO3 in the exhaust gas, continuously measuring the steam pressure (Pa) in the drum of the waste heat boiler,
Converting the measured SO2 amount to a predetermined sulfuric acid dew point temperature (To), converting the converted temperature (To) and the measured temperature (T
), converting the temperature difference (ΔT) into a predetermined steam set pressure difference (JP) in the drum, and converting the converted pressure difference ( JP) k Add to the above measured pressure (Pa) to create a new set pressure (P=Pa
+ΔP), and by controlling the pressure regulating valve provided on the exit side of the cannon drum based on the set pressure,
The above problems have been resolved.

(ホ)実施例 第1図は、本発明の蒸気回収方法を実施する設備の概略
説明図である。ロータリ・キルン1では、製鉄所内で発
生する雌株(例えば、枕木、ぼる切れ、タイヤ、紙くず
等)、スカム等が燃焼される。
(E) Embodiment FIG. 1 is a schematic explanatory diagram of equipment for carrying out the steam recovery method of the present invention. In the rotary kiln 1, female plants (for example, railroad ties, scraps, tires, waste paper, etc.), scum, etc. generated in the steelworks are burned.

燃焼排ガスは排熱ボイラ2(本実施例では2肥立型水管
式ボイラ)で熱回収され、さらに煤塵は電気集塵機3で
集塵され、煙道4に設けた誘引ファン5によって煙突6
に排出される。
The heat of the combustion exhaust gas is recovered by an exhaust heat boiler 2 (in this embodiment, a two-fertile water tube boiler), and the soot and dust is collected by an electric precipitator 3, and then sent to a chimney 6 by an induction fan 5 installed in a flue 4.
is discharged.

ボイラ2内の高温排ガスがボイラ伝熱部7内と熱交換を
行い、水蒸気が発生する。ボイラ伝熱部7内では、気水
混合状態となシ、そのままボイラ・ドラム8へ戻り、水
蒸気だけが気水分離される。
The high temperature exhaust gas in the boiler 2 exchanges heat with the inside of the boiler heat transfer section 7, and water vapor is generated. Inside the boiler heat transfer section 7, the steam and water are not mixed, and the mixture returns to the boiler drum 8, where only steam is separated from the steam and water.

水蒸気はボイラ・ドラム8から圧力調整弁9をかいして
プロセス蒸気配管10に送給される。
Steam is sent from the boiler drum 8 to the process steam piping 10 via a pressure regulating valve 9.

ボイラ・ドラム8には圧力計11が取シ付けられ、水蒸
気圧力検出信号を制御装置14に送る。ボイラ2の排気
口にはSO3検出器12が取り付けられていて、SO3
検出信号を制御装置14に送る。電気集塵機3の排気口
には温度計13が取シ付けられていて、排ガス温度検出
信号を制御装置14に送る。制御装置14は制御信号を
圧力調整弁9に送る。
A pressure gauge 11 is attached to the boiler drum 8 and sends a steam pressure detection signal to a control device 14. An SO3 detector 12 is attached to the exhaust port of the boiler 2, and SO3
The detection signal is sent to the control device 14. A thermometer 13 is attached to the exhaust port of the electrostatic precipitator 3 and sends an exhaust gas temperature detection signal to a control device 14. The control device 14 sends a control signal to the pressure regulating valve 9.

第1図および第2図を参照して、制御装置14の制御動
作について説明する。
The control operation of the control device 14 will be explained with reference to FIGS. 1 and 2.

第2図において、ブロック141に示すように、SO3
  検出器12からの排ガス中SO3量から予め定めた
硫酸露点温度(To)に換算する。この換算を行うため
のT。管理線図を第3図に示す。この管理線図は、過去
の定期的実測値をもとに排ガス中の水分の最大値と最小
値とをグラフに描き、最大値の近似折線によって求めた
ものである。
In FIG. 2, as shown in block 141, SO3
The amount of SO3 in the exhaust gas from the detector 12 is converted into a predetermined sulfuric acid dew point temperature (To). T to perform this conversion. The control diagram is shown in Figure 3. This control chart is obtained by plotting the maximum and minimum values of moisture in the exhaust gas on a graph based on past periodic measured values, and using an approximate broken line of the maximum value.

