JPS618596A - Method of heat-exchanging for continuously heating circulating gas - Google Patents

Method of heat-exchanging for continuously heating circulating gas

Info

Publication number
JPS618596A
JPS618596A JP59129124A JP12912484A JPS618596A JP S618596 A JPS618596 A JP S618596A JP 59129124 A JP59129124 A JP 59129124A JP 12912484 A JP12912484 A JP 12912484A JP S618596 A JPS618596 A JP S618596A
Authority
JP
Japan
Prior art keywords
heat exchanger
gas
heat
heated gas
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59129124A
Other languages
Japanese (ja)
Other versions
JPS648277B2 (en
Inventor
Kunio Yoshikawa
邦夫 吉川
Susumu Shioda
塩田 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP59129124A priority Critical patent/JPS618596A/en
Publication of JPS618596A publication Critical patent/JPS618596A/en
Publication of JPS648277B2 publication Critical patent/JPS648277B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To lower as far as possible both the amount of a heating gas that will mingle with a gas to be heated and the amount of the gas to be heated that must be supplied, by introducing the gas to be heated that has remained in a heat exchanger into another heat exchanger from which the remained heating gas has been evacuated after the completion of the heat accumulation thereby recovering said gas to be heated, and purifying said gas to be heated followed by introducing into a circulating circuit. CONSTITUTION:A gas 1e to be heated flows into a heat exchager is wherein it is heated, and at the same time a heating gas 1i flows into a heat exchanger 2a wherein the heat is accumulated. On the other hand, in the heat exchanger 3a, the remaining heating gas has been evacuated, the gas 1f to be heated that has remained in a heat exchanger 4a flows into the heat exchanger 3a and then into a tank 2b that has been evacuated. Thus, the heating gas remained in the heat exchanger 3a wherein heat accumulation has been completed is accompanied by a gas to be heated that has remained in the heat exchanger 4a and flows into a tank 2b. Therefore, the heating gas can be prevented from mixing into the circulating circuit for the gas to be heated. Further, the gas 1g to be heated is fed from a tank 1b that is filled with the gas to be heated that has remained in the heat exchanger 2a into an apparatus 1b for purifying a gas to be heated wherein the impurities are removed and the gas flows into a tank 3b.

Description

【発明の詳細な説明】 (技術分野) 本発明は、複数台の蓄熱式熱交換器を交互に切換えて用
いることにより、熱交換器と熱機関との間を循環してい
る被加熱気体を加熱気体による蓄熱によって連続的に加
熱する循環気体連続加熱用熱交換方法に関し、特に、被
加熱気体と加熱気体との相互混入を極力抑え得るように
したものである。
Detailed Description of the Invention (Technical Field) The present invention utilizes a plurality of regenerative heat exchangers by alternately switching between them to reduce the amount of heated gas circulating between the heat exchanger and the heat engine. The present invention relates to a heat exchange method for continuous heating of circulating gas that continuously heats by storing heat by heated gas, and is particularly designed to suppress mutual mixing of heated gas and heated gas as much as possible.

(従来技術) 閉サイクルMHD発電装置や閉サイクルガスタービン発
電装置などの発電装置あるいは上部の化学プラントなど
においては、従来、加熱装置と熱機関との相互間を循環
している被加熱気体を、加熱気体が有する熱を蓄えて、
金属製隔壁式熱交換器の通常使用可能とする温度以上に
被加熱気体を連続的に加熱することができ、しかも、被
加熱気体中への加熱気体の混入を極力抑え得る熱交換装
置を必要としている。例えば、1000℃程度以下の気
体間の熱交換に対しては、通常、金属製隔壁式熱交換器
が使用されるが、1000℃を越える高温の熱交換に対
しては、従来、鉄鋼産業の熱風炉用空気加熱器などに見
られるように、セラミックスを蓄熱体とした蓄熱式熱交
換器が用いられてきた。
(Prior Art) Conventionally, in power generation devices such as closed cycle MHD power generation devices and closed cycle gas turbine power generation devices, or in upper chemical plants, the heated gas circulating between the heating device and the heat engine is Storing the heat of the heated gas,
A heat exchange device is required that can continuously heat the gas to be heated above the temperature at which a metal bulkhead heat exchanger can normally be used, and can also minimize mixing of the heated gas into the gas to be heated. It is said that For example, metal bulkhead heat exchangers are usually used for heat exchange between gases at temperatures below about 1000°C, but for high-temperature heat exchange over 1000°C, traditional metal heat exchangers have been used in the steel industry. Regenerative heat exchangers that use ceramics as a heat storage material have been used, such as in air heaters for hot stoves.

