JPS618642A - Method for measuring pressure of high temperature fluid - Google Patents

Method for measuring pressure of high temperature fluid

Info

Publication number
JPS618642A
JPS618642A JP13052384A JP13052384A JPS618642A JP S618642 A JPS618642 A JP S618642A JP 13052384 A JP13052384 A JP 13052384A JP 13052384 A JP13052384 A JP 13052384A JP S618642 A JPS618642 A JP S618642A
Authority
JP
Japan
Prior art keywords
pressure
sealing liquid
high temperature
temperature
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13052384A
Other languages
Japanese (ja)
Inventor
Etsuji Kimura
木村 悦治
Katsumi Ogi
勝実 小木
Kazusuke Satou
一祐 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP13052384A priority Critical patent/JPS618642A/en
Publication of JPS618642A publication Critical patent/JPS618642A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0681Protection against excessive heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0046Fluidic connecting means using isolation membranes

Abstract

PURPOSE:To permit the pressure measurement of a high temp. type using the fluid which withstands temp. higher than 350 deg.C as a sealing liquid by using Ga as the sealing liquid. CONSTITUTION:The sealing liquid contains Ga along or a Ga alloy contg. <=50% In+Sn and the balance Ga or a Ga alloy contg. <=50% Sn+Zn and the balance Ga in terms of an m.p., viscosity, coefft. of thermal expansion, thermal stability, corrosion resistance, etc. Ga-In-Sn: 11 deg.C m.p., Ga-Sn-Zn: 17 deg.C m.p. and Ga-In: 16 deg.C m.p. are particularly preferable among these Ga alloys. The increase of the max. service temp. of the conventional type from 350 deg.C up to 600 deg.C is made possible. The sealing liquid in this case contains >=50% Ga.

Description

【発明の詳細な説明】 技術分野 本発明は高温流体、例えば金属塩気化器中の気体状態の
金属ハロゲン化物や熱媒体として使用される溶融状態の
高温の金属ナトリウム、鉛、スス塩化ナトリウム−塩化
カリウム複塩、塩化リチウム−塩化ナトVウム複塩等の
圧力を測定する高温流体の圧力測定法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to high-temperature fluids, such as metal halides in the gaseous state in metal salt vaporizers and high-temperature metal sodium, lead, and soot chlorides in the molten state used as heat carriers. The present invention relates to a pressure measurement method for high-temperature fluids, such as potassium double salt, lithium chloride-sodium chloride double salt, etc.

従来技術とその欠点 上記の熱媒体等のごとき高温流体の圧力測定は計装−制
卸上重要である。これらの高温流体の圧力測定の場合、
一般には導圧管部に放熱や冷却を施し、受圧要素へ達す
るまで測定流体の温度が高温になるようにしてできるだ
け標準仕様の圧力計を使用する。しかしながら、凝M(
固)性の測定流体とか、常温付近で粘度が過大となる測
定流体の場合にはダイヤフラムシール式でかつ溶液(ガ
ス)部が高温になっても大丈夫であるように封入液がシ
リコーン油又は水銀である高温型ダイヤフラム圧力計が
使用される。この型の圧力計は第1図に示すように直接
指示型であシ、1は封入液、2はダイヤフラム、3は締
付げボルト、4は上フランジ、5は下フランジ、6はガ
スケット、7は受圧部、8は指示部である。この型の圧
力計の最高使用温度は封入液がシリコーン油ではその熟
女     ゛定性から、また封入液が水銀ではその沸
点から、共に約350℃を越える温度における使用は不
可能であった。
PRIOR ART AND ITS DISADVANTAGES Pressure measurement of high temperature fluids, such as the heat transfer medium mentioned above, is important for instrumentation and control purposes. For pressure measurements of these hot fluids,
In general, heat is radiated or cooled from the impulse pipe so that the temperature of the measured fluid remains high until it reaches the pressure receiving element, and a standard pressure gauge is used as much as possible. However, the stiffness M(
In the case of a fluid to be measured that is solid or has an excessive viscosity at room temperature, use a diaphragm seal type and seal the liquid with silicone oil or mercury so that it can withstand high temperatures in the solution (gas) part. A high temperature diaphragm pressure gauge is used. This type of pressure gauge is a direct indicator type as shown in Figure 1, where 1 is the filled liquid, 2 is the diaphragm, 3 is the tightening bolt, 4 is the upper flange, 5 is the lower flange, 6 is the gasket, 7 is a pressure receiving section, and 8 is an instruction section. This type of pressure gauge cannot be used at temperatures exceeding about 350° C. when the filled liquid is silicone oil due to its high temperature, and when the filled liquid is mercury due to its boiling point.

