JPS6184571A - Optical fiber magnetometer - Google Patents

Optical fiber magnetometer

Info

Publication number
JPS6184571A
JPS6184571A JP20658184A JP20658184A JPS6184571A JP S6184571 A JPS6184571 A JP S6184571A JP 20658184 A JP20658184 A JP 20658184A JP 20658184 A JP20658184 A JP 20658184A JP S6184571 A JPS6184571 A JP S6184571A
Authority
JP
Japan
Prior art keywords
optical fibers
optical fiber
optical
fibers
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20658184A
Other languages
Japanese (ja)
Inventor
Makoto Kikuchi
誠 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20658184A priority Critical patent/JPS6184571A/en
Publication of JPS6184571A publication Critical patent/JPS6184571A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • G01R33/0327Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect with application of magnetostriction

Abstract

PURPOSE:To reduce the capacity of an optical fiber magnetism sensing part and reduce the influence of a magnetic noise from an aircraft, etc., by using plural optical fibers which are bent and arranged. CONSTITUTION:The magnetometer uses optical fibers, which are bent and fixed on a nonmagnetic plate 9. Straight parts of odd-numbered optical fibers are coated with a ferromagnetic material fibers by using a splitter 2 and also guided to fibers B which are not coated with the magnetic material by using another splitter 3. Outputs of optical fibers A which shift in phase owing to external magnetism and outputs of fibers B which do not shift in phase are led to phase detectors 8 to detect the intensity of the external magnetic field applied to each fiber A, and outputs of the phase detectors 8 are summed up by an adder 11.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、地磁気程度の弱磁界を従来のオプティカル
ポンピング磁力計の感度(Q、01nT ) ’に一桁
以上、上進る感度で測定できるオプティカルファイバ磁
力計に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides an optical device that can measure weak magnetic fields as strong as the earth's magnetic field with a sensitivity that is more than one order of magnitude higher than the sensitivity (Q, 01nT)' of conventional optical pumping magnetometers. It concerns fiber magnetometers.

〔従来技術〕[Prior art]

第1図は従来のオプティカルファイバ磁力計を示す構成
図で、(1)は光源、(2)はビームスプリッタ。
FIG. 1 is a configuration diagram showing a conventional optical fiber magnetometer, in which (1) is a light source and (2) is a beam splitter.

(3)は全反射鏡、(4)はオプティカルファイバ、(
5)は強磁性体、(6)は光検知器、(7)は増幅器、
(8)は位相検波器である。光源(1)は1例えばシン
グルモードの半導体レーザである。光源(1)からのレ
ーザビームはビームスプリッタ(2)によって、はy均
等な光強度に分割されて、それぞれのオプティカルファ
イバ(4)に導かれる。こ\で、一方のオプテイカルフ
ァイバ(4)にニツケルーコバル等の強磁性体(5)を
所要の厚さにコーティングまたは塗布しておくと。
(3) is a total reflection mirror, (4) is an optical fiber, (
5) is a ferromagnetic material, (6) is a photodetector, (7) is an amplifier,
(8) is a phase detector. The light source (1) is, for example, a single mode semiconductor laser. A laser beam from a light source (1) is split into equal light intensities by a beam splitter (2) and guided to each optical fiber (4). Here, one optical fiber (4) is coated or applied with a ferromagnetic material (5) such as Nickel Cobal to the required thickness.

強磁性体(5)は外部磁界1(Qで磁気歪みを生じ、こ
の磁気歪みがこのオプティカルファイバ(4)に機械的
な歪みを与えることになるので、オプティカルファイバ
(4)を通過するレーザビームは位相変化を生ずること
になる。上記2本のレーザビームを光検知器(6)でそ
れぞれ電気信号に変換し増幅器(7)で増幅したあとで
2強磁性体(5)を有しないオプティカルファイバ(4
)に対応する電気信号を基準信号として位相検波器(8
)で位相検波すれば、外部磁界の強度HQを知ることが
できる。
The ferromagnetic material (5) produces magnetostriction in the external magnetic field 1 (Q), and this magnetostriction gives mechanical distortion to this optical fiber (4), so the laser beam passing through the optical fiber (4) The two laser beams are converted into electric signals by a photodetector (6) and amplified by an amplifier (7), and then an optical fiber without ferromagnetic material (5) is (4
) with the electrical signal corresponding to the phase detector (8) as a reference signal.
), the intensity HQ of the external magnetic field can be determined.