かる蓄熱式熱交換器にJ5いては、一般に、加熱気体が
蓄熱体中を通過する過程で蓄熱体が加熱された後に被加
熱気体が蓄熱体中を通過することにより、蓄熱体に蓄え
た加熱気体の熱が被加熱気体へ放熱されて、被加熱気体
の加熱が行なわれる。しかし、一台の蓄熱式熱交換器に
よっては、蓄熱体に対する蓄熱と被加熱気体に対する放
熱とを同時に行なうことができないために、被加熱気体
を連続的に加熱づるためには、複数台の蓄熱式熱交換器
を交互に切換えながら、蓄熱体の蓄熱と被加熱気体への
放熱と行なう必要がある。
In such a regenerative heat exchanger J5, the heat stored in the heat storage body is generally reduced by passing the heated gas through the heat storage body after the heat storage body is heated in the process in which the heated gas passes through the heat storage body. The heat of the gas is radiated to the heated gas, and the heated gas is heated. However, one regenerative heat exchanger cannot store heat in the heat storage body and radiate heat to the heated gas at the same time, so in order to continuously heat the heated gas, multiple heat storage units are required. It is necessary to store heat in the heat storage body and radiate heat to the heated gas by alternately switching the type heat exchanger.

(問題点) しかしながら、上述のような気体間の熱交換装置におい
ては、加熱気体と被加熱気体とが同一蓄熱体中を交互に
通過するのであるから一1熱交換器を蓄熱から放熱へ切
換える際には熱交換器内に残留している加熱気体が被加
熱気体中に混入し、また、熱交換器を放熱から蓄熱へ切
換える際には熱交換器内に残留しCいる被加熱気体が加
熱気体中に混入する。そこで、循環している被加熱気体
を上述のような熱交換器切換方式によって加熱した場合
には、被加熱気体の循環路内に加熱気体が大量に混入し
てしまうために、その混入量を極力抑える必要がある場
合には、熱交換器を蓄熱から放熱へ切換える際に、熱交
換器内に残留している加熱気体を一旦真空排気したのち
に被加熱気体を熱交換器に導入することが従来提案され
ていた。しかし、かかる従来の処置のみによっては、排
気しきれずに熱交換器内に残留している加熱気体、ある
いは、真空排気時に熱交換器内に漏れ込んで来る外気が
そのまま被加熱気体の循環路中に混入してしまうことに
なる。さらに、加熱気体が、燃焼ガスなどのように、熱
交換器内を通過したのちに外部に排出される場合には、
熱交換器を放熱から蓄熱へ切換える際には加熱気体中に
混入する被加熱気体は、そのまま加熱気体とともに外部
に排出されてしまうので、排出される量と同じだけの闇
の被加熱気体を、熱交換器の切換えが行なわれるたびに
新たに循環路中に供給しなければならず、七に、被加熱
気体が高価な場合には著しい損失となる、欠点があった
(Problem) However, in the gas-to-gas heat exchange device as described above, since the heated gas and the heated gas alternately pass through the same heat storage body, it is necessary to switch the heat exchanger from heat storage to heat radiation. In some cases, the heated gas remaining in the heat exchanger mixes into the heated gas, and when the heat exchanger is switched from heat radiation to heat storage, the heated gas remaining in the heat exchanger mixes with the heated gas. Mixed into heated gas. Therefore, when the circulating gas to be heated is heated by the heat exchanger switching method as described above, a large amount of the heated gas gets mixed into the circulation path of the gas to be heated, so the amount of the mixed gas can be controlled. If it is necessary to suppress heat as much as possible, when switching the heat exchanger from heat storage to heat radiation, first evacuate the heated gas remaining in the heat exchanger before introducing the heated gas into the heat exchanger. was previously proposed. However, by using only such conventional measures, heated gas remaining in the heat exchanger without being completely exhausted, or outside air leaking into the heat exchanger during vacuum evacuation, remains in the circulation path of the heated gas. It will end up being mixed in. Furthermore, if the heated gas is discharged outside after passing through the heat exchanger, such as combustion gas,
When switching the heat exchanger from heat radiation to heat storage, the heated gas mixed in with the heated gas is directly discharged to the outside along with the heated gas, so the same amount of dark heated gas as is discharged is removed. Seventh, there is the disadvantage that a new supply has to be made into the circuit every time the heat exchanger is changed over, resulting in significant losses if the gas to be heated is expensive.

(目   的) 本発明の目的は、上述した従来の欠点を除去し、加熱気
体が有する熱により、循環している被加熱気体を連続的
に加熱することができ、しかも、被加熱気体中に混入す
る加熱気体の閤ならびに補給を要する被加熱気体の量を
極力抑えうるようにした循環気体連続加熱用熱交換方法
を提供することにある。
(Objective) The object of the present invention is to eliminate the above-mentioned conventional drawbacks, to continuously heat the circulating gas to be heated using the heat possessed by the heated gas, and furthermore, to It is an object of the present invention to provide a heat exchange method for continuous heating of circulating gas, which can minimize the amount of mixed heating gas and the amount of heated gas that requires replenishment.

