JPS6185430A - Vibration-damping material and its production - Google Patents

Vibration-damping material and its production

Info

Publication number
JPS6185430A
JPS6185430A JP59205564A JP20556484A JPS6185430A JP S6185430 A JPS6185430 A JP S6185430A JP 59205564 A JP59205564 A JP 59205564A JP 20556484 A JP20556484 A JP 20556484A JP S6185430 A JPS6185430 A JP S6185430A
Authority
JP
Japan
Prior art keywords
vibration
layer
dense
urethane
polyurethane elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59205564A
Other languages
Japanese (ja)
Other versions
JPH058727B2 (en
Inventor
Tatsuya Motomiya
達也 本宮
Toshio Suzuki
敏夫 鈴木
Yoshihiko Ogawa
嘉彦 小川
Fujio Oishi
大石 不二夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Nisshinbo Holdings Inc
Japan National Railways
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Japan National Railways
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Japan National Railways, Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP59205564A priority Critical patent/JPS6185430A/en
Publication of JPS6185430A publication Critical patent/JPS6185430A/en
Publication of JPH058727B2 publication Critical patent/JPH058727B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

PURPOSE:To provide the titled material having extremely small spring constant and excellent vibration-damping property, useful for the vibration-damping of railroad, etc., and composed of a foamed polyurethane elastomer having low degree of expansion and having a structure characterized by the density varying from the intermediate layer toward the surface layer, and having dense layers near the surface. CONSTITUTION:The objective material is composed of a foamed polyurethane elastomer having low degree of expansion, and having three-layered structure consisting of a dense layer 8, a porous layer 7 and a dense layer 8, i.e. having dense layers at the surface region, wherein the density varies continuously or discontinuously from the intermediate layer toward the surface layers. The foam can be produced by reacting (A) an organic polyisocyanate with (B) a polyether polyol having an average number of functional groups of 2.5-3.5 and a number-average molecular weight of 4,500-8,500, and (C) a chain extender at a ratio to give an NCO index of 90-110, in the presence of (D) freon gas having a boiling point of 40-70 deg.C as a foaming agent.

Description

【発明の詳細な説明】 本発明は、密−粗一密の三層構造を有する低発泡ポリウ
レタンエラストマーから成る防振材料及びその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vibration damping material made of a low foaming polyurethane elastomer having a three-layer structure of dense, coarse and dense, and a method for producing the same.

東北新幹線等の高速軌道は一般に第1図のような構造上
布する。即ち、1はレール、2はパラスト、3はコンク
リートまくらぎ、4はコンクリート路床であって、コン
クリートまくらぎ3は路床4に形成さ几た凹所5に防振
材料(被覆層)6を介して設置さ几ている。
High-speed tracks such as the Tohoku Shinkansen generally have a structure as shown in Figure 1. In other words, 1 is a rail, 2 is a pallast, 3 is a concrete sleeper, and 4 is a concrete roadbed, and the concrete sleeper 3 has a vibration-proofing material (coating layer) 6 in a recess 5 formed in the roadbed 4. It is installed via 几.

上記防振材料としては、従来、天然ゴム、合成ゴムを主
体とするゴム状弾性体が知らnでおり、例えばコンプレ
ッサープレス等の回転乃至往復振動が支持床上に伝達す
るの全防止するのに使用さ几ている。このような防振ゴ
ムは、振動発生源からの振動エネルギーをゴム状弾性体
に伝達し、弾性体の変形による振動の伝達遮断効果と内
部損失によって防振全図るものであって、振動発生源2
支持部材間の振動による変位が一軸方向、即ち重力加速
度方向のみであるときは、単に防振ゴム全振動源と支持
部材間に挾み込むだけで容易に防振効果を達成すること
ができる。
Conventionally, rubber-like elastic materials mainly made of natural rubber or synthetic rubber have been known as the above-mentioned vibration-proofing materials, and are used, for example, to completely prevent the rotational or reciprocating vibrations of compressor presses from being transmitted to the supporting floor. It's cold. Such anti-vibration rubber transmits the vibration energy from the vibration source to a rubber-like elastic body, and achieves complete vibration isolation through the vibration transmission blocking effect and internal loss caused by the deformation of the elastic body. 2
When the displacement due to vibration between the supporting members is only in one axis direction, that is, in the direction of gravitational acceleration, the vibration isolating effect can be easily achieved by simply inserting the vibration isolating rubber between the entire vibration source and the supporting member.

しかしながら、従来の防振ゴムでは、第1図の凹所5に
示すように、自由変形のできない閉じ之空間の拘束さn
’7状態で使用する場合は見掛上硬くなり振動低減効果
が少ないため実用に適しないものであつfr:、、’1
4言す几ば、天然ゴム、合成ゴム金主体とする防振材料
は、緻密な構造を有するため体積変化奮起し難く、自由
変形(体積変形)が拘束さf′した状態ではバネ定数が
増大して実質的に防撮機能が失われるため使用すること
ができなかった。
However, in conventional anti-vibration rubber, as shown in the recess 5 in FIG.
When used in the '7 state, it becomes apparently hard and has little vibration reduction effect, making it unsuitable for practical use.
4. In other words, vibration isolating materials mainly made of natural rubber or synthetic rubber have a dense structure, so it is difficult to induce volume changes, and the spring constant increases when free deformation (volume deformation) is restrained f′. It could not be used because the anti-photo protection function was essentially lost.