本発明者等は高温用熱媒体に関する研究忙おいて、その
熱媒体の流量等を制御する際、その圧力を測定する必要
性にせまられた。一般的に言うと、エネルギー効率上、
熱媒体の温度が高い程、望ましいが、350℃を越える
流体の圧力測定は上記理由により、従来の高温型圧力計
では不可能であった。そこで本発明者等は上記の従来技
術の欠点を解決し、350℃よシ高い温度に耐えられる
流体を封入液とする高温型ダイヤフラム圧力計を提供す
べく、封入液を検討した結果、Gaを封入液として使用
することによって上記目的を達成しうろことを見出し、
本発明に到達した。Gaについては従来常温で固体で凝
固時に容積が太き(なること、封入時に酸化されやすい
こと、多くの金属と液体合金をつくることなどが先入観
となって、封入液とは縁遠い存在であった。
The inventors of the present invention have been busy researching high-temperature heating media, and found it necessary to measure the pressure when controlling the flow rate, etc. of the heating medium. Generally speaking, in terms of energy efficiency,
The higher the temperature of the heat medium, the more desirable it is, but for the reasons mentioned above, it has been impossible to measure the pressure of fluids exceeding 350°C using conventional high-temperature pressure gauges. Therefore, the inventors of the present invention solved the above-mentioned drawbacks of the prior art and, as a result of studying the filling liquid, found that Ga He discovered that scales can achieve the above purpose by using them as an encapsulating liquid,
We have arrived at the present invention. Conventional preconceptions about Ga have been that it is solid at room temperature and has a large volume when solidified, that it is easily oxidized when sealed, and that it forms liquid alloys with many metals, so it has been far away from being filled in liquids. .

すなわち、本発明によれば、ダイヤフラム式圧力計の封
入液として、Ga単体、またはIn0〜30 % p 
S n 0〜30 q6の範囲でIn+Snを50チ以
下含み、残シはGaであるGa合金、あるいは5nO−
30%、Zn0〜30%の範囲でSn+Znを50%以
下含み、残)はGaであるGa合金を使用することを特
徴とする高温流体の圧力測定法、が得られる。
That is, according to the present invention, Ga alone or In 0 to 30% p is used as the sealed liquid of the diaphragm pressure gauge.
Ga alloy containing 50 or less In+Sn in the range of S n 0 to 30 q6, and the balance being Ga, or 5nO-
30%, Zn in the range of 0 to 30%, containing 50% or less of Sn+Zn, and the remainder being Ga.

本発明における封入液としては各種金属単体、合金、ハ
ロゲン化物単体、ハロゲン化物の共融混合物(化合物)
等が考えられるが、融点、沸点。
In the present invention, the sealed liquid includes various simple metals, alloys, simple halides, and eutectic mixtures (compounds) of halides.
Possible factors include melting point and boiling point.

粘性、熱膨張係数、熱的安定性、耐食性等の点から、ガ
リウム単体又はインジウム+スズを50係以下含み(I
 n 0〜30 % t  S n 0〜30 % )
、残りをガリウムとするGa合金、あるいはスズ+亜鉛
を50%以下含−’H(Sn0〜309b、Zn0〜3
0チ)、残りをガリウムとするGa合金を含むものであ
る。
In terms of viscosity, thermal expansion coefficient, thermal stability, corrosion resistance, etc., gallium alone or indium + tin containing 50 parts or less (I
n 0-30% tS n 0-30%)
, Ga alloy with the remainder being gallium, or -'H containing 50% or less of tin + zinc (Sn0-309b, Zn0-3
0ch), the remainder being gallium.

