JPS6185539A - Control equipment for engine supercharger - Google Patents

Control equipment for engine supercharger

Info

Publication number
JPS6185539A
JPS6185539A JP59206181A JP20618184A JPS6185539A JP S6185539 A JPS6185539 A JP S6185539A JP 59206181 A JP59206181 A JP 59206181A JP 20618184 A JP20618184 A JP 20618184A JP S6185539 A JPS6185539 A JP S6185539A
Authority
JP
Japan
Prior art keywords
nozzle area
scavenging pressure
signal
supercharger
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59206181A
Other languages
Japanese (ja)
Inventor
Hiroaki Miyano
宮野 弥明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59206181A priority Critical patent/JPS6185539A/en
Publication of JPS6185539A publication Critical patent/JPS6185539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To minimize the fuel consumption by making the supercharger nozzle area variable, corresponding to the operational conditions. CONSTITUTION:When a signal Pso, which comes from the optimum scavenging pressure operator 107 that receives signals Pmax and T issued from engine detectors 6 and 7 and passing through A/D transducers 104 and 105, and a signal Ps issued from engine detector 5 and passing through an A/D transducer 103, enter a scavenging pressure increase/decrease setting device 106, this setting device 106 compares both signals and them outputs the amount of increment of Ps in the form of a signal DELTAPs. The nozzle area setting device 108, which receives said signal DELTAPs, sets the amount of increment of the nozzle area, DELTAF. The nozzle area adjusting device 3, which receives this set value DELTAF passing through the D/A transducer 101, brings the variable nozzle area of the turbo-supercharger close to the suitable value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、可変ノズル面積機構を有するターボ過給エン
ジンの制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for a turbocharged engine having a variable nozzle area mechanism.

〔従来の技術〕[Conventional technology]

ディーゼルエンジンのシリンダ11内に導入され高温高
圧に圧縮された空気中に、燃料噴射弁12から燃料が噴
射されると、燃料は着火爆発して膨張し外部に対して仕
事をする。その後燃焼ガスはシリンダ11より排出され
、静圧管13を通り過給機ノズル14に導かれる。排出
ガスの熱エネルギはノズル14によって、運動エネルギ
に変換され過給機のタービン15を回転させロータ16
に動力に伝える。この動力により過給機のプロワ17が
回わされ、空気を吸入圧縮して掃気トランク19に導く
。なお18はディフューザーである。
When fuel is injected from a fuel injection valve 12 into air introduced into a cylinder 11 of a diesel engine and compressed to high temperature and pressure, the fuel ignites and explodes, expands, and performs work on the outside. The combustion gas is then discharged from the cylinder 11 and guided to the supercharger nozzle 14 through the static pressure pipe 13. The thermal energy of the exhaust gas is converted into kinetic energy by the nozzle 14, which rotates the turbine 15 of the supercharger and the rotor 16.
to convey to the power. This power rotates the blower 17 of the supercharger, sucks in air, compresses it, and guides it to the scavenging trunk 19. Note that 18 is a diffuser.

この圧縮された掃気トランク内の空気圧即ち掃気圧はエ
ンジンの燃費と関連し、エンジンの運転条件(平均有効
圧力Pmeと爆発最高圧力Pmax )のもとて燃費を
最小にする最適な掃気圧P8があることは素通の通りで
ちる。
This compressed air pressure in the scavenging trunk, that is, the scavenging pressure, is related to the fuel efficiency of the engine, and the optimum scavenging pressure P8 that minimizes the fuel consumption under the engine operating conditions (mean effective pressure Pme and maximum explosion pressure Pmax) is determined. Some things are obvious.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来例では、過給機のノズル面積は固定の
場合が多く、掃気圧はエンジン出力や大気温度等の周囲
条件によって任意に変化していた。
However, in conventional examples, the nozzle area of the supercharger is often fixed, and the scavenging pressure varies arbitrarily depending on the engine output, ambient conditions such as atmospheric temperature, etc.

又可変ノズル面積機構をもった過給機においても、その
面積の設定(即掃気圧の設定〕は出力や回転数によって
機械的に行われるものが多く、燃費が最低となるような
制御は行われていない。
Furthermore, even in turbochargers with a variable nozzle area mechanism, the setting of the area (setting of the immediate scavenging pressure) is often done mechanically depending on the output and rotation speed, and the control that minimizes fuel consumption is not carried out. Not known.