次に、温度計13からの排ガス実温度(T)と換算硫酸
露点温度(To)との差(Δ’r=’r0−’r) *
求める(ブロック142)。
Next, the difference between the actual exhaust gas temperature (T) from the thermometer 13 and the converted sulfuric acid dew point temperature (To) (Δ'r='r0-'r) *
(block 142).

このようにして求めた温度差(ΔT)から、圧力偏差Δ
Pを求める。第2図のブロック143および第4図に示
すように、予め求めておいたΔTとJPとの関係?グラ
フに表し、上限および下限を定めておく。この上限およ
び下限を定めるのは、ボイラ・ドラム内の設定水蒸気圧
力の急変を防止するためである。
From the temperature difference (ΔT) obtained in this way, the pressure deviation Δ
Find P. As shown in block 143 of FIG. 2 and FIG. 4, the relationship between ΔT and JP determined in advance? Express it in a graph and set the upper and lower limits. The purpose of setting these upper and lower limits is to prevent sudden changes in the set steam pressure within the boiler drum.

次いで、第2図のブロック144に示すように、換算圧
力差(JP)を゛ドラム実測圧力(Pa)に加算する(
P=Pa+ΔP)。この圧力Pt″新たな設定圧力とす
るわけであるが、この新設定値が排熱ボイラ2の運転範
囲を超えてしまわないように、ブロック145に示すよ
うに、設定圧力PSにも上限および下限を設ける。
Next, as shown in block 144 of FIG. 2, the converted pressure difference (JP) is added to the actual drum pressure (Pa).
P=Pa+ΔP). This pressure Pt'' is set as a new set pressure, but in order to prevent this new set value from exceeding the operating range of the exhaust heat boiler 2, upper and lower limits are also set for the set pressure PS, as shown in block 145. will be established.

このようにして得た新設定圧力(Ps)とト9ラム実圧
力(Pa)  とを再び比較し、その差(ΔP8−P8
−pa)にもとづいて圧力調整弁9を制御する。
The new set pressure (Ps) obtained in this way is compared again with the tram actual pressure (Pa), and the difference (ΔP8-P8
-pa) to control the pressure regulating valve 9.

上述したボイラ運転範囲の上限とは、ボイラ最高使用圧
力であり、また、その下限とはボイラ最大蒸気発生量で
ある。ただし、この場合は、容積流量を示し、気水分離
器の能力を表す。
The upper limit of the boiler operating range mentioned above is the boiler maximum operating pressure, and the lower limit is the boiler maximum steam generation amount. However, in this case, it indicates the volumetric flow rate and represents the capacity of the steam/water separator.

