JPS618638A - Crystal resonator - Google Patents
Crystal resonatorInfo
- Publication number
- JPS618638A JPS618638A JP12895284A JP12895284A JPS618638A JP S618638 A JPS618638 A JP S618638A JP 12895284 A JP12895284 A JP 12895284A JP 12895284 A JP12895284 A JP 12895284A JP S618638 A JPS618638 A JP S618638A
- Authority
- JP
- Japan
- Prior art keywords
- vibrator
- load
- axis
- crystal resonator
- equation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 18
- 238000005452 bending Methods 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 230000035939 shock Effects 0.000 abstract description 2
- 230000010356 wave oscillation Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 2
- TUBQDCKAWGHZPF-UHFFFAOYSA-N 1,3-benzothiazol-2-ylsulfanylmethyl thiocyanate Chemical compound C1=CC=C2SC(SCSC#N)=NC2=C1 TUBQDCKAWGHZPF-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/16—Measuring force or stress, in general using properties of piezoelectric devices
- G01L1/162—Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は屈曲モード水晶振動子に関する。特に、両端部
に荷重を印加する荷重センサー水晶振動子に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bending mode crystal resonator. In particular, it relates to a load sensor crystal oscillator that applies a load to both ends.
従来から荷重センサーとしてはバネ式、あるいは電磁式
等がおるが、小型化、軽量化、耐衝撃性、並びに1.ア
センブルの容易性においては各々、一長一短を有してい
る。最近は、エレクトロニクスの発達に伴ない水晶振動
子を荷重センサとして使用した荷重計が注目をあびてい
る。そこで、本発明は屈曲モードの両端部に荷重?t−
印加したときの周波数荷重感度を理論的に求め、更に1
最大感度を与える屈曲モード水晶振動子のカッ)1−提
供することを目的とする。以下、図面に沿って本発明の
詳細な説明する。Conventionally, there are spring type or electromagnetic type load sensors, but these sensors are compact, lightweight, impact resistant, and 1. Each has advantages and disadvantages in terms of ease of assembly. Recently, with the development of electronics, load cells that use crystal oscillators as load sensors have been attracting attention. Therefore, in the present invention, the load is applied to both ends of the bending mode. t-
The frequency load sensitivity when applied is theoretically determined, and further 1
The object of the present invention is to provide a bending mode crystal resonator that provides maximum sensitivity. The present invention will be described in detail below with reference to the drawings.
第1図は本発明の振動解析をするときのモデル図である
。振動子の形状は棒状で幅W1長さt1厚みt1密度P
から成り、両端部は固定さnている。そして、外部から
荷重(力〕Fが印加さtている。このとき、振動方程式
はポテンシャルエネルギー、運動エネルギーを求め、変
分原理を適用すると以下の様に表現さnる。FIG. 1 is a model diagram for vibration analysis according to the present invention. The shape of the vibrator is rod-like, width W1 length t1 thickness t1 density P
It consists of two ends that are fixed. Then, a load (force) F is applied from the outside.At this time, the vibration equation calculates the potential energy and kinetic energy, and by applying the variational principle, it can be expressed as follows.
但し、m=棒のヤング率 Fは引張り荷重A=棒の断面
積 のとき正、圧縮
I;棒の二次慣性 荷重のときは−
モーメント Fとなる。However, when m = Young's modulus of the rod, F is positive when tensile load A = cross-sectional area of the rod, and - moment F when the load is compression I; secondary inertia of the rod.
(1)式は近似的に解くことができ、周波数fについて
解くと次のようになる。Equation (1) can be solved approximately, and when solved for the frequency f, it becomes as follows.
但し、ζは補正項である。αは振動子の境界条件によっ
て決まる定数で、両端
固定の場合はe6e dn aoshan =1の根で
ある。However, ζ is a correction term. α is a constant determined by the boundary conditions of the oscillator, and is the root of e6e dn aoshan =1 when both ends are fixed.
又、荷重Fが印刃口さnてないときの共振周波数をfo
とするとの)式は次のようになる。In addition, the resonant frequency when the load F is not applied to the seal blade mouth is fo
Then, the formula becomes as follows.