本発明者等は、特開昭58−23819号において、従
来の防振ゴムに代り前記高速軌道の使用に耐える高荷重
防振材料として、次のような低発泡ポリウレタンエラス
トマーから成る防振材料を提案した。こ几は、(a)有
機ポリイソシアネート、(b)平均官能基数が2.5〜
3,5で且つ数平均分子量が4.500〜8.500の
ポリエーテルポリオール、及び(c)側鎖延長剤’i、
NOOインデックスが90〜110となる割合で、発泡
剤として水の存在下で反応して得ら几る嵩密度が0.3
〜Q、9 ?/crAの防振材料である。
In Japanese Patent Application Laid-Open No. 58-23819, the present inventors proposed a vibration-proofing material made of the following low-foam polyurethane elastomer as a high-load vibration-proofing material that can withstand use on high-speed tracks in place of conventional vibration-proofing rubber. Proposed. This material is (a) organic polyisocyanate, (b) average number of functional groups is 2.5 to
3,5 and a number average molecular weight of 4.500 to 8.500, and (c) a side chain extender 'i,
At a ratio where the NOO index is 90 to 110, the bulk density obtained by reacting in the presence of water as a blowing agent is 0.3.
~Q, 9? /crA vibration isolating material.

この防振材料は、例えば嵩密度0.58 F/−のウレ
タンエラストマーの場合、10cm X 10cm X
 25園の板状体で自由な変形下で圧縮するとき、4チ
一10%歪間の単位面積当りのノ々ネ定数が4.2kv
/i であったが、こn1体積圧縮を生ぜしめる拘束状
態で圧縮したとき、6ネ定数は5.5h/cJで上昇は
僅かに1.30倍に止まり、従来品(例えば1辺20c
1n四方厚さ25簡のクロロプレンゴムを主体とする防
振材では、同様の圧縮試験でバネ定数は4倍となる。)
に比べ著しく優几た防振性能?有する。
For example, in the case of a urethane elastomer with a bulk density of 0.58 F/-, this vibration-proof material has a size of 10 cm x 10 cm x
When compressing a 25-sized plate under free deformation, the Nonone constant per unit area between 4 chips and 10% strain is 4.2 kv.
/i, but when compressed in a restrained state that causes this n1 volumetric compression, the 6-ne constant was 5.5 h/cJ, an increase of only 1.30 times, compared to conventional products (for example, 20 cm per side).
In the case of a vibration damping material mainly made of chloroprene rubber that is 1n square and 25 pieces thick, the spring constant will be four times as high in a similar compression test. )
Vibration isolation performance that is significantly better than that of have

しかし、このような僅かなノ々ネ定数の変化でも前記高
速軌道におけるような高い荷重下に振動源を支持する場
合には無視することができず、実施に際しては、第1図
において点線Pで示すような切欠部(基体底部面積に対
し0.5〜50チ、好ましくは2〜20%)全設けるこ
とにより、体積変化を切欠部Pによって吸収し、バネ定
数の変化を抑制しなけ几ばならず、そのために施工上煩
しい手間を要するという問題があった。
However, even such a slight change in the Nonone constant cannot be ignored when supporting a vibration source under a high load such as in the high-speed orbit, and when implementing it, the dotted line P in Fig. By providing all the notches (0.5 to 50 inches, preferably 2 to 20% of the bottom area of the base body) as shown, volume changes can be absorbed by the notches P and changes in the spring constant can be suppressed. Therefore, there was a problem in that it required troublesome construction work.

本発明者はか\る問題に鑑み種々研究を重ねた結果、前
記有機ポリインシアネート、ポリエーテルポリオール等
の(a)〜(c)の三成分を発泡剤を用いて反応せしめ
る際に、水に代えて沸点が40〜70℃の7レオンガス
を使用することにより、得らnる低発泡ポリウレタンエ
ラストマーが密−相一密の三層構造を有し、しかも自由
変形が拘束さ几た高荷重の状態にあってもノ々ネ定数の
変化が極めて小さく、優f′LfC防振性能を有するこ
とを見い出し、本発明に至った。
The present inventor has conducted various studies in view of the above problem, and has found that when reacting the three components (a) to (c), such as the organic polyinsyanate and polyether polyol, using a blowing agent, it is possible to By using 7 Leon gas with a boiling point of 40 to 70°C instead, the resulting low-foaming polyurethane elastomer has a three-layer structure of dense phase and dense structure, and can withstand high loads with restricted free deformation. The inventors have discovered that the change in Nonone's constant is extremely small even under various conditions, and that the material has excellent f'LfC vibration damping performance, leading to the present invention.

即ち、本発明による低発泡ポリウレタンエラストマーか
ら成る防振材料は、中間層から表層に向けて密度が連続
的″!7tは断続的((変化し、密−粗−密、即ち表層
付近を緻密層とした三層構造を有する点に特徴がある。
That is, in the vibration damping material made of the low-foam polyurethane elastomer according to the present invention, the density is continuous from the intermediate layer to the surface layer, and the density changes from dense to coarse to dense, that is, from the dense layer to the dense layer near the surface layer. It is characterized by its three-layer structure.

そして、かXる三層構造を有する防振材料は、(a)有
機ポリイソシアネート、(b)平均官能基数が2.5〜
3.5で且つ数平均分子量が4.500〜8.500の
ポリエーテルポリオール、及び(c)鎖長延長剤を、N
COインデックスが90〜110となる割合で、発泡剤
として沸点40〜70℃の7レオンガスの存在下に反応
させることにより jq、9造さnる。
The anti-vibration material having a three-layer structure is made of (a) an organic polyisocyanate, and (b) an average number of functional groups of 2.5 to 2.
3.5 and a number average molecular weight of 4.500 to 8.500, and (c) a chain extender, N
It is produced by reacting it in the presence of 7 Leon gas having a boiling point of 40 to 70°C as a blowing agent at a rate such that the CO index is 90 to 110.

