JPS6184061A - Semiconductor photoelectric converter - Google Patents

Semiconductor photoelectric converter

Info

Publication number
JPS6184061A
JPS6184061A JP59206088A JP20608884A JPS6184061A JP S6184061 A JPS6184061 A JP S6184061A JP 59206088 A JP59206088 A JP 59206088A JP 20608884 A JP20608884 A JP 20608884A JP S6184061 A JPS6184061 A JP S6184061A
Authority
JP
Japan
Prior art keywords
region
regions
gate
diffusion
sensitizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59206088A
Other languages
Japanese (ja)
Other versions
JPH0760887B2 (en
Inventor
Atsushi Yusa
遊佐 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP59206088A priority Critical patent/JPH0760887B2/en
Publication of JPS6184061A publication Critical patent/JPS6184061A/en
Publication of JPH0760887B2 publication Critical patent/JPH0760887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14679Junction field effect transistor [JFET] imagers; static induction transistor [SIT] imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To raise the yield of carrier in the gate regions and to enable to improve the photoelectric conversion efficiency in a semiconductor photoelectric converter by a method wherein, when the semiconductor photoelectric converter is constituted in the structure; wherein the source region is provided in the semiconductor layer, the gate regions to encircle the source region are provided in the semiconductor layer, and moreover, the drain regions to encircle the gate regions are provided in the semiconductor layer; the drain regions are made to function as the sensitizing regions as well. CONSTITUTION:An N<-> type layer 32 is made to epitaxially grow on an N<-> type Si substrate 31, an N<-> type source region 33 is formed by diffusion in the central part of the layer 32 and P<+> type gate regions 34 are formed by diffusion while encircling the source region 33. Then, N<+> type regions 35, which are the drain regions as well as are made to function as the sensitizing regions while encircling the regions 34, are formed by diffusion up to reach the substrate 31 and a gate electrode 36 mounted on the region 33 is earthed. Moreover, a gate electrode 37 mounted on the region 34 is connected to a bias power source 40 through a resistor 39 and is given bias voltage VG and a drain electrode 38 mounted on the region 35 is connected to a bias power source 42 through a load resistor 41 and is given drain voltage VDS. The drop in voltage on the resistor 41, which is caused by photo current, is designed in such a way as to lead out from an output terminal 43 in such a way.

Description

【発明の詳細な説明】 (技術分野) 本発明は、静電誘導トランジスタ(SIT)を光検出お
よびスイッチング素子として用いる半導体光電変換装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a semiconductor photoelectric conversion device that uses a static induction transistor (SIT) as a photodetection and switching element.

(従来技術) SITを光検出およびスイッチング素子として用いる半
導体光電変換装置は、例えば特開昭58−1)3386
号、同59−107569号、同59−107570号
公報に記載されている。第2図Aは特開昭59−107
569号公報に記載された一次元センサの画素構造を示
し、1はSiより成るn+基板、2は高抵抗n層あるい
は真性半導体層、3は高不純物濃度の戸領域から成る第
1のゲート(コントロールゲートと呼ぶ)、4はコント
ロールゲート3を取り囲むように形成された高不純物濃
度の?領域から成るソース、5は陣接する画素間を分離
するための高不純物が度のど領域から成る第2ゲート(
シールディングゲートと呼ぶ)、6はSiO2、Si3
N、等のゲート絶縁膜、7はコントロールゲート電極、
8はソース電極、9はシールディングゲート電極、10
はドレイン電極を示す。順次の画素のコントロールゲー
ト電極7には図示しない画素選択回路から読出しパルス
φGllφ(,2+・・・が印加され、シールディング
ゲート電極9は全画素に亘って共通に接続され、・内示
しないバイアス回路から所定の電圧vsGが印加される
。また、ドレイン電極10は負荷抵抗11を介してビデ
第14源12に接続される。
(Prior art) A semiconductor photoelectric conversion device using SIT as a photodetection and switching element is disclosed in, for example, Japanese Patent Application Laid-Open No. 58-1) 3386.
No. 59-107569 and No. 59-107570. Figure 2 A is JP-A-59-107.
The figure shows the pixel structure of the one-dimensional sensor described in Japanese Patent No. 569, in which 1 is an n+ substrate made of Si, 2 is a high-resistance n-layer or an intrinsic semiconductor layer, and 3 is a first gate (1) consisting of a door region with a high impurity concentration. (referred to as a control gate), 4 is a high impurity concentration gate formed to surround the control gate 3. 5 is a source consisting of a region, and 5 is a second gate (5) consisting of a high impurity region for isolating adjacent pixels.
(called shielding gate), 6 is SiO2, Si3
a gate insulating film such as N, 7 a control gate electrode,
8 is a source electrode, 9 is a shielding gate electrode, 10
indicates the drain electrode. A readout pulse φGllφ(, 2+...) is applied to the control gate electrode 7 of successive pixels from a pixel selection circuit (not shown), and the shielding gate electrode 9 is commonly connected to all pixels, and a bias circuit (not shown) is applied to the control gate electrode 7 of successive pixels. A predetermined voltage vsG is applied from the drain electrode 10 to the bidet fourteenth source 12 via a load resistor 11.