上述した構成のオプティカルファイバ磁力計は。The optical fiber magnetometer with the above configuration is as follows.

強磁9体(5)を有するオプティカルファイバ(4)1
mあたり、  0.001〜0.0001 nTO高感
度を有している。しかし、オプティカルファイバ(4)
に強磁性体(5)を1mにわたって均一にコーティング
あるいは塗布することは現在の技術では困難である。ま
た。
Optical fiber (4) with 9 ferromagnetic bodies (5) 1
It has a high sensitivity of 0.001 to 0.0001 nTO per m. However, optical fiber (4)
It is difficult with current technology to uniformly coat or apply the ferromagnetic material (5) over a length of 1 m. Also.

この磁力計を航空機等に搭載して、m水艦の探知等に利
用する分野においては、感磁気部が約11rLと長いこ
とは航空機の磁気雑音の影響を受けやすく、さらに全磁
力HQを測定しようと直交3軸に組合わせた場合、感磁
気部の体積が大きくなり。
In the field where this magnetometer is mounted on an aircraft and used for detecting water ships, etc., the long magnetic sensing part of about 11 rL makes it susceptible to the magnetic noise of the aircraft, and it also measures the total magnetic force HQ. If the three axes are orthogonal to each other, the volume of the magnetically sensitive part will increase.

測定精度が低下し、また、航空機の磁気雑音の影響を受
けやすく、実用に供するには困難であった。
Measurement accuracy deteriorated and it was easily affected by magnetic noise from aircraft, making it difficult to put it into practical use.

〔発明の概要〕[Summary of the invention]

この発明は、X、YおよびZ軸に対応するそれぞれの同
一平面内で、オプティカルファイバを所要の奇数回だけ
折り曲げて配置し、その直線部分のみに強磁性体をコー
ティングまたは塗布することによって、オプティカルフ
ァイバ磁力計の高感度を維持したま\、感感磁郡部体積
を小さくして。
In this invention, an optical fiber is bent and arranged a required odd number of times within the same plane corresponding to the X, Y, and Z axes, and a ferromagnetic material is coated or applied only to the straight portions of the optical fiber. While maintaining the high sensitivity of the fiber magnetometer, the volume of the magnetically sensitive area is reduced.

航空機等の磁気雑音の影響を受けにくくシた。It is less susceptible to magnetic noise from aircraft, etc.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例を示すオプティカルファイバ
磁力計の構成図で、(9)は非磁性プレート。
FIG. 2 is a configuration diagram of an optical fiber magnetometer showing an embodiment of the present invention, and (9) is a nonmagnetic plate.

α〔は非磁性留め具、(lυは加算器、α2はX軸セ/
すの中心点XQ 、 (13はY軸センサの中心点YO
,a4)は2軸センナの中心点zaである。非磁性プレ
ート(9)および非磁性留め具(1Gは例えばテフロン
で。
α[ is a non-magnetic fastener, (lυ is an adder, α2 is an X-axis separator/
(13 is the center point YO of the Y-axis sensor
, a4) is the center point za of the two-axis sensor. Non-magnetic plate (9) and non-magnetic fastener (1G made of Teflon, for example.

それぞれ各軸および参照光に対応するオプティカルファ
イバ(4)を同一平面に固定する機能と1図示していな
いが、X、YおよびZ軸の原点に各軸のセンナの中心点
XQ、YQおよび2(、を正確に合致させることができ
るように所要の部所にスリット等を有する機能をもって
いる。上述したx、yおよび2軸の原点と各軸のセンサ
の中心点Xo、Y。
The function is to fix the optical fibers (4) corresponding to each axis and the reference beam, respectively, on the same plane. (1) Although not shown, the center points of the senna of each axis (The origin of the x, y, and two axes mentioned above and the center point of the sensor of each axis Xo, Y.