本発明による防振材料は、第2図のように、中間を疎密
層11両側の表層部分を緻密Nj8とした三層構造を有
し、疎密層7に対する緻密層8の厚さの割合、或いは疎
密層7から緻密層8への嵩密度変化の割合は使用する7
レオンガスの沸点や防振材料9の周囲の金型10による
冷却条件等により変化するが、全体としての嵩密度は0
.3〜0.9t/dのウレタンエラストマーが用いら几
る。即ち、嵩密度がこnより小さいと、荷重支持能力が
極端に低くなり、他方、 0.9 f/I以上では僅か
の圧縮により体積変化の影響を受は易くなる。
As shown in FIG. 2, the vibration damping material according to the present invention has a three-layer structure in which the intermediate layer is a dense layer 11 and the surface layer on both sides is dense Nj8, and the ratio of the thickness of the dense layer 8 to the sparse layer 7, or The rate of bulk density change from the sparse layer 7 to the dense layer 8 is used as 7
Although it varies depending on the boiling point of Leon gas and the cooling conditions of the mold 10 around the vibration-proofing material 9, the overall bulk density is 0.
.. A urethane elastomer of 3 to 0.9 t/d is used. That is, if the bulk density is less than n, the load bearing capacity will be extremely low, while if it is 0.9 f/I or more, it will be susceptible to volume changes due to slight compression.

第3図はこの発明による防振材料と従来品の振動遮断効
果を示すグラフであって、従来品を示す曲線人に対し本
発明品を示す曲ILs8は、ノ々ネ定数を小さくシ次こ
とにより振動伝達のピークが低サイクル側に移動し、し
かも伝達率が1より低くなり振動遮断効果が優几ている
ことを示している。
FIG. 3 is a graph showing the vibration isolation effect of the vibration isolating material according to the present invention and the conventional product.The curve ILs8, which shows the product of the present invention, shows the curved line showing the conventional product, and the curve shows the curved line showing the product of the present invention. As a result, the peak of vibration transmission moves to the lower cycle side, and the transmission ratio becomes lower than 1, indicating that the vibration isolation effect is excellent.

以下、本発明を更に具体的に説明する。The present invention will be explained in more detail below.

本発明で用いら几るウレタンニジストマーは、平均官能
数2.5〜3,5、数平均分子[4500〜8500の
多価アルコール、有(8νポリイソシアネート、ウレタ
ン化触媒、鎖長延長剤、発泡剤及び気泡安定化剤より成
る組成物から形成される。多価アルコールの官能数は2
.5以下では防振材料としての重要な性質である得ら几
るウレタンエラストマーの圧縮永久歪が大きくなり適当
でない。多価アルコールの官能基数が3.5金超えると
得ら几るエラストマーが極めて硬くなる傾向を示すとと
もに振動圧縮により破壊する危険が大きくなる。
The urethane distomer used in the present invention has an average functionality of 2.5 to 3.5, a number average molecular weight of 4,500 to 8,500, a polyhydric alcohol (8ν polyisocyanate, a urethanization catalyst, a chain extender, Formed from a composition consisting of a blowing agent and a foam stabilizer.The functionality of the polyhydric alcohol is 2.
.. If it is less than 5, the compression set of the resulting urethane elastomer, which is an important property as a vibration damping material, becomes large and is not suitable. When the number of functional groups in the polyhydric alcohol exceeds 3.5 gold, the obtained elastomer tends to become extremely hard and the risk of breakage due to vibration compression increases.

好適な官能基数は2.8乃至3.3の範囲である。多価
アルコールの数平均分子量が4500以下の場合にVi
特に撮動エネルギーの吸収特性が低いウレタンエラスト
マーしか得ら几ない。こfLは化学架橋点密度が高くな
り、完全な弾性体の挙動に近づく為であると考えられる
。一方、数平均分子量が8500以上では、得られるウ
レタンエラストマーの弾性的性質が低下し、塑性変形金
生じ易く、特に圧縮永久歪が大きくなるため好ましくな
い。
The preferred number of functional groups is in the range of 2.8 to 3.3. When the number average molecular weight of the polyhydric alcohol is 4500 or less, Vi
In particular, only urethane elastomers with low absorption characteristics for imaging energy can be obtained. It is thought that this fL is due to an increase in the density of chemical crosslinking points, which approaches the behavior of a perfect elastic body. On the other hand, if the number average molecular weight is 8,500 or more, the elastic properties of the obtained urethane elastomer will decrease, plastic deformation will easily occur, and compression set will particularly increase, which is not preferable.

多価アルコールの好ましい数平均分子量範囲は4500
〜6500の範囲である。
The preferred number average molecular weight range of polyhydric alcohol is 4500
~6500.

また、本発明において、良好な防振エラストマーを得る
ために鎖長延長剤を用いることが不可欠である。鎖長延
長剤は、インシアネートと反応してウレタン結合、若し
くは尿素結合により水素量結合を主とするハードセグメ
ントヲ形成し、弾性体特性全支配する重要な因子となる
Further, in the present invention, it is essential to use a chain extender in order to obtain a good vibration-proof elastomer. The chain extender reacts with incyanate to form a hard segment mainly composed of hydrogen bonds through urethane bonds or urea bonds, and becomes an important factor controlling the overall properties of the elastic body.