これらのGa合金の中で、特に、Ga(62,5%)−
In(21,5%)−8n(16%):融点11℃、 
Qa (82%)−8n(12%)  Zn(6%):
融点17℃、Ga(76%)−In(24’4):融点
16℃が好適である。
Among these Ga alloys, Ga(62.5%)-
In(21.5%)-8n(16%): melting point 11°C,
Qa (82%) - 8n (12%) Zn (6%):
Melting point: 17°C, Ga(76%)-In(24'4): Melting point: 16°C.

これらのガリウム単体、またはインジウム+スズを50
チ以下含み、残シをGa合金、あるいはスズ+亜鉛を5
0チ以下含み、残シをガリウムとするGa合金を封入液
として使用することによって、従来の高温型ダイヤ72
ム圧力計の最高使用温度を350℃から600℃まで一
挙に引き上げることが可能となった。実際にはi、oo
o℃付近まで使用できるが、ダイヤフラムの材質として
、一般的に使用しているステンレス鋼の弾性が600℃
以上の使用で、低下するので望ましくない。
50 of these gallium alone or indium + tin
Contains 5 or less, and the remainder is Ga alloy or tin + zinc
The conventional high-temperature diamond 72
It has become possible to raise the maximum operating temperature of pressure gauges from 350°C to 600°C in one fell swoop. Actually i,oo
Although it can be used up to around 0°C, the elasticity of stainless steel, which is commonly used as a diaphragm material, is 600°C.
Use above this level is undesirable as it will cause a drop.

本発明の高温型ダイヤフラム圧力針の封入液は上述した
ように、ガリウム単体(融点30℃、沸点198.3℃
)、またはガリウムを主体として(50重重量板上)、
In(融点155℃、沸点2.000℃) 0〜30 
% s  S n (融点282℃。
As mentioned above, the liquid filled in the high-temperature diaphragm pressure needle of the present invention is gallium (melting point: 30°C, boiling point: 198.3°C).
), or based on gallium (on a 50-weight plate),
In (melting point 155℃, boiling point 2.000℃) 0-30
% s Sn (melting point 282°C.

沸点2,260℃)0〜30%、Zn(融点419℃、
沸点907℃)0〜30係を従成分とする合金である。
Boiling point 2,260℃) 0-30%, Zn (melting point 419℃,
It is an alloy having a boiling point of 907°C) in the range of 0 to 30 as a subordinate component.

これら合金のGa含量が50係未満であると、In、 
 Sn、Znの性質が強くあられれて、Gaの融点が低
(、沸点が高いという4?民が消滅してしまうので、本
発明の封入液のGaは5oIs以上含むものとする。
When the Ga content of these alloys is less than 50%, In,
Because the properties of Sn and Zn are strong, the low melting point (and high boiling point) of Ga disappears, so the filled liquid of the present invention should contain 5 oIs or more of Ga.

次に、本発明を実施例によってさらに具体的に説明する
が、以下の実施例によって本発明の趙囲は限定されるも
のではない。
Next, the present invention will be explained in more detail with reference to examples, but the scope of the present invention is not limited to the following examples.