本発明の目的は、運転状況を検知して燃費を最低とする
エンジンの過給機用制御装置を提供するKある。
An object of the present invention is to provide an engine supercharger control device that detects operating conditions and minimizes fuel consumption.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明に係るエンジンの過給機用制御装置は、可変ノズ
ル面積機構を有する過給エンジンにおいて、そのノズル
面積の制御をコンピータによって行い燃費が最小となる
ように構成したものである。
The engine supercharger control device according to the present invention is configured to minimize fuel consumption by controlling the nozzle area using a computer in a supercharged engine having a variable nozzle area mechanism.

〔実施例〕〔Example〕

以下第1〜3図を参照して、本発明の一実施例について
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図はエンジンの過給機用制御装置のブロック線図で
ある。図で1はエンジン、2は可変ノズル面積過給機、
3はノズル面積調整器、4はノズル面積検出器、5は掃
気圧(以下Psと略称)の検/出器、6は最高圧力(以
下Pma xと略称)の検出器、7は軸トルク(以下T
と略称)の検出器、100はコンピュータより成ってい
る。コニ/ピユータ100はアナログ−ディジタル変換
器(A/D )]、 02〜105、ディジタル−アナ
ログ変換器(D/A ) 101 、掃気圧増減設定器
106、最適掃気圧演算機107、ノズル面積設定器1
08、補正器109よりなる。
FIG. 1 is a block diagram of a control device for an engine supercharger. In the figure, 1 is the engine, 2 is the variable nozzle area supercharger,
3 is a nozzle area adjuster, 4 is a nozzle area detector, 5 is a scavenging pressure (hereinafter abbreviated as Ps) detector/detector, 6 is a maximum pressure (hereinafter abbreviated as Pmax) detector, 7 is a shaft torque ( T below
The detector 100 (abbreviated as ) is composed of a computer. KONI/PC 100 is an analog-digital converter (A/D)], 02 to 105, digital-analog converter (D/A) 101, scavenging pressure increase/decrease setting device 106, optimum scavenging pressure calculator 107, nozzle area setting Vessel 1
08, a corrector 109.

次に前記実施例の作用について第1〜3図を参照して説
明する。
Next, the operation of the embodiment described above will be explained with reference to FIGS. 1 to 3.

1)検出器5,6.7はエンジンの運転中の状態量即ち
掃気圧Ps筒内爆発最高圧力PITIX N軸トルクT
を検出する。
1) Detectors 5, 6.7 detect state quantities during engine operation, namely scavenging pressure Ps, maximum cylinder explosion pressure PITIX, N-axis torque T
Detect.

2)各種検出値はコンピータ100内でアナログ→ディ
ジタル(A/I) )変換器103〜】05によりディ
ジタル値に変換される。
2) Various detected values are converted into digital values by analog to digital (A/I) converters 103 to 05 within the computer 100.

3)最適掃気圧演算機107は、Pmax及びTからそ
の時の燃費を最低にする最適掃気圧(以下P、。と略称
)を算出する。即ちTより平均有効圧力(以下pmeと
略称)を算出し、このPmeとPma xから第2図に
示すような特性値として記憶されているデータよりPS
Oを算出する。
3) The optimum scavenging pressure calculator 107 calculates the optimum scavenging pressure (hereinafter abbreviated as P) that minimizes the fuel consumption at that time from Pmax and T. That is, calculate the average effective pressure (hereinafter abbreviated as pme) from T, and calculate PS from the data stored as characteristic values from Pme and Pmax x as shown in Figure 2.
Calculate O.

4)掃気圧増減設定器106は、検出した掃気圧P8と
最適掃気圧PSOと比較し、必要なP、の増分又は減分
ΔP3を設定する。
4) The scavenging pressure increase/decrease setting device 106 compares the detected scavenging pressure P8 with the optimum scavenging pressure PSO, and sets a necessary increment or decrement ΔP3 of P.

5)ノズル面積設定器108は第3図に示す掃気圧力増
分に対するノズル面積増分の関係を記憶しており、必要
な掃気圧P8の増減分ΔP8を入力することによりノズ
ル面積の増減分ΔFを設定する。
5) The nozzle area setter 108 stores the relationship between the nozzle area increment and the scavenging pressure increment shown in FIG. 3, and sets the nozzle area increase/decrease ΔF by inputting the required increase/decrease ΔP8 in the scavenging pressure P8. do.