本発明者等の研究によ几ば、前記の多価アルコールとの
組み合せの場合、エラストマー組放物中の2官能鎖長延
長剤の配合量は、得ら几るウレタンニジストマーの単位
重量に対するモル濃度で表現して、0.2 X 10−
’ mol / gr 、乃至1.OX 10−’mo
l/gr、  の範囲が適当であることが見出さnた。
According to the research conducted by the present inventors, in the case of the combination with the polyhydric alcohol described above, the amount of the bifunctional chain extender in the elastomer composition is determined based on the unit weight of the urethane distomer obtained. Expressed in molar concentration, 0.2 x 10-
'mol/gr, to 1. OX 10-'mo
It has been found that the range of l/gr is suitable.

こ几より低い濃度では鎖長延長効果が充分でないため、
得られる低発泡ニジストマーの強度は啄めて低く実用に
供し難い。又、1.OX 10  mol/gr。
Since the chain lengthening effect is not sufficient at concentrations lower than this,
The strength of the resulting low-foaming nidistomer is extremely low, making it difficult to put it to practical use. Also, 1. OX 10 mol/gr.

より高い濃度では水素量結合数が増大するため、得ら几
るエラストマーの強度は向上するが、極めて硬いエラス
トマーとなり、且つ致命的な欠陥として、圧縮永久歪及
び繰り返し圧縮疲労特性が悪化する。このことは、防振
材の如き繰り返し圧縮応力を受ける用途に用いる場合に
は、水素量結合の如き、物理的架橋点の密度が増大する
ことは好ましくないこと?示す本のと考えら几る。
At higher concentrations, the number of hydrogen bonds increases, so the strength of the resulting elastomer improves, but it becomes an extremely hard elastomer and, as a fatal defect, compression set and repeated compression fatigue properties deteriorate. Does this mean that when used in applications that are subject to repeated compressive stress, such as vibration-proofing materials, it is undesirable for the density of physical crosslinking points, such as hydrogen bonding, to increase? I'm thinking of a book to show you.

本発明の防振材料は、沸点40〜70℃のフレオンガス
、例えばトリクロロトリフ0ロエタン、ジブロモテトラ
フロロエタン、テトラクロロジフロロエタン等を使用す
ることにより、嵩密度が0.3〜0.9り/cJ で、
密−粗一密の三層構造のものが得ら几る。40℃より低
いと発泡がノマラツキ、70℃を越えると発泡のみなら
ず反応温度の制御が困難である。従来、発泡剤としてト
リクロロモノフロロメタン(沸点23.82℃)のよう
な低沸点の7レオンガスが使用さ几ているが、この場合
には全体がはy一様な嵩密度のものしか得られず、本発
明の目的とする密−粗一密の三層構造のものは得ら几な
い。そして表層付近を緻密にしたことにより機械的強度
及び耐久性が向上すると共に、中間を疎密層としたこと
により高荷重による圧縮変形’tfA埋なく吸収し、従
来のような切欠部は全く不要となり施工性が著しく向上
する。
The vibration damping material of the present invention has a bulk density of 0.3 to 0.9 by using Freon gas with a boiling point of 40 to 70°C, such as trichlorotrifluoroethane, dibromotetrafluoroethane, and tetrachlorodifluoroethane. /cJ,
A three-layer structure of dense, coarse and dense is obtained. If the temperature is lower than 40°C, foaming will be irregular, and if it exceeds 70°C, it will be difficult to control not only foaming but also the reaction temperature. Conventionally, a low boiling point gas such as trichloromonofluoromethane (boiling point 23.82°C) has been used as a blowing agent, but in this case, only a bulk density with a uniform overall density can be obtained. First, it is difficult to obtain the three-layer structure of dense, coarse, and dense, which is the object of the present invention. By making the surface layer denser, mechanical strength and durability are improved, and by making the middle layer denser and denser, compressive deformation due to high loads can be absorbed without burying, eliminating the need for conventional cutouts. Workability is significantly improved.

本発明に用いる多価アルコールとしては、例えばグリセ
リン、トリメチロールプロパン等の低分子量多価アルコ
ール或はエチレンジアミン等の低分子量活性水素化合物
に、酸化エチレン、酸化プロピレン等のオキシアルキレ
ン化合物全付加重合せしめた、いわゆるポリエーテルポ
リオールVt用いることができる。ま几、同様にポリエ
ステルポリオール、或はヒドロキシ末端液状ポリブタジ
ェン等も用いることができる。
Examples of the polyhydric alcohol used in the present invention include total addition polymerization of an oxyalkylene compound such as ethylene oxide or propylene oxide to a low molecular weight polyhydric alcohol such as glycerin or trimethylolpropane, or a low molecular weight active hydrogen compound such as ethylenediamine. , so-called polyether polyol Vt can be used. Similarly, polyester polyols, hydroxy-terminated liquid polybutadiene, etc. can also be used.

ポリインシアネートとしては通常ウレタンエラストマー
に用いら几るものが使用できる。例えば、4.4′−ジ
フェニルメタンジイソシアネート、ナフチレンジイソシ
アネート、トリレンジイソシアネート、ヘキサメチレン
ジイソシアネート等を挙げることができ、又こ几らの二
種以上の混合物全使用することもできる。
As the polyincyanate, those which are not normally used for urethane elastomers can be used. For example, 4,4'-diphenylmethane diisocyanate, naphthylene diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, etc. can be mentioned, and mixtures of two or more of these can also be used.

また、ポリイソシアネートは、前記、多価アルコールと
予め縮合した前駆体として用いることもできる。何几に
してもポリイソシアネートの使用量は、インシアネート
残基と反応すべき活性水素含有成分(多価アルコール、
鎖長延長剤等)と、化学量論的に等しい量又はその±1
0%程度の範囲内、即ちNOOインデックスが90〜1
10%の範囲内で変動せしめることが可能である。
Moreover, the polyisocyanate can also be used as a precursor precondensed with the polyhydric alcohol. Regardless of the amount of polyisocyanate used, the amount of active hydrogen-containing components (polyhydric alcohol,
(chain extender, etc.) in a stoichiometrically equivalent amount or ±1
Within the range of about 0%, that is, the NOO index is 90 to 1
It is possible to vary it within a range of 10%.