(発明の構成) すなわら、本発明循環気体連続加熱用熱交換方法は、複
数台の蓄熱式熱交換器を放熱から蓄熱へ切換える際に、
熱交換器内に残留している被加熱気体を、蓄熱が終了し
た後に内部に残留している加熱気体を真空排気した他の
熱交換器内に導入して回収し、さらに、回収した被加熱
気体を純化装置により純化したのちに、被加熱気体の循
環路内に導入するようにしたものである。
(Structure of the Invention) In other words, the heat exchange method for continuous heating of circulating gas of the present invention, when switching a plurality of regenerative heat exchangers from heat radiation to heat storage,
The heated gas remaining in the heat exchanger is recovered by introducing it into another heat exchanger that has evacuated the heated gas remaining inside after the heat storage is completed, and then the recovered heated gas is recovered. After the gas is purified by a purification device, it is introduced into the circulation path of the gas to be heated.

したがって本発明循環気体連続加熱用熱交換方法によれ
シ、複数台の蓄熱式熱交換器を交互(切換えて用いるこ
とにより、加熱気体が有する熱により、循環している被
加熱気体を連続的に加熱することができ、しかも、一台
もしくは複数台の熱交換器が放熱から蓄熱へ切換る際に
各熱交換器内にそれぞれ残留している被加熱気体を回収
して循環路内に導入することにより、補給を要する被加
熱気体の量を極力抑えることができる。さらに、放熱が
終了した一台もしくは複数台の熱交換器から被加熱気体
を回収する際には、蓄熱が終了した後に内部に残留して
いる加熱気体を真空排気した一台もしくは複数台の他の
熱交換器内に放熱が終了した被加熱気体を導入して通過
させることにより、後者の熱交換器内に真空側1気の後
も残留している加熱気体および外気を、回収する被加熱
気体とともに、被加熱気体の循環路外へ排出することが
でき、回収した被加熱気体を、純化装置に供給して純化
したのちに循環路内へ導入すれば、循環路内の被加熱気
体中に導入する加熱気体の量を大幅に低減することが可
能となる。
Therefore, according to the heat exchange method for continuous heating of circulating gas of the present invention, by using a plurality of regenerative heat exchangers alternately (switchingly), the circulating heated gas can be continuously heated using the heat possessed by the heated gas. In addition, when one or more heat exchangers switch from heat radiation to heat storage, the heated gas remaining in each heat exchanger is recovered and introduced into the circulation path. By doing so, the amount of heated gas that needs to be replenished can be minimized.Furthermore, when recovering heated gas from one or more heat exchangers that have finished dissipating heat, the internal By introducing and passing the heated gas whose heat has been radiated into one or more other heat exchangers which have evacuated the heated gas remaining in the latter heat exchanger, the vacuum side 1 is introduced into the latter heat exchanger. The heated gas and outside air that remain after the air can be discharged out of the heated gas circulation path together with the recovered heated gas, and the recovered heated gas is supplied to a purification device for purification. If it is later introduced into the circulation path, it becomes possible to significantly reduce the amount of heated gas introduced into the heated gas in the circulation path.

(実施例) 以下に図面を参照して実施例につき本発明の詳細な説明
する。
(Example) The present invention will be described in detail below with reference to the drawings.

本発明方法を実施する循環気体連続加熱用熱交FA装置
は、第1図乃至第12図に示すように、例えば、蓄熱式
熱交換器1a、2a、3a、4a 、被加熱気体充填用
タンクlb、2b、3b、被加熱気体移送用ポンプ1c
、2c 、加熱気体真空排気用ポンプ3Gおよび被加熱
気体純化装置1dによって構成しである。
As shown in FIGS. 1 to 12, a heat exchanger FA device for continuous heating of circulating gas that implements the method of the present invention includes, for example, regenerative heat exchangers 1a, 2a, 3a, 4a, a tank for filling gas to be heated, etc. lb, 2b, 3b, heated gas transfer pump 1c
, 2c, consists of a heated gas evacuation pump 3G and a heated gas purification device 1d.

第1図乃至第12図は、上述した4台の熱交換器におい
て蓄熱と放熱とが交互に切換ねっていく一周期を構成り
る12段階の各過程における加熱気体と被加熱気体との
流れの態様を順次に示したものである。
Figures 1 to 12 show the flow of heated gas and heated gas in each of the 12 steps that constitute one cycle in which heat storage and heat radiation are alternately switched in the four heat exchangers described above. The embodiments are shown in sequence.