およびzOを正確に合致させるため、各軸におけるオプ
ティカルファイバ(4)の曲げ回数を奇数回としである
。また、外部磁界の方位の変化に起因する外乱を無くす
るために、各軸のオプティカルファイバ(4)の強磁性
体(5)をコーティングまたは塗布する部分は、各非磁
性グレート(9)の面上で直線になっている部分のみに
限定しである。位相検波器(8)でX軸、Y軸および2
軸センサの信号を得る過程は、第1図で説明したものと
同じであるが、この実施例では、3枚のビームスプリッ
タ(2)の各透過率および反射率の選定および1枚の全
反射鏡の反射率の選定により、レーザビームがはソ均等
な光強度で4本のオプティカルファイバ(4)に分配さ
れている。加算器Uは各軸に対応する3個の位相検波器
(8)の出力をたし合わせ、地磁気等の全磁力を出力と
してだす機能を有している。
In order to accurately match zO and zO, the optical fiber (4) is bent an odd number of times in each axis. In addition, in order to eliminate disturbances caused by changes in the direction of the external magnetic field, the portions of the optical fibers (4) on each axis where the ferromagnetic material (5) is coated or applied are placed on the surface of each non-magnetic grating (9). This is limited to only the straight part at the top. X-axis, Y-axis and 2 with phase detector (8)
The process of obtaining the signal of the axis sensor is the same as that explained in FIG. By selecting the reflectance of the mirror, the laser beam is distributed to the four optical fibers (4) with uniform light intensity. The adder U has a function of adding up the outputs of three phase detectors (8) corresponding to each axis and outputting the total magnetic force such as earth's magnetism as an output.

〔発明の効果〕 以上のように2本発明によれば1本来ベクトルセンサで
あるオプティカルファイバ磁力計を、その感度を保ちな
がら感磁気部の体積が小さい全磁力測定センサとするこ
とができ、航空機に搭載して使用する場合等において、
航空機の磁気雑音の影響を受けにく\することができる
[Effects of the Invention] As described above, according to the present invention, an optical fiber magnetometer, which is originally a vector sensor, can be made into a total magnetic force measurement sensor with a small volume of the magnetically sensitive part while maintaining its sensitivity, and can be used in aircraft. When using it on a
It can be less affected by magnetic noise from aircraft.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のオプティカルファイバ磁力計を示す構成
図、第2図は本発明の一実施例を示すオプティカルファ
イバ磁力計の構成図である。 (1)・・・光源、(2)・・・ビームスプリッタ、(
3)・・・全反射鏡、 (41・・・オプティカルファ
イバ、(5)・−強磁性体。 (6)・・・光検知器、(7)・・・増幅器、(8)・
・・位相検波器、(9)・・・非磁性プレート、(In
・・・非磁性留め具、αト・・加算器、(13・・・X
軸センサの中心点、(13・・・Y軸センサの中心点、
(14・・・Z軸センサの中心点。 なお1図中、同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram showing a conventional optical fiber magnetometer, and FIG. 2 is a block diagram showing an optical fiber magnetometer according to an embodiment of the present invention. (1)...Light source, (2)...Beam splitter, (
3)... Total reflection mirror, (41... Optical fiber, (5) - ferromagnetic material. (6)... Photodetector, (7)... Amplifier, (8)...
・・Phase detector, (9) ・・Nonmagnetic plate, (In
...Non-magnetic fastener, α-to...adder, (13...X
Center point of axis sensor, (13... center point of Y-axis sensor,
(14... Center point of the Z-axis sensor. In Figure 1, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1個の光源から4本のオプティカルファイバにその光強
度をほゞ均等に送出する手段と、前記オプティカルファ
イバをそれぞれ同一平面内で所要の奇数回だけ折り曲げ
て固定する手段と、前記オプティカルファイバのうち3
本のオプティカルファイバの直線部分のみに所定の厚さ
の強磁性体をコーティングまたは塗布する手段と、前記
3本のオプティカルファイバを互いに直交させる手段と
、前記3本のオプティカルファイバの長さと同じ長さで
強磁性体をコーティングまたは塗布しないオプティカル
ファイバを設ける手段と、前記4本のオプティカルファ
イバを通過した光信号を電気信号に変換する手段と、前
記強磁性体をコーティングまたは塗布しないオプティカ
ルファイバに対応する前記電気信号を基準信号として、
前記直交する3本のオプティカルファイバに対応する電
気信号をそれぞれ位相検波する手段と、前記3個の位相
検波信号を合成する手段とを備え、地磁気等の全磁力を
測定することを特徴とするオプティカルファイバ磁力計
means for transmitting the light intensity from one light source to four optical fibers almost equally; means for bending and fixing each of the optical fibers a required odd number of times within the same plane; 3
means for coating or applying a ferromagnetic material with a predetermined thickness only on the straight portions of the optical fibers; means for making the three optical fibers orthogonal to each other; means for providing an optical fiber coated or not coated with a ferromagnetic substance, means for converting an optical signal passed through the four optical fibers into an electrical signal, and an optical fiber coated or not coated with a ferromagnetic substance. Using the electrical signal as a reference signal,
An optical device comprising means for phase-detecting the electric signals corresponding to the three orthogonal optical fibers, and means for synthesizing the three phase-detected signals, and measuring the total magnetic force of earth's magnetism or the like. Fiber magnetometer.
JP20658184A 1984-10-02 1984-10-02 Optical fiber magnetometer Pending JPS6184571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20658184A JPS6184571A (en) 1984-10-02 1984-10-02 Optical fiber magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20658184A JPS6184571A (en) 1984-10-02 1984-10-02 Optical fiber magnetometer