(へ)具体的実施例 ■、対象排熱ボイラ仕様 (1)型式: 2肥立型水管式 (11)圧カニ 最高使用圧力=16atg常用圧カー
12atg (+ii)  水蒸気温度: 飽和温度(1v)給水温
度(脱気器内)=20°C(■)蒸発量二 5620k
g/ hr(vil  排ガス温度二 入ローフ43°
′C出口二2SO℃ (vlo  伝、達面積:  957m2(viiD通
風方式: 平行通風 ■、制帥結果 (1)圧力制御前ドラム圧力(回収水蒸気圧力):9a
l、g(平均値) (11)圧力制御後ト8ラム圧力(回収水蒸気圧力):
  6Qatg (平均直) Uii)  ボイラ出口排ガス温度低下量: 200℃
(従来法233℃) (1v)効果二 3rCX 14400 Nm3/hr
 X 0.32 Kcal/Nm3℃−152Xl03
Kcal/h r152403Kcal/hr X 8
760 hr/YearX O,75= 998.6 
Xl03Kcal/Year本発明の方法によれば、燃
料の違いによる排ガス温度の変化にも十分追従性がよく
、常に排ガス温度が硫酸露点以上の温度で、最小回収蒸
気圧力を設定できる。したがって、イオウ分を含む排ガ
スから熱回収する排熱ボイラの低温腐食に対処しながら
最大の熱量回収ができる。
(f) Specific example ■, target exhaust heat boiler specifications (1) Model: 2-fertile water tube type (11) Pressure crab Maximum working pressure = 16atg Normal pressure car 12atg (+ii) Steam temperature: Saturation temperature (1v) Water supply temperature (inside deaerator) = 20°C (■) Evaporation amount 2 5620k
g/hr (vil Exhaust gas temperature 2 Input loaf 43°
'C outlet 2 SO℃ (vlo transmission, reach area: 957m2 (viiD ventilation method: parallel ventilation ■, control result (1) drum pressure before pressure control (recovered steam pressure): 9a
l, g (average value) (11) Tram pressure after pressure control (recovered steam pressure):
6Qatg (average direct) Uii) Boiler outlet exhaust gas temperature decrease: 200℃
(Conventional method 233℃) (1v) Effect 2 3rCX 14400 Nm3/hr
X 0.32 Kcal/Nm3℃-152Xl03
Kcal/hr r152403Kcal/hr X 8
760 hr/YearX O, 75= 998.6
Xl03Kcal/Year According to the method of the present invention, it is possible to sufficiently follow changes in exhaust gas temperature due to differences in fuel, and the minimum recovery steam pressure can be set at a temperature where the exhaust gas temperature is always higher than the sulfuric acid dew point. Therefore, the maximum amount of heat can be recovered while dealing with low-temperature corrosion of the waste heat boiler that recovers heat from exhaust gas containing sulfur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の蒸気回収方法を実施する設備の概略説
明図。第2図はボイラ・ドラム圧力の制御ブロック線図
。第3図は排ガス中のSO3 と硫酸露点温度との関係
會示すグラフ。第4図は温度偏差と圧力偏差との関係を
示すグラフ。 1:ロータリ・キルン 2:排熱ボイラ 3:電気集塵
機 4:煙道 5:誘引ファン 6:煙突7:ボイラ伝
熱部 8:ボイラ・ドラム 9:圧力調整弁 10:プ
ロセス蒸気配管 11:圧力計12:S○3検出器 1
3:温度計 14二制御装置特許出願人 住友金属工業
株式会社 (外5名)
FIG. 1 is a schematic explanatory diagram of equipment for carrying out the steam recovery method of the present invention. Figure 2 is a control block diagram of boiler drum pressure. Figure 3 is a graph showing the relationship between SO3 in exhaust gas and sulfuric acid dew point temperature. FIG. 4 is a graph showing the relationship between temperature deviation and pressure deviation. 1: Rotary kiln 2: Waste heat boiler 3: Electrostatic precipitator 4: Flue 5: Induction fan 6: Chimney 7: Boiler heat transfer section 8: Boiler drum 9: Pressure regulating valve 10: Process steam piping 11: Pressure gauge 12: S○3 detector 1
3: Thermometer 142 Control device patent applicant Sumitomo Metal Industries, Ltd. (5 others)

Claims (1)