第1図に承り第1段階においては、熱交換器1aが被加
熱気体の循環路中にあり、被加熱気体1eが熱交換器1
aに流入して内部の蓄熱体からの放熱により加熱され、
より高温の被加熱気体2eとなる。
According to FIG. 1, in the first stage, the heat exchanger 1a is in the circulation path of the heated gas, and the heated gas 1e is in the heat exchanger 1.
It flows into a and is heated by heat radiation from the internal heat storage body,
The heated gas 2e is heated to a higher temperature.

それど同時に、熱交換器2aにおいては、さらに高温の
加熱気体11が流入することによって内部の蓄熱体が加
熱されて蓄熱するとともに、加熱気体11が逆に冷却さ
れて加熱気体21となり、熱交換器2aから流出する。
At the same time, in the heat exchanger 2a, the heated gas 11 at a higher temperature flows in, thereby heating the internal heat storage body and storing heat, and conversely, the heated gas 11 is cooled to become the heated gas 21, and the heat exchanger 2a is heated. It flows out from the vessel 2a.

一方、熱交換器3aにおいては、加熱気体による蓄熱と
引続く残留加熱気体の真空排気とが完了しており、放熱
が終了した後の被加熱気体が内部に残留している熱交換
器4aから、その残留被加熱気体1fが熱交換器3a内
に流入し、一旦熱交換器3a内に充満したのち、もしく
は、直ちに、熱交換器3a内部の蓄熱体中を通過し、残
留被加熱気体2fとして、真空排気されたタンク2b内
へ熱交換器3a、4a並びにタンク2bが均圧になるま
で流入する。以上の過程により、蓄熱が終了した熱交換
器3a内に残留していた加熱気体並びに真空排気時に熱
交換器3a内に漏れ込んで来た外気は、その大部分が熱
交換器4a内に残留していIC被加熱気体に伴われてタ
ンク2b内へ流入する。したがって、被加熱気体の循環
路内に加熱気体並びに外気が混入するのを防ぐことがで
きる。さらに、この第1段階にいては、熱交換器2a内
に残留していた被加熱気体を充填したタンク1bから被
加熱気体1gがポンプ1Cによって吸出され、昇圧され
て、被加熱気体2gとして被加熱気体純化装置1dへ送
られ、含有不純物成分が除去されて高純度となった被加
熱気体3qが、タンク31)へ流入する。
On the other hand, in the heat exchanger 3a, the heat storage by the heated gas and the subsequent evacuation of the residual heated gas have been completed, and the heated gas remaining inside the heat exchanger 4a after the heat dissipation is completed. , the residual heated gas 1f flows into the heat exchanger 3a, and after once filling the heat exchanger 3a, or immediately passes through the heat storage body inside the heat exchanger 3a, the residual heated gas 2f flows into the heat exchanger 3a. The heat flows into the evacuated tank 2b until the pressure in the heat exchangers 3a, 4a and the tank 2b becomes equal. Through the above process, most of the heated gas remaining in the heat exchanger 3a after heat storage and the outside air that leaked into the heat exchanger 3a during evacuation remain in the heat exchanger 4a. The IC heated gas flows into the tank 2b along with the IC heated gas. Therefore, it is possible to prevent the heated gas and outside air from entering the circulation path of the heated gas. Furthermore, in this first stage, 1 g of heated gas remaining in the heat exchanger 2a is sucked out by the pump 1C from the tank 1b filled with the heated gas, the pressure is increased, and the gas is heated as 2 g of heated gas. The heated gas 3q, which has been sent to the heated gas purification device 1d and has become highly purified by removing impurity components therein, flows into the tank 31).

次に、第2図に示づ一第2段階におい−Cは、第1段階
に引続ぎ、熱交換器1aが被加熱気体の循環路中にあっ
て被加熱気体への放熱を行なうとともに、熱交換器2a
においては加熱気体による蓄熱一体の加熱によって蓄熱
が行なわれている。一方、熱交換器4a内に残留しCい
た被加熱気体を導いて満たした熱交換器3aには、循環
路内の被加熱気体の圧力に達するまで、タンク3bから
高純度の被加熱気体1hが充填される。その間、熱交換
器4a内に残留している被加熱気体1fがポンプ2Cに
より吸出されて被加熱気体2fとしてタンク2bへ移送
され、熱交換器4a内に残留していた被加熱気体の最終
的な回収が行なわれる。なお、タンク1b内に充満した
被加熱気体のタンク3bへの移送過程は、第7段階に引
続いて行なわれている。
Next, in the second stage shown in FIG. Heat exchanger 2a
In this case, heat storage is carried out by heating the heat storage unit with heated gas. On the other hand, the heat exchanger 3a filled with the heated gas remaining in the heat exchanger 4a is filled with 1 h of high-purity heated gas from the tank 3b until the pressure of the heated gas in the circulation path is reached. is filled. During that time, the heated gas 1f remaining in the heat exchanger 4a is sucked out by the pump 2C and transferred to the tank 2b as heated gas 2f, and the heated gas 1f remaining in the heat exchanger 4a is finally removed. Collection will be carried out. Note that the process of transferring the heated gas filling the tank 1b to the tank 3b is performed subsequent to the seventh stage.