鎖長延長剤としては比較的低分子量の実質的に2官能性
の化合物、即ち、ジオール、ジアミン等が用いら几、例
えば、エチレングリコール、フロピレンクリコール、フ
ロパンジオール、フタンジオール、メチレンビス−(0
−−)クロロアニリン)、ハイドロキノン、ヒドロキシ
エチルキノンエーテル等を挙げることができる。
As chain extenders, substantially difunctional compounds of relatively low molecular weight, such as diols and diamines, are used. 0
--) chloroaniline), hydroquinone, hydroxyethylquinone ether, and the like.

ウレタン化触媒は通常のウレタン化反応に用いら几るも
の、即ち、第3級アミン化合物、有限金属化合物等が用
いら几、例えば、トリエチレンジアミン、ジアザ−ビシ
クロウンデセン、N−メチルモルフォリン、N、N−ジ
メチルエタノールアミン、オクチル酸錫、ラウリル酸ジ
ブチル錫等を挙げることができる。触媒の使用量は希望
する反応速度に応じて広範囲に変化し得るが、ウレタン
ニジストマーを発泡する量、雰囲気条件(温度、湿度等
)によって適宜使用iを加減することが必要であり、こ
fLを選定することは容易である。何重にしても本発明
のウレタンニジストマーは防振材として機能するために
、単位面積当ジのバネ定数が、少なくとも約1陽/−以
上の値を持ち、%に好ましくは3吟/−乃至10吟/d
の範囲にあることが望ましい。この範囲の値は防振層と
して普通に用いら几る5乃至100+a+程度の厚さの
とき、前記ウレタンニジストマーの組成及び、嵩密度を
適当に選ぶことによって得ることができる。勿論嵩密度
を高くす几ばバネ定数も高くなり、高分子量の多価アル
コール、低い官能基数の多価アルコール、低い架橋密度
は、バネ定数を低くシ、強固に接着する長所も有する。
Urethane-forming catalysts include those not used in ordinary urethane-forming reactions, that is, tertiary amine compounds, finite metal compounds, etc., such as triethylenediamine, diaza-bicycloundecene, N-methylmorpholine, Examples include N,N-dimethylethanolamine, tin octylate, and dibutyltin laurate. The amount of catalyst used can vary widely depending on the desired reaction rate, but it is necessary to adjust the amount i depending on the amount of urethane distomer foamed and the atmospheric conditions (temperature, humidity, etc.). It is easy to select. Since the urethane disstomer of the present invention functions as a vibration damping material no matter how many times it is layered, the spring constant per unit area has a value of at least about 1 yen/- or more, and preferably 3 yen/- in percent. ~10 gin/d
It is desirable that it be within the range of . Values in this range can be obtained by appropriately selecting the composition and bulk density of the urethane disstomer when the thickness is about 5 to 100+a+, which is not commonly used as a vibration damping layer. Of course, the higher the bulk density, the higher the spring constant, and a polyhydric alcohol with a high molecular weight, a polyhydric alcohol with a low number of functional groups, and a low crosslinking density have the advantage of having a low spring constant and strong adhesion.

通常防振材は振動発生源の振動を、確実に伝達せしめら
几て、その振動を遮断し併せて防振材内部で吸収する必
要があるため、上記の接着性は実用上極めて大きな長所
となる。
Normally, vibration isolators need to reliably transmit and reduce the vibrations from the vibration source, block the vibrations, and absorb them inside the vibration isolator, so the adhesive properties described above are a huge advantage in practical terms. Become.

すなわち、ウレタン被覆層は基体に一体成型発泡させて
密着させることにより優nた効果を発揮し、また基体と
は別に成型し、次いで基体と密着させることにより振動
源を固定して防振効果を効果的に発揮せしめることがで
きる。即ち接着剤を用いて基体底部に接着させても良く
、或は箱状のウレタンエラストマ一体を成型しこれに基
体を挿入する方法もとることができる。
In other words, the urethane coating layer exhibits an excellent effect when it is integrally molded and foamed to the base and is brought into close contact with the base, and it also provides an anti-vibration effect by fixing the vibration source by molding it separately from the base and then bringing it into close contact with the base. It can be used effectively. That is, it may be adhered to the bottom of the base body using an adhesive, or a method may be adopted in which a box-shaped urethane elastomer body is molded and the base body is inserted into this.

本発明においてはウレタンエンストマー被覆層を持つ基
体を振動源?設定すべき床面上の凹所に嵌置せしめるが
、この凹所は予め床面に形成さ几ているか、又はウレタ
ンニジストマー被覆層を持つ基体を、平滑な床面に設置
した後その側部全コンクリート、アスファルト等で坤め
ることによって形成しても良い。また被覆さrtた基体
を床面から一時的に吊り上げ、次いでその底部及び側部
をコンクリート、アスファルト等で狸めることもできる
。更に又、被柳層を持たない基体と、床面間に予め凹部
を設け、この凹部にウレタンニジストマーを注入して発
泡成型することもできる。この場合には、基体と支持床
面の両者にウレタンニジストマーが一体成形さ几、強四
ンこ接着する効果を得ることができる。
In the present invention, the substrate having the urethane entomer coating layer is used as the vibration source. It is fitted into a recess on the floor surface to be set, but this recess is either pre-formed in the floor surface, or the substrate with the urethane nystomer coating layer is installed on a smooth floor surface and then placed on its side. It may be formed by covering the entire part with concrete, asphalt, etc. It is also possible to temporarily lift the coated substrate from the floor and then cover its bottom and sides with concrete, asphalt, or the like. Furthermore, it is also possible to form a recess in advance between the base body having no layer to be coated and the floor surface, inject the urethane distomer into the recess, and perform foam molding. In this case, the urethane distomer is integrally molded on both the base and the supporting floor surface, and the effect of strong adhesion can be obtained.