実施例1 ダイヤ72ム4S34.ダイヤ7ツム材質5US316
、+[結型圧力指示針付、圧力範fB0〜6kJF/d
Gのダイヤフラム圧力計C第1図 参照)く封入液とし
てGa単体を仕込み、次いで、これを400℃の塩化ア
ルミニクム連続昇#c!Ig!PK取付け、砥べ10,
000hrの使用に供し、つづいてt’llJM炉から
取り外して検定済の圧力計を用いて比較検査したところ
、誤差は0.3 %FSであり、許容公差1.5−F8
に対して小さく、十分に使用に値するものであった。
Example 1 Diamond 72mm 4S34. Diamond 7 Tsum Material 5US316
, +[With molding pressure indicator needle, pressure range fB0~6kJF/d
A diaphragm pressure gauge C (see Figure 1) is charged with simple Ga as a fill liquid, and then heated to 400°C in a continuous rise of aluminum chloride #c! Ig! PK installation, grinding wheel 10,
After using it for 000 hours, it was removed from the t'll JM furnace and comparatively inspected using a certified pressure gauge, and the error was 0.3% FS, and the allowable tolerance was 1.5-F8.
It was small enough to be useful.

実mfl12 実施例1と同一の圧力計に封入液としてGa(62,5
96)−In(21,5−)−8n(161)合金を仕
込み、500℃の塩化第二鉄連続精製炉に取付け、延べ
10,000hrの使用に供した。
Actual mfl12 Ga (62,5
96)-In(21,5-)-8n(161) alloy was charged, installed in a ferric chloride continuous refining furnace at 500°C, and used for a total of 10,000 hours.

次いで、実施例1と同様にして、比較検査したところ、
fF許容公差0.2%FSであり、光分く使用に値する
ものであった。
Next, a comparative test was conducted in the same manner as in Example 1.
The fF tolerance was 0.2% FS, and it was suitable for optical use.

実施例3 ダイヤ72ム径メ34.ダイヤ7、yム材貞5US31
6、a:力発信器付、圧力範囲θ〜6ゆ/ctGのダイ
ヤ7ツム圧力針(第2図参照)に封入液としてGa(8
2%)−8n(12%)−Zn(6%)合金を仕込み、
600℃の三塩化インジウムの連続弁fEffjllP
K取付け、延べ10,000hrの使用に供した。次い
で、実施例1と同様に比較検査したところ、許容公差は
0.21FSであり、充分に使用に値するものであった
Example 3 Diameter 72 mm 34. Diamond 7, yum material 5US31
6.a: A diamond 7-trim pressure needle with a force transmitter and a pressure range of θ to 6 Yu/ctG (see Figure 2) is filled with Ga (8
2%)-8n(12%)-Zn(6%) alloy,
600℃ indium trichloride continuous valve fEffjllP
K was installed and used for a total of 10,000 hours. Next, a comparative test was conducted in the same manner as in Example 1, and the allowable tolerance was 0.21 FS, which was sufficient for use.

実施例4 実施例3と同一形式の圧力針にGa(765I)−In
(24%)合金を仕込み、400℃の三塩化アンチモノ
の連続精製炉lIC11L付げ、延べ10ρ00hrの
使用に供した。次いで、実施Mlと同僚に比較検査した
ところ、許容公差は0.34FSであり、充分に使用に
値するものであった。
Example 4 Ga(765I)-In was added to the pressure needle of the same type as Example 3.
(24%) alloy was charged, a continuous antimono trichloride refining furnace 11L was installed at 400°C, and the reactor was used for a total of 1000 hours. Subsequently, a comparison test was conducted with the Ml in question and by a colleague, and the acceptable tolerance was 0.34 FS, which was sufficient for use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直接指示型の高温型ダイヤフラム圧力計の一例
の一部断面を含む斜視図、第2図は圧力伝送型の高温型
ダイヤフラム圧力計の一部断面を含む概略図である゛。 図において 1−−−−一封入液    7−−−−−受圧部2−−
−−−ダイヤフラム  8−−−−一指示部3−−−−
−締付はボルト 9−−−−一隔膜部分4−−−−−上
7ランジ  10−−−一−キャピラリー5−−−−−
下7ランジ 11−−−−一圧力伝送器6−−一−−ガ
スケット
FIG. 1 is a perspective view, partially in section, of an example of a direct indication type high temperature diaphragm pressure gauge, and FIG. 2 is a schematic diagram, partially in section, of a pressure transmission type high temperature diaphragm pressure gauge. In the figure, 1-----1 filled liquid 7-----Pressure receiving part 2--
---Diaphragm 8-----One indicator 3-----
- Tighten with bolt 9 ---- One diaphragm part 4 - Upper 7 langes 10 - One - Capillary 5 -------
Lower 7 langes 11---1 Pressure transmitter 6---1 Gasket