つぎに、第3図に示す第3段階においては、第1乃至第
2段階に引続き、熱交換器1aが被加熱気体の循環路中
にあって被加熱気体への放熱を行なっている。また、残
留していた被加熱気体の回収が終了した熱交換器4aに
おいては、加熱気体による蓄熱体の加熱が開始されてい
る。一方、加熱気体による蓄熱体の加熱が終了した熱交
換器2aにおいては、内部に残留している加熱気体1j
がポンプ3Cによって真空排気され、ポンプ3Cからで
た加熱気体2Jは外部へ排出される。また、タンク2b
内に充填されている被加熱気体1g−は、タンク1b内
に充填されている被加熱気体1gとともにポンプ1Cへ
吸出され、昇圧されて、被加熱気体2gとして被加熱気
体純化装置1dへ送られ、含有不純物成分が除去されて
高純度となった被加熱気体3Qが、タンク3bへ流入す
る。
Next, in the third stage shown in FIG. 3, following the first and second stages, the heat exchanger 1a is located in the circulation path of the heated gas and radiates heat to the heated gas. Furthermore, in the heat exchanger 4a where the recovery of the remaining heated gas has been completed, heating of the heat storage body by the heated gas has started. On the other hand, in the heat exchanger 2a after the heating of the heat storage body by the heated gas is completed, the heated gas 1j remaining inside the heat exchanger 2a
is evacuated by the pump 3C, and the heated gas 2J discharged from the pump 3C is discharged to the outside. Also, tank 2b
The heated gas 1g filled in the tank 1b is sucked out to the pump 1C together with the heated gas 1g filled in the tank 1b, is pressurized, and is sent to the heated gas purifier 1d as heated gas 2g. The heated gas 3Q, which has been made highly pure by removing the impurity components contained therein, flows into the tank 3b.

つぎに、第4図に示す第4段階においては、第2段階に
おいて循環路中の圧力に達するまで被加熱気体を充填し
た熱交換器3aが被加熱気体の循環路中にあって被加熱
気体への放熱を行なう。なお、ここまでの過程により、
第1段階の初めに熱交換器4a内に残留していl〔被加
熱気体は、タンク2bおよびタンク3bを介して回収、
純化され、熱交換器3aを介して被加熱気体の循環路内
に導入されることになる。したがって、第4段階におい
ては、熱、交換器1aが熱交換器3aに、熱交換器2a
が熱交換器4aに、熱交換器3aが熱交換器2aに、熱
交換器4aが熱交換器1aに、タンク1bがタンク2b
に、また、タンク2bがタンク1bにそれぞれ置換され
た状態で、第1段階と全く同じ過程が行なわれる。
Next, in the fourth stage shown in FIG. Dissipate heat to. Furthermore, through the process up to this point,
At the beginning of the first stage, the gas remaining in the heat exchanger 4a [the gas to be heated is recovered via the tank 2b and the tank 3b,
The purified gas is introduced into the heating gas circulation path via the heat exchanger 3a. Therefore, in the fourth stage, heat exchanger 1a is transferred to heat exchanger 3a, heat exchanger 2a
is connected to heat exchanger 4a, heat exchanger 3a is connected to heat exchanger 2a, heat exchanger 4a is connected to heat exchanger 1a, and tank 1b is connected to tank 2b.
In addition, exactly the same process as the first stage is performed with tank 2b being replaced by tank 1b.

つぎに、第5図に示す第5段階においては、熱交換器1
aが熱交換器3aに、熱交換器2aが熱交換器4aに、
熱交換器3aが熱交換器2aに、熱交換器4aが熱交換
器1aに、タンク1bがタンク2bに、また、タンク2
bがタンク1bにそれぞれ置換された状態で、第2段階
と全く同じ過程が行なわれる。
Next, in the fifth stage shown in FIG.
a to heat exchanger 3a, heat exchanger 2a to heat exchanger 4a,
The heat exchanger 3a is connected to the heat exchanger 2a, the heat exchanger 4a is connected to the heat exchanger 1a, the tank 1b is connected to the tank 2b, and the tank 2
Exactly the same process as the second stage is carried out, with each tank 1b being replaced by tank 1b.