6)このノズル面積の必要増減量ΔFは補正器109を
通りディジタル−アナログ変換器101によってアナロ
グ化される。
6) The required increase/decrease ΔF in the nozzle area passes through a corrector 109 and is converted into an analog signal by a digital-to-analog converter 101.

7)ノズル面積調整器3は、とのアナログ量により過給
機2のノズル面積を変更する。
7) The nozzle area adjuster 3 changes the nozzle area of the supercharger 2 according to an analog amount of .

8)ノズル面積検出器lIはこの時のノズル面積を検出
し、検出量はアナログ−ディジタル変換器102により
ディジタル量に変換され、補正器109に入力される。
8) The nozzle area detector II detects the nozzle area at this time, and the detected amount is converted into a digital amount by the analog-digital converter 102 and input to the corrector 109.

9)補正器109はノズル面積の最大値および最小値を
記憶しており、ノズル面積設定器108から出力された
設定量が最大値又は最小値を越えなし・ように補正して
ディジタル−アナログ変換器101に伝える。
9) The corrector 109 stores the maximum and minimum values of the nozzle area, and corrects the set amount output from the nozzle area setting device 108 so that it does not exceed the maximum or minimum value, and performs digital-to-analog conversion. Inform the device 101.

なおPmeは前述の説明ではTから算出しているが、P
meは衆知のように燃料噴射ポンプのラック位置から算
出してもよいし、あるいはエンノン出力を算定できる他
のエンノンの状態値を検出してPmeを算定してもよい
Note that Pme is calculated from T in the above explanation, but Pme
me may be calculated from the rack position of the fuel injection pump as is well known, or Pme may be calculated by detecting other ennon state values from which the ennon output can be calculated.

〔発明の効果〕〔Effect of the invention〕

本発明の可変ノズル面!X機構を有するタービ過給機は
、エンジン検出器よりly’Df換器をへたPm、X1
T信号を受信した最適掃気圧演算器107よりのP、。
Variable nozzle surface of the present invention! A turbo supercharger with an X mechanism has Pm,
P from the optimum scavenging pressure calculator 107 which received the T signal.

信号と、エンノン検出器よりのA/D変換器をへたPs
倍信号掃気圧増減設定器106に入力すると、この設定
器106は両者を比較してP3の増減分ΔP8信号を出
力し、これを入力したノズル面積設定器108はノズル
面、積の増減分JFを設定し、D/A変換器をへたこの
設定値ΔFを入力した   分ノズル面積調整器3がタ
ーボ過給機の可変ノズル面積を適正値に近づけるべく作
動させるように構成したので、エンジンの運転状況に応
じて過給機のノズル面積を制御し、掃気圧を最適値に近
づけ燃費を最低にすることができる。
Ps from the signal and the A/D converter from the Ennon detector
When the double signal is input to the scavenging pressure increase/decrease setter 106, this setter 106 compares the two and outputs an increase/decrease ΔP8 signal of P3. The nozzle area adjuster 3 is configured to operate to bring the variable nozzle area of the turbocharger closer to the appropriate value when the set value ΔF is input to the D/A converter. By controlling the nozzle area of the supercharger according to driving conditions, it is possible to bring scavenging pressure close to the optimum value and minimize fuel consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエンジンの過給機用制御装置のブロック線図、
第2図はPmax/Pm8=Cをノぐラメータとしbe
 (燃費)とPme/Psを縦軸、横軸としたエンノン
性能曲線図、第3図はノズル面積増分ΔFと掃気圧増分
JP、の関係線図、第4図は従来のターボ過給機の概略
説明図である。 1・・・エンノン、2・・・可変ノズル面積過給機、3
・・・ノズル面積調整器、4・・・ノズル面積検出器、
5・・・掃気圧Ps、6・・・道高(爆発)圧力Pma
x17・・・軸トルクT、100・・・コンピュータ、
106・・・掃気圧増減設定器、107・・・最適掃気
圧演算器、108・・・ノズル面積設定器、D/A・・
・変換器、い・・・変換器、P、。・・最適掃気圧、Δ
Ps・・・掃気圧増減、ΔF・・・ノズル面積増減分、
be・・・燃費。
Figure 1 is a block diagram of the engine supercharger control device.
Figure 2 shows Pmax/Pm8=C as a parameter.
Figure 3 is a relationship diagram between nozzle area increment ΔF and scavenging pressure increment JP, and Figure 4 is a graph of the conventional turbo supercharger. It is a schematic explanatory diagram. 1... Ennon, 2... Variable nozzle area supercharger, 3
... nozzle area adjuster, 4... nozzle area detector,
5... Scavenging pressure Ps, 6... Road height (explosion) pressure Pma
x17...shaft torque T, 100...computer,
106...Scavenging pressure increase/decrease setting device, 107...Optimum scavenging pressure calculator, 108...Nozzle area setting device, D/A...
・Converter, I...Converter, P.・・Optimal scavenging pressure, Δ
Ps...Increase/decrease in scavenging pressure, ΔF...Increase/decrease in nozzle area,
be...fuel efficiency.