本発明の防振材料は、全ゆる産業分野における防振、又
はこ几に付随する防音の目的に使用することができる。
The vibration-proofing material of the present invention can be used for vibration-proofing purposes in all industrial fields or for soundproofing associated with ovens.

例えば、金属打ち抜きプレスの底面に設置すること、コ
ンプレッサーの下面に設置すること、床面に設置した空
調機器の防振を行うこと、鉄道軌道の防振に使用するこ
と等の応用が考えら几る。
For example, applications such as installation on the bottom of a metal punching press, installation on the underside of a compressor, vibration isolation for air conditioning equipment installed on the floor, and use for vibration isolation on railway tracks are being considered. Ru.

次に実施例によって本発明全例示する。Next, the present invention will be fully illustrated by examples.

実施例1 500X500X300醍の大きさのコンクリート製基
体の5つの面に厚さ30暉のウレタンニジストマー被横
層をコンクリート基体との一体成型発泡法により形成し
た。ウレタンエラストマーは下記組成のものを用い形成
さf′Lfc被覆層の密度は0.70f / cd で
ある。
Example 1 A urethane distomer covering layer having a thickness of 30 mm was formed on five sides of a 500 x 500 x 300 concrete base by integral molding with the concrete base and foaming method. The urethane elastomer having the following composition was used and the f'Lfc coating layer had a density of 0.70 f/cd.

□ ウレタンエラストマーの組成 ポリエーテルポリオール■        100.0
?”−y−v7f +) ニア −/l/      
   3.0トリクロロトリフロロエタン      
     0.358 整泡剤■          
        0.50トリエチレンジアミン   
           0.20官 ポリイソシアネー
ト/      イソシアネート■ 数平均分子−11
−6500 クリセリン/プロピレンオキサイド/エチレンオヤサイ
ド  共重合アダクツ ■ シリコーン系界面活性剤 ■ 4.4′−ジフェニルメタンジイソシアネートと■
のポリエーテルポリオールのインシアネート末端前駆縮
合体 り畦立インシアネート量     16%C重:It)
A、Bw液ケすばやく混合し、コンクリート製基体の5
面を鉄板で囲って形成した空間に注入して。
□ Composition of urethane elastomer Polyether polyol ■ 100.0
? ”-y-v7f +) Near -/l/
3.0 Trichlorotrifluoroethane
0.358 Foam stabilizer■
0.50 triethylenediamine
0.20 Polyisocyanate/Isocyanate ■ Number average molecule -11
-6500 Chrycerin/propylene oxide/ethylene oxide copolymer adduct ■ Silicone surfactant ■ 4.4'-diphenylmethane diisocyanate ■
Incyanate-terminated precondensation product of polyether polyol (inocyanate amount 16% C weight: It)
Quickly mix A and Bw liquids and place 5 on the concrete base.
Inject it into the space created by surrounding the surface with iron plates.

発泡と同時に基体とウレタンエラストマーを接着させ約
2時間後に鉄板を取Vはずし友。
At the same time as foaming, the base and urethane elastomer were bonded together, and after about 2 hours, the iron plate was removed.

この基体金床面に形成した深さ330期の凹所(凹所の
底部は平滑なコンクリート面としたIIc設置し次いで
床面のレベル迄基体周囲にコンクリ−1流し込んだ。コ
ンクリートが完全に硬化し友後、基体の上部にフリクシ
ョンプレスを設置しプレスと基体は基体に埋め込んだボ
ルトによって連結した。プレスの全重量はおよそ500
局でありプレス能力は2トンである。
A recess with a depth of 330 mm was formed on the anvil surface of this base (the bottom of the recess was a smooth concrete surface), and then concrete 1 was poured around the base up to the level of the floor surface.The concrete hardened completely. After that, a friction press was installed on the top of the base, and the press and base were connected by bolts embedded in the base.The total weight of the press was approximately 500 yen.
It is a station with a press capacity of 2 tons.

プレスを運転し、約3m離nた位置での床面の振動加速
度を計測し次結果、約55 dB であった。
The press was operated and the vibration acceleration of the floor surface at a distance of about 3 m was measured, and the result was about 55 dB.

同種のプレスfr500晴X500wmX30顛の床面
に址め込″!!几たクロロプレンゴム等防振Nを介して
設置し九ときは床面の振動加速度は同様に計測して約6
6 dBであつ几。
When the same type of press FR500x500wmx30 is installed on the floor surface of
At 6 dB.