つぎに、第6図に示す第6段階においては、熱交換器1
aが熱交換器3aに、熱交換器2aが熱交換器4aに、
熱交換器3aが熱交換器2aに、′熱交換器4aが熱交
換器1aに、タンク1bがタンク2bに、また、タンク
2bがタンク1bにそれぞれ置換された状態で、第3段
階と全く同じ過程が行なわれる。
Next, in the sixth stage shown in FIG.
a to heat exchanger 3a, heat exchanger 2a to heat exchanger 4a,
Heat exchanger 3a is replaced with heat exchanger 2a, heat exchanger 4a is replaced with heat exchanger 1a, tank 1b is replaced with tank 2b, tank 2b is replaced with tank 1b, and the third stage is completely replaced. The same process takes place.

つぎに、第7図に示す第7段階においては、熱交換器1
aが熱交換器2aに、熱交換器2aが熱交換器1aに、
熱交換器3aが熱交換器4aに、また、熱交換器4aが
熱交換器3aにそれぞれ置換された状態で、第1段階と
全く同じ過程が行なわれる。
Next, in the seventh stage shown in FIG.
a to heat exchanger 2a, heat exchanger 2a to heat exchanger 1a,
Exactly the same process as the first stage is performed with heat exchanger 3a being replaced by heat exchanger 4a, and heat exchanger 4a being replaced by heat exchanger 3a.

つぎに、第8図に示す第8段階においては、熱交換器1
aが熱交換器2aに、熱交換器2aが熱交換器1aに、
熱交換器3aが熱交換器4aに、また、熱交換器4aが
熱交換器3aにそれぞれ買換された状態で、第2段階と
全(同じ過程が行なわれる。
Next, in the eighth stage shown in FIG.
a to heat exchanger 2a, heat exchanger 2a to heat exchanger 1a,
With the heat exchanger 3a replaced with the heat exchanger 4a and the heat exchanger 4a replaced with the heat exchanger 3a, the same process as in the second stage is performed.

つぎに、第9図に示す第9段階においては、熱交換器1
aが熱交換器2aに、熱交換器2aが熱交換器1aに、
熱交換器3aが熱交換器4aに、また、熱交換器4aが
熱交換器3aにそれぞれ置換された状態で、第3段階と
全く同じ過程が行なわれる。
Next, in the ninth stage shown in FIG.
a to heat exchanger 2a, heat exchanger 2a to heat exchanger 1a,
Exactly the same process as the third stage is performed with heat exchanger 3a being replaced by heat exchanger 4a, and heat exchanger 4a being replaced by heat exchanger 3a.

つぎに、第10図に示す第10段階においては、熱交換
器1aが熱交換器4aに、熱交換器2aが熱交換器3a
に、熱交換器3aが熱交換器1aに、熱交換器4aが熱
交換器2aに、タンク1bがタンク2bに、また、タン
ク2bがタンク1bにそれぞれ置換された状態で、第1
段階と全く同じ過程が行なわれる。
Next, in the 10th step shown in FIG.
, the first
Exactly the same process takes place.

つぎに、第11図に示す第11段階においては、熱交換
器1aが熱交換器4aに、熱交換器2aが熱交換器3a
に、熱交換器3aが熱交換器1aに、熱交換器4aが熱
交換器2aに、タンク1bがタンク2bに、また、タン
ク2bがタンク1bにそれぞれ置換された状態で、第2
段階と金(同じ過程が行なわれる。
Next, in the 11th stage shown in FIG.
, with the heat exchanger 3a replaced by the heat exchanger 1a, the heat exchanger 4a replaced by the heat exchanger 2a, the tank 1b replaced by the tank 2b, and the tank 2b replaced by the tank 1b, the second
Stages and money (the same process takes place.

つぎに、第12図に示す第12段階においては、熱交換
器1aが熱交換器4aに、熱交換器2aが熱交換器3a
に、熱交換器3aが熱交換器1aに、熱交換器4aが熱
交換器28に、タンク1bがタンク2bに、また、タン
ク2bがタンク1bにそれぞれ置換された状態で、第3
段階と全く同じ過程が行なわれる。
Next, in the twelfth stage shown in FIG. 12, heat exchanger 1a is replaced by heat exchanger 4a, heat exchanger 2a is replaced by heat exchanger 3a
, with the heat exchanger 3a replaced by the heat exchanger 1a, the heat exchanger 4a replaced by the heat exchanger 28, the tank 1b replaced by the tank 2b, and the tank 2b replaced by the tank 1b, the third
Exactly the same process takes place.