Publications (1)

Publication Number Publication Date
JPS6184571A true JPS6184571A (en) 1986-04-30

Family

ID=16525770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20658184A Pending JPS6184571A (en) 1984-10-02 1984-10-02 Optical fiber magnetometer

Country Status (1)

Country Link
JP (1) JPS6184571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518657A (en) * 2005-12-29 2009-05-07 インテル・コーポレーション Optical magnetometer array and method of making and using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518657A (en) * 2005-12-29 2009-05-07 インテル・コーポレーション Optical magnetometer array and method of making and using the same

Similar Documents

Publication Publication Date Title
US4450406A (en) Triaxial optical fiber system for measuring magnetic fields
US5010299A (en) Method for measuring stress on steel by determining the reverse magnetic permeability under a magnetic bias field
CN111929622B (en) Multichannel gradient magnetic field measuring device based on atomic spin effect
PL183725B1 (en) Apparatus for detecting analytes by means of magnetic field
US4717253A (en) Optical strain gauge
US5305075A (en) Magnetostrictive transducer system having a three dual-strip fiber optic magnetostrictive transducers bonded into a single fiber mach-zehnder interferometer
AU757857B2 (en) Measurement of magnetic fields using a string fixed at both ends
US4881813A (en) Passive stabilization of a fiber optic nonlinear interferometric sensor
US5243403A (en) Three-axis fiber optic vector magnetometer
CN117074761A (en) Current sensor based on solid-state spin system
Fairweather et al. A vector rubidium magnetometer
US6586930B1 (en) Material thickness measurement using magnetic information
US4904940A (en) Fiber-optic multicomponent magnetic field gradiometer for first, second and higher order derivatives
US4600885A (en) Fiber optic magnetometer for detecting DC magnetic fields
US4697146A (en) Spherical shell fibre optic magnetic field sensors and magnetometers and magnetic gradient detectors incorporating them
US4665363A (en) Optical fibre magnetic gradient detector
US4814706A (en) Fiber-optic magnetic field gradiometer for first, second and higher order derivatives
US4644273A (en) Five-axis optical fiber gradiometer
US5132620A (en) Surface/subsurface corrosion detector with optical paths alterable by magnetically sensitive transducers
US4037149A (en) Multiple mode magnetometers
JPS6184571A (en) Optical fiber magnetometer
GB2171523A (en) Magnetic gradient detection
Liu et al. Partial measurements of the total field gradient and the field-gradient tensor using an atomic magnetic gradiometer
US5825182A (en) Nondestructive testing system using a SQUID
Shribak Autocollimating detectors of birefringence