今、両端固定棒の基本波振動を考えると、ζは−0,5
5057となり、又、α=4.780となるから、(8
)式は次のようになる。Now, considering the fundamental wave vibration of the rod fixed at both ends, ζ is -0,5
5057, and α=4.780, so (8
) formula is as follows.
(イ)式は荷重を加えたときの周波数 を示し、と
おくと、15)式は荷重に対する感度を示している。即
ち、Xが大きいほど、単位荷重当りの周波数の変化が大
きくなる。次に、このXの値を詳細に検討すると、感度
を大きくするには、0式より、振動子の長さを長くシ、
二次慣性モーメントを小さく、更に、ヤング率を小さく
すnば良い事が分かる。換言するならば、tと工は振動
子の形状によって決まるものである。一方、ヤング率E
は振動子の切断方位によって決まるものである。本発明
は最大荷重感度を与えるカット角を理論的に求でいる。Equation (a) shows the frequency when a load is applied, and equation 15) shows the sensitivity to the load. That is, the larger X is, the larger the change in frequency per unit load becomes. Next, if we examine the value of
It can be seen that it is sufficient to reduce the second-order moment of inertia and further reduce the Young's modulus. In other words, t and f are determined by the shape of the vibrator. On the other hand, Young's modulus E
is determined by the cutting direction of the vibrator. The present invention theoretically determines the cut angle that provides the maximum load sensitivity.
即ち、カット角をパラメーターとして、そのときの弾性
コンプライアンス(ヤング率の逆数)t−求めている。That is, using the cut angle as a parameter, the elastic compliance (reciprocal of Young's modulus) t is determined.
第2図は理論解析をするとき。Figure 2 is for theoretical analysis.
の振動子と結晶軸X、Y、Zとの関係を示す。棒はY軸
方向に長さ1+とっている。このとき、X軸を回転軸と
してθ度回転すると考えるC反時計方向を正ン。計算の
手順として、まず最初に、長さ方向の弾性コンブライア
ニス日1fiは次のように表わさnる。(E=1/S’
詑)
S’ u=8nW一番+2 日11 tna ” n、
” 2 ”14 ’ml ” %2+ f3u 8
m ’ +844 % ” n−(6)但し1%l =
c o sθe S11−”18 廖S14 e Su
、I S44はn”=ttinθ 各々水晶の弾性コ
ンプライアンス定数。The relationship between the oscillator and the crystal axes X, Y, and Z is shown. The rod has a length of 1+ in the Y-axis direction. At this time, the C counterclockwise direction, which is considered to be rotated by θ degrees with the X axis as the rotation axis, is the positive direction. As a calculation procedure, first, the longitudinal elasticity 1fi is expressed as follows. (E=1/S'
詑) S' u=8nW Ichiban+2 day 11 tna "n,
” 2 ” 14 'ml '' %2+ f3u 8
m' +844% ” n-(6) However, 1%l =
c o sθe S11-”18 LiaoS14 e Su
, IS44 is n''=ttinθ, each of which is the elastic compliance constant of the crystal.
第8図は角度θと弾性コンプライアンスS1nとの関係
を示す。第8図より、角度θが110度付近から大きく
なるにつnて5122は大きくなり、約160度で最大
となる。従って、カット角θを150度〜175度の範
囲に選ぶことによって振動子形状とは無関係に最大荷重
感度を提供することができる。第4図は本発明の振動子
形状の一例を示す。両端固定形状で両端部より荷MPが
印加さnるように設計さnている。FIG. 8 shows the relationship between the angle θ and the elastic compliance S1n. From FIG. 8, as the angle θ increases from around 110 degrees, n 5122 increases and reaches a maximum at about 160 degrees. Therefore, by selecting the cut angle θ in the range of 150 degrees to 175 degrees, maximum load sensitivity can be provided regardless of the shape of the vibrator. FIG. 4 shows an example of the shape of the vibrator of the present invention. It has a fixed shape at both ends and is designed so that the load MP is applied from both ends.