以上12段階の各過′程を経て、本発明方払による熱交
換装置は再び第1段階へ戻り、4台の蓄熱式熱交換器に
おいて蓄熱と放熱とが交互に切換わっていく一周期が終
了する。すなわち、12段階のいずれの過程においても
、つねに、いずれかの熱交換器が被加熱気体の循環路中
にあって、放熱による被加熱気体の加熱を行なっている
のであるから、被加熱気体は連続的に加熱されることに
なる。
After going through each of the above 12 steps, the heat exchange device according to the present invention returns to the first step again, and one cycle in which heat storage and heat radiation are alternately switched in the four regenerative heat exchangers is completed. finish. In other words, in any of the 12 steps, some heat exchanger is always in the circulation path of the heated gas and heats the heated gas by heat radiation. It will be heated continuously.

また、放熱による被加熱気体の加熱後に各熱交換器内に
残留している被加熱気体は、タンクIb、2b。
Further, the heated gas remaining in each heat exchanger after heating the heated gas by heat radiation is stored in tanks Ib and 2b.

3bを介して回収、純化され、各熱交換器を介して再び
被加熱気体の循環路内へ導入される。
3b, the gas is recovered and purified, and is introduced into the heating gas circulation path again through each heat exchanger.

さらに、加熱気体の加熱による蓄熱体への蓄熱が終了し
た各熱交換器内に残留している加熱気体は、その大部分
がポンプ3Cによって外部へ排出され、残余は各熱交換
器から回収される被加熱気体とともに被加熱気体純化装
置1dへ流入して被加熱気体から除去されるので、被加
熱気体の循環路内に混入する加熱気体の量は極めて少な
いものどなる。
Furthermore, most of the heated gas remaining in each heat exchanger after the heating of the heated gas has finished storing heat in the heat storage body is discharged to the outside by the pump 3C, and the remainder is recovered from each heat exchanger. Since the heated gas flows into the heated gas purifier 1d together with the heated gas and is removed from the heated gas, the amount of heated gas mixed into the heated gas circulation path is extremely small.

以上、実施例について本発明の詳細な説明したが、本発
明は、上述の実施例のみに限定されるものではなく、特
に、使用する蓄熱式熱交換器やポンプ、タンクなどの個
数並びに熱交換器内に残留でいる被加熱気体の回収手順
など、本発明の要旨を逸脱しない範囲内で、種々の変更
を施して実施しうること勿論である。
Although the present invention has been described in detail with reference to the embodiments described above, the present invention is not limited to the above-mentioned embodiments, and particularly the number of regenerative heat exchangers, pumps, tanks, etc. used, Of course, various modifications may be made to the procedure for recovering the heated gas remaining in the vessel without departing from the gist of the present invention.

く効   果) 以上の説明から明らかなように、本発明によれば、被加
熱気体が複数台の蓄熱式熱交換器を交互に通過すること
により、蓄熱体が耐え得る温度まで加熱気体が有する熱
によって被加熱気体を連続的に加熱することができ、し
かも、一台もしくは複数台の熱交換器が放熱から蓄熱へ
切換わる際に熱交換器内に残留している被加熱気体を回
収して循環路内に導くことにより、必要とする被加熱気
体の補給室を極力抑えることができる。さらに、一台も
しくは複数台の熱交換器が蓄熱から放熱へ切換わる際に
、熱交換器、内に残留している加熱気体の大部分をポン
プによって外部へ排出することがでさ一1残余の加熱気
体については、放熱が終了した一台らしくは複数台の他
の熱交換器から回収される被加熱気体とともに、加熱気
体が被加熱気体の循環路外へ流出するので、被加熱気体
の循環路内に混入する加熱気体の量を極めて少なく抑え
ることができる。
Effect) As is clear from the above explanation, according to the present invention, the heated gas is heated to a temperature that the heat storage body can withstand by passing the heated gas alternately through a plurality of regenerative heat exchangers. It is possible to continuously heat the gas to be heated with heat, and also to recover the gas to be heated remaining in the heat exchanger when one or more heat exchangers switch from heat radiation to heat storage. By guiding the heated gas into the circulation path, the number of replenishment chambers for the necessary heated gas can be minimized. Furthermore, when one or more heat exchangers switch from heat storage to heat radiation, most of the heated gas remaining inside the heat exchanger can be pumped out to the outside. Regarding the heated gas, the heated gas flows out of the heated gas circulation path together with the heated gas recovered from the other heat exchangers that have finished heat radiation, so the heated gas The amount of heated gas mixed into the circulation path can be suppressed to an extremely low level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第12図は、4台の熱交換器において蓄熱と
放熱とが交互にき切換ねっていく一周期を構成する12
段階の各過程における加熱気体と被加熱気体との流れの
態様の例を順次に示す構成配置図である。 Ia、2a、3a、4a・・・蓄熱式熱交換器1b、2
b、3b・・・被加熱気体充填用タンクIC,2C・・
・被加熱気体移送用ポンプ3C・・・加熱気体真空排気
用ポンプ 1d・・・被加熱気体純化装置
Figures 1 to 12 show a cycle of heat storage and heat radiation in four heat exchangers.
FIG. 3 is a structural layout diagram sequentially showing examples of flow patterns of heated gas and heated gas in each step; FIG. Ia, 2a, 3a, 4a... Regenerative heat exchanger 1b, 2
b, 3b... Heated gas filling tank IC, 2C...
・Heated gas transfer pump 3C... Heated gas evacuation pump 1d... Heated gas purification device