Claims (1)

【特許請求の範囲】[Claims]  可変ノズル面積機構を有する過給エンジンにおいて、
最高爆発圧力信号とエンジントルク信号からその時の燃
費を最低にする最適掃気圧を算出する最適掃気圧演算機
と、掃気圧信号と最適掃気圧信号より必要な掃気圧の増
分又は減分を設定する掃気圧増減設定器と、掃気圧増分
に対するノズル面積増分の関係を記憶しており必要な掃
気圧の増減分信号を入力することによりノズル面積の増
減分を設定するノズル面積設定器と、このノズル面積の
増減分信号により過給機のノズル面積を変更するノズル
面積調整器と、このノズル面積調整器により適正値に制
御される可変ノズル面積過給機とを有してなるエンジン
の過給機用制御装置。
In a supercharged engine with a variable nozzle area mechanism,
An optimal scavenging pressure calculator that calculates the optimal scavenging pressure that minimizes fuel consumption at that time from the maximum explosion pressure signal and engine torque signal, and sets the necessary increment or decrement of scavenging pressure from the scavenging pressure signal and the optimal scavenging pressure signal. A scavenging pressure increase/decrease setting device, a nozzle area setting device that stores the relationship between the nozzle area increment and the scavenging pressure increment and sets the nozzle area increase/decrease by inputting a necessary scavenging pressure increase/decrement signal, and this nozzle. A supercharger for an engine comprising a nozzle area adjuster that changes the nozzle area of the supercharger based on an area increase/decrease signal, and a variable nozzle area supercharger that is controlled to an appropriate value by the nozzle area adjuster. control device.
JP59206181A 1984-10-03 1984-10-03 Control equipment for engine supercharger Pending JPS6185539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206181A JPS6185539A (en) 1984-10-03 1984-10-03 Control equipment for engine supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206181A JPS6185539A (en) 1984-10-03 1984-10-03 Control equipment for engine supercharger

Publications (1)

Publication Number Publication Date
JPS6185539A true JPS6185539A (en) 1986-05-01

Family

ID=16519154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206181A Pending JPS6185539A (en) 1984-10-03 1984-10-03 Control equipment for engine supercharger

Country Status (1)

Country Link
JP (1) JPS6185539A (en)

Similar Documents

Publication Publication Date Title
US6272859B1 (en) Device for controlling a variable geometry turbocharger
US6732523B2 (en) Method for controlling a charge pressure in an internal combustion engine with an exhaust gas turbocharger
US7992389B2 (en) Method and apparatus for actively turbocharging an engine
US7237381B2 (en) Control of exhaust temperature for after-treatment process in an e-turbo system
US4779423A (en) Variable area turbocharger turbine and control system therefor
US20050172628A1 (en) Boost pressure estimation apparatus for internal combustion engine with supercharger
US6912852B2 (en) Method for engine condition control with turbocompressor controllable bypass
EP0136541A2 (en) System controlling variable capacity turbine of automotive turbocharger
GB2321317A (en) Controlling opening area of exhaust gas recirculation valve
US6550247B1 (en) Multiple parallel turbocharger control with discrete step nozzles
Moody Variable geometry turbocharging with electronic control
US6314733B1 (en) Control method
US6705285B2 (en) Air flow target determination
JPS6185539A (en) Control equipment for engine supercharger
US6675769B2 (en) Air mass flow rate determination
JPS6244095Y2 (en)
KR101948968B1 (en) Method of controlling the operating an internal combustion engine, and a control system for controlling the operation of an internal combustion engine
JPH0515899B2 (en)
JP3094560B2 (en) Engine with turbocharger
JPS6260934A (en) Mechanical supercharge engine with variable compression ratio device
JPS6172835A (en) Supercharger control device
IE830804L (en) Turbocharger
JPS6326260B2 (en)
AU2012202795B2 (en) Method and apparatus for actively turbocharging an engine
JPH0932650A (en) Exhaust gas recirculation control device for internal combustion engine