以上に述べたように、本発明は両端固定部に荷重]I′
を加えたときの振動方程式より、振動子形状とは無関係
に最大荷重感度を与えるカット角を得ることができた。As described above, the present invention provides a load on the fixed portions at both ends]I'
From the vibration equation when adding
それ故、分解能の高い荷重水晶センサーを得ることがで
きるので、高精度の天秤等を得ることができる。同時に
、センサーとして水晶振動子を使用しているので、小型
化、軽量化、耐衝撃性、並びに、アセンブルの容易性に
富んでいる。このように本発明の効果は著しく大きく、
その工業的価値は大変に大きい。Therefore, since a load crystal sensor with high resolution can be obtained, a highly accurate balance etc. can be obtained. At the same time, since a crystal oscillator is used as a sensor, it is compact, lightweight, shock resistant, and easy to assemble. As described above, the effects of the present invention are significantly large.
Its industrial value is enormous.
第1図は本発明の振動子を解析するときのモデル図、
纂2図は弾性コンブ2イアンスS1uを求メるときの本
発明の水晶振動子と結晶軸との関係を示す剃視図、
第3図は本発明の水晶振動子の弾性コンプライアンス切
断角との関係を示すグラフ、
第4図は本発明の水晶振動子の一実施例を示す斜視図で
ある。Fig. 1 is a model diagram when analyzing the resonator of the present invention, Fig. 2 is a shaved view showing the relationship between the crystal resonator of the present invention and the crystal axis when determining the elastic comb 2ance S1u, FIG. 3 is a graph showing the relationship between the elastic compliance cutting angle of the crystal resonator of the present invention, and FIG. 4 is a perspective view showing an embodiment of the crystal resonator of the present invention.
Claims (1)
て、前記水晶振動子はZ板をX軸を回転軸として、15
0度〜175度回転した角度で切断されていることを特
徴とする荷重センサー水晶振動子。In a crystal resonator in which a load is applied to both ends of the bending mode, the crystal resonator has a Z plate with the X axis as the rotation axis.
A load sensor crystal oscillator characterized by being cut at an angle of rotation of 0 degrees to 175 degrees.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12895284A JPS618638A (en) | 1984-06-22 | 1984-06-22 | Crystal resonator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12895284A JPS618638A (en) | 1984-06-22 | 1984-06-22 | Crystal resonator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS618638A true JPS618638A (en) | 1986-01-16 |
Family
ID=14997465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12895284A Pending JPS618638A (en) | 1984-06-22 | 1984-06-22 | Crystal resonator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS618638A (en) |
-
1984
- 1984-06-22 JP JP12895284A patent/JPS618638A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7802475B2 (en) | Acceleration sensor | |
US4306456A (en) | Elastic wave accelerometer | |
JPH0230449B2 (en) | ||
CA1264335A (en) | Vibration type weight measuring apparatus | |
JPH0830717B2 (en) | Accelerometer with coplanar push-pull force transducer | |
JPS61138115A (en) | Resonator | |
US20120024060A1 (en) | Element vibrating in two uncoupled modes, and use in vibrating rate gyroscope | |
WO1995031859A1 (en) | New spurious mode map for detf force transducer | |
JPS618638A (en) | Crystal resonator | |
JP2005197946A (en) | Tuning fork type crystal resonator | |
JP2005197946A6 (en) | Tuning fork crystal unit | |
JPS618637A (en) | Alpo4 resonator | |
JPS58190115A (en) | Piezoelectric oscillator | |
JP2002277247A (en) | Vibratory gyro | |
JPS6130734A (en) | Lithium niobate vibrator | |
JPS6135314A (en) | Lithium tantalate resonator | |
JPS59202720A (en) | Tuning fork type crystal resonator | |
JPS6173035A (en) | Lithium niobate resonator | |
JPS6157822A (en) | A1po4 resonator | |
JPS6064516A (en) | Combined crystal resonator | |
JPS6157821A (en) | Crystal resonator | |
JPS6130736A (en) | Quarts vibrator | |
JPS5844805A (en) | Quartz oscillator | |
JP4067044B2 (en) | Oscillator and vibratory gyroscope | |
JPH0544612B2 (en) |