Claims (1)

【特許請求の範囲】[Claims] 複数台の蓄熱式熱交換器を交互に切換えて用いることに
より、前記熱交換器に供給した加熱気体が有する熱を蓄
えて引続き当該熱交換器と熱機関との相互間を循環する
被加熱気体を連続的に加熱するにあたり、蓄えた熱によ
る被加熱気体の加熱が終了した少なくとも一台の前記熱
交換器内に残留している被加熱気体を、加熱気体による
蓄熱が終了した後に残留している加熱気体を真空排気し
た少なくとも一台の前記熱交換器内に導入して回収し、
回収した被加熱気体を純化装置に供給して純化したのち
に、被加熱気体の循環路内に導入することを特徴とする
循環気体連続加熱用熱交換方法。
A heated gas that stores the heat of the heated gas supplied to the heat exchanger and continuously circulates between the heat exchanger and the heat engine by alternately switching and using a plurality of regenerative heat exchangers. When continuously heating the heated gas, the heated gas remaining in at least one heat exchanger after the heated gas has been heated by the stored heat is removed. introducing the heated gas into the evacuated at least one heat exchanger and recovering it;
A heat exchange method for continuous heating of a circulating gas, characterized in that the recovered heated gas is supplied to a purification device and purified, and then introduced into a circulation path for the heated gas.
JP59129124A 1984-06-25 1984-06-25 Method of heat-exchanging for continuously heating circulating gas Granted JPS618596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59129124A JPS618596A (en) 1984-06-25 1984-06-25 Method of heat-exchanging for continuously heating circulating gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59129124A JPS618596A (en) 1984-06-25 1984-06-25 Method of heat-exchanging for continuously heating circulating gas

Publications (2)

Publication Number Publication Date
JPS618596A true JPS618596A (en) 1986-01-16
JPS648277B2 JPS648277B2 (en) 1989-02-13

Family

ID=15001673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59129124A Granted JPS618596A (en) 1984-06-25 1984-06-25 Method of heat-exchanging for continuously heating circulating gas

Country Status (1)

Country Link
JP (1) JPS618596A (en)

Also Published As

Publication number Publication date
JPS648277B2 (en) 1989-02-13

Similar Documents

Publication Publication Date Title
US4700543A (en) Cascaded power plant using low and medium temperature source fluid
US9671138B2 (en) Cascaded power plant using low and medium temperature source fluid
CN86107749A (en) Continuous heat release and chiller
JP2005527808A (en) Method and apparatus for generating electricity from heat generated in at least one high temperature reactor core
US2955917A (en) Process and apparatus for the manufacture of nitric acid at elevated pressures with full power recovery
JP2010115656A (en) Reactor system
JPH0216496A (en) Isolation condenser with stop cooling system heat exchanger
US4293384A (en) Nuclear reactor plant for generating process heat
JPS618596A (en) Method of heat-exchanging for continuously heating circulating gas
JPS5844397A (en) Atomic power plant
US3841100A (en) Closed cycle gas turbine system
JP2001004791A (en) Reactor heat utilization system
JP2006289303A (en) Method and equipment for treating cooling water
JPH0626725A (en) Working fluid to absorption type heat pump operated at extremely high temperature
US3595757A (en) Multiple effect multisection flash evaporator
US5095695A (en) Method and apparatus for converting heat energy of hot exhaust gases of a textile machine
JP2002521700A (en) Method and equipment for separating neutron absorber from coolant
EP0370587B1 (en) Apparatus for generating electric energy using hydrogen storage alloy
JPH0228704B2 (en)
JPS63235900A (en) Method of cleaning spent fuel assembly
JP2002303415A (en) Method for removing high boiling point substance in regenerative combustion type gas treating apparatus
US3820333A (en) Method of treating boiler make up water
SE410393B (en) PROCEDURE AND SYSTEM FOR UTILIZATION OF RESIDUAL HEAT IN CELLULOSIS MANUFACTURE
RU1806305C (en) Method and device for storing and delivering gas hydrogen
JPS643054Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term