実施例2 1000X500X50samのコンクリート製板状基
体の底部及び側部に、実施例1と同様の組成で、嵩密度
0.6097−で、厚さ251IIIIのウレタンエラ
ストマー全ゴム系接着剤で貼り付けた。この被覆さn、
た基体全コンクリート床面に設けた深さ75朗の凹所に
はめ込んだ。基体の上部に、20馬力の空気圧縮機全設
置し、基体コンクリートに埋め込ま−rL九Nルトによ
って締結した。空気圧縮機の71[tは約1トンであり
、用いたウレタンエラストマーは、4チル10%歪間の
単位面精当ジノζネ定数が8kf/cdの値を示しto 空気圧縮機を運転し、約3mm11.た地点での床面の
振動加速度を測定した結果は65dB であった。比較
として、上記の空気圧縮機を直接コンクリート床面に設
置し、同様に振動加速度を測定した結果I/′183d
Bの値を示した。
Example 2 A urethane elastomer all-rubber adhesive having the same composition as in Example 1, having a bulk density of 0.6097 and a thickness of 251III was attached to the bottom and sides of a 1000 x 500 x 50 sam concrete plate substrate. This coating n,
The entire base was fitted into a 75 mm deep recess made in the concrete floor. A 20 horsepower air compressor was completely installed on the top of the base, embedded in the base concrete, and fastened with nine bolts. The 71[t] of the air compressor is approximately 1 ton, and the urethane elastomer used has a unit surface precision Zine constant of 8 kf/cd between 4 chills and 10% strain. Approximately 3mm11. The vibration acceleration of the floor surface was measured at the location of 65 dB. For comparison, the above air compressor was installed directly on the concrete floor surface and the vibration acceleration was similarly measured, and the result was I/'183d.
The value of B is shown.

【図面の簡単な説明】 第1図は本発明の説明に供する高速軌道の構造を示す説
明図、第2図は本発明による防振材料の一実施例を示す
断面模型図、第3図は本発BAKよる防振材料と従来品
の振動遮断特性を示すグラフである。 1:レール       2:バラスト3:コンクリー
ト    4:まくら木6:防振祠料      7:
粗(疎〉密層8:緻密層 出願人    日 清 紡 績 株式会社日本国有鉄道 手続補正a) 75”(+2:、:ヨ2下21;日 −″−4.モr工]  3 α   −之:   ′5
;÷、つ表示 持顎昭59−203364号 2、 定−月G)名作 防振材料膜びその筈遣方法 、   3 浦正をする者 事1′トとの関係  特許出願人 住 所   東京シ5中央区日本僑■山町3番10号名
 作    日 1,7  紡 績 株式会社代表者 
    中、Q 秀夫    (f山1名)4f(埋入
 〒105 注 所  東京nb港区祈嗅三丁目1番10号 丸藤ビ
ル9F自発 り、 ’、 ii 、’l’: 、’、7対°゛2頼J
! 7 凍上一つ内容 持許願G)右肩:こ−特許法第38条ただし8きの現定
による特許出願、の文字を入れる。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is an explanatory diagram showing the structure of a high-speed track used to explain the present invention, Fig. 2 is a cross-sectional model diagram showing an example of the vibration-proofing material according to the present invention, and Fig. 3 is 1 is a graph showing the vibration isolation characteristics of a vibration isolation material made of the present BAK and a conventional product. 1: Rail 2: Ballast 3: Concrete 4: Sleeper 6: Anti-vibration material 7:
Coarse (sparse>Dense layer 8: Dense layer Applicant Nisshin Boseki Co., Ltd. Japan National Railways Procedural Amendment a) 75" (+2:,:Y2 lower 21;Japanese-"-4.Morwork) 3 α - : '5
; ÷, 1 display No. 1983-203364 2, Tei-zuki G) Masterpiece anti-vibration material film and method of its preparation, 3. Relationship with Uramasa Person 1'Relationship with Patent Applicant Address: Tokyo City 5 Chuo-ku Japanese Overseas ■ Yamacho 3-10 Name Date: 1,7 Representative of Spinning Co., Ltd.
Middle, Hideo Q (1 person on f mountain) 4th floor (embedded 〒105 Notes: 9F Marufuji Building, 3-1-10 Inoue, Minato-ku, Tokyo) ', ii, 'l': , ', 7 pairs ° ゛2 request J
! 7. Request for permission to keep one content on the ground G) Right shoulder: Insert the words ``This is a patent application pursuant to the present provisions of Article 38, however, 8 of the Patent Act.''

Claims (2)

【特許請求の範囲】[Claims] (1)中間層から表層に向けて密度が連続的または断続
的に変化し、表層付近を緻密層とした三層構造を有する
低発泡ポリウレタンエラストマーから成る防振材料。
(1) A vibration-damping material made of a low-foam polyurethane elastomer that has a three-layer structure in which the density changes continuously or intermittently from the middle layer to the surface layer, with a dense layer near the surface layer.
(2)(a)有機ポリイソシアネート、(b)平均官能
基数が2.5〜3.5で且つ数平均分子量が4,500
〜8,500のポリエーテルポリオール及び(c)鎖長
延長剤を、NCOインデックスが90〜110となる割
合で、発泡剤として沸点40〜70℃のフレオンガスの
存在下に反応させることを特徴とする防振材料の製造方
法。
(2) (a) Organic polyisocyanate, (b) average number of functional groups is 2.5 to 3.5 and number average molecular weight is 4,500
~8,500 polyether polyol and (c) a chain extender are reacted in a ratio such that the NCO index is 90 to 110 in the presence of Freon gas having a boiling point of 40 to 70°C as a blowing agent. A method for manufacturing vibration-proofing materials.
JP59205564A 1984-10-02 1984-10-02 Vibration-damping material and its production Granted JPS6185430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59205564A JPS6185430A (en) 1984-10-02 1984-10-02 Vibration-damping material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59205564A JPS6185430A (en) 1984-10-02 1984-10-02 Vibration-damping material and its production

Publications (2)

Publication Number Publication Date
JPS6185430A true JPS6185430A (en) 1986-05-01
JPH058727B2 JPH058727B2 (en) 1993-02-03

Family

ID=16508980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59205564A Granted JPS6185430A (en) 1984-10-02 1984-10-02 Vibration-damping material and its production