Claims (1)

【特許請求の範囲】[Claims] (1)ダイヤフラム式圧力計の封入液として、Ga単体
、またはIn0〜30%、Sn0〜30%の範囲でIn
+Snを50%以下含み残りはGaであるGa合金、あ
るいはSn0〜30%、In0〜30%の範囲でSn+
Znを50%以下含み、残りはGaであるGa合金を使
用することを特徴とする高温流体の圧力測定法。
(1) As the filled liquid of the diaphragm pressure gauge, use Ga alone or In in the range of 0 to 30% In and 0 to 30% Sn.
+Ga alloy containing 50% or less of Sn and the remainder being Ga, or Sn+ in the range of 0 to 30% Sn and 0 to 30% In
A method for measuring the pressure of a high-temperature fluid, characterized by using a Ga alloy containing 50% or less of Zn and the remainder being Ga.
JP13052384A 1984-06-25 1984-06-25 Method for measuring pressure of high temperature fluid Pending JPS618642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13052384A JPS618642A (en) 1984-06-25 1984-06-25 Method for measuring pressure of high temperature fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13052384A JPS618642A (en) 1984-06-25 1984-06-25 Method for measuring pressure of high temperature fluid

Publications (1)

Publication Number Publication Date
JPS618642A true JPS618642A (en) 1986-01-16

Family

ID=15036329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13052384A Pending JPS618642A (en) 1984-06-25 1984-06-25 Method for measuring pressure of high temperature fluid

Country Status (1)

Country Link
JP (1) JPS618642A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968636A (en) * 1982-10-13 1984-04-18 Fuji Electric Corp Res & Dev Ltd Pressure substituter for high temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968636A (en) * 1982-10-13 1984-04-18 Fuji Electric Corp Res & Dev Ltd Pressure substituter for high temperature

Similar Documents

Publication Publication Date Title
Laudise et al. Hydrothermal crystal growth
Kubair et al. Heat transfer to Newtonian fluids in coiled pipes in laminar flow
KR102583698B1 (en) Liquid metal high temperature vibrating heat pipe and test method
CN105352651A (en) High-temperature-resistant corrosion-resistant anti-crystallization pressure and differential pressure transmitter isolation module
US4283954A (en) High temperature pressure gauge
CN110411599A (en) Reusable contact liquid internal temperature measuring device and measurement method
CN105865701A (en) High-temperature villiaumite pressure meter
Dhar Stirling space engine program
JPS618642A (en) Method for measuring pressure of high temperature fluid
CN107543645A (en) Diaphragm pressure transmitter
CN205209687U (en) Module and high temperature resistant pressure pressure difference transmitter are kept apart to pressure pressure difference transmitter
CN210604474U (en) Liquid metal high-temperature pulsating heat pipe and test system
JPH0577976B2 (en)
CN210180513U (en) High-temperature liquid metal probe
CN209992039U (en) High-temperature liquid metal detection system
Kennedy et al. Alternative coolants and cooling system designs for safer freeze lined furnace operation
JPS5923372B2 (en) Liquid seal diaphragm pressure displacement device
US4398980A (en) Method for fabricating a seal between a ceramic and a metal alloy
Savage et al. Components of the fused-salt and sodium circuits of the aircraft reactor experiment
CA1288174C (en) Thermocouple for corrosive environments
CN213583400U (en) Oil conservator of transformer oil tank
CN115808092A (en) Piston type alkali metal heat pipe quantitative filling device and working method
JP3065792B2 (en) Differential pressure measuring device
Reese Experimental Investigation of the Heat Transfer Coefficients of White Fuming Nitric Acid
JPH061108B2 (en) Sealant for high temperature connection