【特許請求の範囲】[Claims] 高温排ガスを排熱ボイラに誘導して熱回収を行う蒸気回
収方法において、前記排熱ボイラの出側において排ガス
温度(T)および排ガス中のSO_3量を連続的に計測
すること、前記排熱ボイラのドラム内の蒸気圧力(P_
a)を連続的に計測すること、前記計測SO_3量を予
め定めた硫酸露点温度(T_o)に換算すること、該換
算温度(T_o)と前記計測温度(T)との差(ΔT=
T_o−T)を算出すること、該温度差(ΔT)を予め
定めたドラム内の蒸気設定圧力差(ΔP)に換算するこ
と、該換算圧力差(ΔP)を前記計測圧力(P_a)に
加算して新たな設定圧力(P=P_a+ΔP)とするこ
と、該設定圧力にもとづいて前該ドラムの出側に設けた
圧力調整弁を制御することからなる蒸気回収方法。
In a steam recovery method in which heat is recovered by guiding high-temperature exhaust gas to a waste heat boiler, the exhaust gas temperature (T) and the amount of SO_3 in the exhaust gas are continuously measured on the outlet side of the waste heat boiler, The steam pressure in the drum of (P_
a), converting the measured amount of SO_3 into a predetermined sulfuric acid dew point temperature (T_o), and calculating the difference between the converted temperature (T_o) and the measured temperature (T) (ΔT=
T_o-T), converting the temperature difference (ΔT) into a predetermined steam set pressure difference (ΔP) in the drum, and adding the converted pressure difference (ΔP) to the measured pressure (P_a). A steam recovery method comprising: setting the pressure to a new set pressure (P=P_a+ΔP); and controlling a pressure regulating valve provided on the outlet side of the front drum based on the set pressure.
JP20785684A 1984-10-03 1984-10-03 Method of recovering steam Pending JPS6186501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20785684A JPS6186501A (en) 1984-10-03 1984-10-03 Method of recovering steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20785684A JPS6186501A (en) 1984-10-03 1984-10-03 Method of recovering steam

Publications (1)

Publication Number Publication Date
JPS6186501A true JPS6186501A (en) 1986-05-02

Family

ID=16546662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20785684A Pending JPS6186501A (en) 1984-10-03 1984-10-03 Method of recovering steam

Country Status (1)

Country Link
JP (1) JPS6186501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399401A (en) * 1986-06-02 1988-04-30 バブコツク日立株式会社 Waste-heat recovery boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399401A (en) * 1986-06-02 1988-04-30 バブコツク日立株式会社 Waste-heat recovery boiler

Similar Documents

Publication Publication Date Title
Zuo et al. Review of flue gas acid dew-point and related low temperature corrosion
CN103077305A (en) Large-scale coal-fired boiler smoke gas flow rate soft measuring method
SE8405171D0 (en) CONTROL OF OPERATION BY A STEEL PAN
CN104268433B (en) Method for monitoring unit power generation coal consumption deviation caused by variation of gas boiler operating parameters
CN112540158B (en) Method for testing utilization rate of limestone wet desulphurization forced oxidation air
KR101699641B1 (en) Method and apparatus for treating exhaust gas
CN103728339A (en) Real-time identification method for average heat resistance of heat-exchange equipment on thermal power boiler side
JP2573589B2 (en) Flue gas treatment equipment
JPS6186501A (en) Method of recovering steam
CN206036993U (en) A sour dew point temperature detects and controlling means for waste heat of boiler flue gas recovery system
CN103699790B (en) A kind of real-time detection method of coal fired power plant furnace outlet flue gas mean temperature
JP2599522B2 (en) Sintering operation method
CN208751300U (en) A kind of depth flue gas waste heat recovery system
CN112923394A (en) Coal-fired boiler high-temperature convection heating surface contamination and slagging early warning system and method
CN103801187B (en) A kind of apparatus and method determining the suitable heating-up temperature of wet desulphurization smoke evacuation
CN208764948U (en) A kind of device that dangerous waste incineration conserves water
JP3661068B2 (en) Exhaust gas treatment system
US4272496A (en) Processing elemental phosphorus (P4) containing gas streams
US4258018A (en) Processing elemental phosphorus (P4) containing gas streams
KR950001573Y1 (en) Device for controlling dew point of blast furnace
Axelbaum Integrated Flue Gas Purification and Latent Heat Recovery for Staged, Pressurized Oxy Combustion
Liang et al. Characterization of the ash deposits along deep-cooling of the exhaust gas in coal-fired power plants
CN106403631B (en) It is double that wind binary channels sintering circular-cooler waste heat boiler is taken to take distinguished and admirable measuring method
CN206929799U (en) It is a kind of to prevent air preheater from the device of acid dew piont corrosion occur
Kimtantas et al. Downsizing a Claus Sulfur Recovery Unit