Country Status (1)

Country Link
JP (1) JPS6185430A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168720A (en) * 1987-12-25 1989-07-04 Toyobo Co Ltd Viscoelastic resin for vibration damper
US20110168217A1 (en) * 2010-01-12 2011-07-14 Neff Raymond A Appliance comprising polyurethane foam
US8333269B2 (en) 2006-07-17 2012-12-18 Basf Corporation Insulator for a wheel suspension system
US8574483B2 (en) 2006-07-17 2013-11-05 Basf Corporation Method of deforming a microcellular polyurethane component

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436200A (en) * 1977-08-26 1979-03-16 Takakatsu Honda Crime preventive siren device
JPS5436197A (en) * 1977-08-26 1979-03-16 Hitachi Ltd Waveguide type laser unit
JPS5527098A (en) * 1978-08-12 1980-02-26 Bayer Ag Chemicallbiological disposal method of outflow liquid
JPS5529082A (en) * 1978-05-26 1980-03-01 Brock Equipment Co Twoospeed pump and method of feeding fluid
JPS5566917A (en) * 1978-11-14 1980-05-20 Toyo Tire & Rubber Co Ltd Manufacture of non-yellowing integral polyurethane foam
JPS5662817A (en) * 1979-10-26 1981-05-29 Toyo Tire & Rubber Co Ltd Production of polyurethane foam for elastic sleeper
JPS5823819A (en) * 1981-10-09 1983-02-12 Nisshinbo Ind Inc Vibration insulating material
JPS58131201A (en) * 1982-09-30 1983-08-05 日清紡績株式会社 Elastic cross tie
JPS5998121A (en) * 1982-11-27 1984-06-06 Bridgestone Corp Vibration damping material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436200A (en) * 1977-08-26 1979-03-16 Takakatsu Honda Crime preventive siren device
JPS5436197A (en) * 1977-08-26 1979-03-16 Hitachi Ltd Waveguide type laser unit
JPS5529082A (en) * 1978-05-26 1980-03-01 Brock Equipment Co Twoospeed pump and method of feeding fluid
JPS5527098A (en) * 1978-08-12 1980-02-26 Bayer Ag Chemicallbiological disposal method of outflow liquid
JPS5566917A (en) * 1978-11-14 1980-05-20 Toyo Tire & Rubber Co Ltd Manufacture of non-yellowing integral polyurethane foam
JPS5662817A (en) * 1979-10-26 1981-05-29 Toyo Tire & Rubber Co Ltd Production of polyurethane foam for elastic sleeper
JPS5823819A (en) * 1981-10-09 1983-02-12 Nisshinbo Ind Inc Vibration insulating material
JPS58131201A (en) * 1982-09-30 1983-08-05 日清紡績株式会社 Elastic cross tie
JPS5998121A (en) * 1982-11-27 1984-06-06 Bridgestone Corp Vibration damping material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168720A (en) * 1987-12-25 1989-07-04 Toyobo Co Ltd Viscoelastic resin for vibration damper
US8333269B2 (en) 2006-07-17 2012-12-18 Basf Corporation Insulator for a wheel suspension system
US8574483B2 (en) 2006-07-17 2013-11-05 Basf Corporation Method of deforming a microcellular polyurethane component
US20110168217A1 (en) * 2010-01-12 2011-07-14 Neff Raymond A Appliance comprising polyurethane foam
US8302280B2 (en) * 2010-01-12 2012-11-06 Basf Se Appliance comprising polyurethane foam

Also Published As

Publication number Publication date
JPH058727B2 (en) 1993-02-03

Similar Documents

Publication Publication Date Title
US4302552A (en) Microcellular polyurethane vibration isolator
RU2144546C1 (en) New flexible polyurethane foams
JPS6136315A (en) Vibration-damping material
AU728982B2 (en) Preparation of cellular polyurethane elastomers and isocyanate prepolymers suitable for this purpose
EP2651998B1 (en) A polyurethane railway track bed, a preparing method and the usage thereof
JP4708251B2 (en) Foamed polyurethane elastomer, method for producing the same and railroad pad
CN104558489B (en) Railway ballast flexible polyurethane foam material and preparation method thereof
CN1406258A (en) Polyurethane foams and method of manu facture thereof
JP2014237320A (en) Foam laminate product and production method thereof
EP2561138B1 (en) A polyurethane ballast layer, the method for preparing the same and the use thereof
US20210047548A1 (en) Composite Elements of Thermal Insulation Material, Adhesive and Outer Layer
KR20000053115A (en) New Flexible Polyurethane Foams
US7795322B2 (en) Prepolymers and cellular polyisocyanate polyaddition products produced therefrom
JP2521837B2 (en) Low foam polyurethane elastomer
CN113512169A (en) High-density high-bearing fatigue-resistant microporous polyurethane elastic damping pad and preparation method thereof
JPS6185430A (en) Vibration-damping material and its production
JP2001507047A (en) Method for producing rigid and flexible polyurethane foams
JP4459711B2 (en) Rail pad manufacturing method
JP2007523984A (en) Swelling resistant polyurethane integral foam
CN105461896B (en) A kind of bridge High Hardness Polyurethane Elastomer bearing material and preparation method thereof and application method
EP0226176B1 (en) High-density composite material essentially based on polyisocyanurate
JPS5823819A (en) Vibration insulating material
CN111574685B (en) Cold-resistant polyurethane cushion plate for heavy haul railway and preparation method thereof
JP3355620B2 (en) Method of manufacturing seat cushion material for snowmobile
JP2021000451A (en) Vehicular seat base material, and vehicular seat