第2図Bは第2図Aの等価回路図で、13は受光用のコ
ントロールゲートを有するSITを、14は寄生のシー
ルディングゲートを有するSITを等価的に示すもので
ある。
FIG. 2B is an equivalent circuit diagram of FIG. 2A, in which 13 equivalently represents an SIT having a control gate for light reception, and 14 equivalently representing an SIT having a parasitic shielding gate.

第2図Aに示す一次元センサにおいては、全画素に亘っ
て共通に接続されたシールディングゲート電極9に一定
のバイアス電圧VSGを印加するこ・とにより、各シー
ルディングゲート5がら空乏層が広がり、これにより各
画素をそれぞれ分離することができる。このような、分
離方法は構造が簡単となる特長を有するが、反面空乏層
で分離するためその近傍で発生した光電荷がシールディ
ングゲート5を通して収集されてしまい、感度が低下す
る不具合がある。このような不具合を解決する方法とし
て、シールデイングゲー)IW電極に印加するバイアス
電圧■SGを低くして空乏層の広がりを小さく抑えるこ
とが考えられるが、このようにするとコン)o−ルゲー
ト3に蓄積された光電荷がシールディングゲート5を介
して隣りのコントロールゲート3に流入するいわゆる信
号のクロストークが起こる問題がある。
In the one-dimensional sensor shown in FIG. 2A, by applying a constant bias voltage VSG to the shielding gate electrode 9 commonly connected to all pixels, the depletion layer is removed from each shielding gate 5. spread, thereby allowing each pixel to be separated from each other. Such a separation method has the advantage of simplifying the structure, but on the other hand, since separation is performed at the depletion layer, photocharges generated in the vicinity are collected through the shielding gate 5, resulting in a problem of reduced sensitivity. One possible way to solve this problem is to lower the bias voltage SG applied to the shielding gate IW electrode to suppress the expansion of the depletion layer. There is a problem in that so-called signal crosstalk occurs in which the photocharges accumulated in the gates flow into the adjacent control gates 3 via the shielding gates 5.

また、他の分離方法として、画素間に基板と同一導電型
の拡散層を設けたものも提案されている。
Furthermore, as another separation method, a method in which a diffusion layer of the same conductivity type as the substrate is provided between pixels has been proposed.

しかし、この分離構造を有する従来の半導体yC電変換
装置においては、光照射によって発生した光電荷をSI
Tのゲート領域に有効に収集するため、画素の実装密度
を高くするため等の理由から、分、離領域となる拡散層
をSITのゲート領域に近接して設けている。このため
、各画素(SIT)の受光面積が小さく、特に微弱光に
おける信号のS/N比が惑いと井に、短波長光の分光感
度が低い不具合がある。
However, in conventional semiconductor YC electric conversion devices with this separation structure, photocharges generated by light irradiation are transferred to the SI
In order to effectively collect light in the gate region of the SIT and to increase the density of pixel packaging, a diffusion layer serving as a separate region is provided close to the gate region of the SIT. Therefore, the light-receiving area of each pixel (SIT) is small, and there are problems in that the S/N ratio of the signal is particularly poor in weak light, and the spectral sensitivity for short wavelength light is low.

(発明の目的) 本発明の目的は、上述した不具合を解決し、高1憬度の
半導体充電変換装置を提供しようとするものである。
(Object of the Invention) An object of the present invention is to solve the above-mentioned problems and to provide a semiconductor charging conversion device with a high degree of failure.

(発明の概要) 本発明は、−導′亀型の高抵抗半導体より成るチャネル
領域と、このチャネル領域?介して対向して設けた一導
電型の一方の主電極領域および他方の主電極領域と、こ
れら両主電極領域間に流れる電流を制御するために前記
チャネル領域に接して設けた反対導電型のゲート領域と
、このゲート領域から少く共光励起によって生じるキャ
リアの拡散長を隔てて設けられ、キャリアの前記ゲート
領域への移動を促進する一導電型の増感領域とを具える
静″JL読導トランジスタを複数個配列したこと・を特
徴とするものである。
(Summary of the Invention) The present invention provides a channel region made of a -conductive turtle type high-resistance semiconductor, and a ? One main electrode region and the other main electrode region of one conductivity type are provided facing each other through the channel region, and a main electrode region of the opposite conductivity type is provided in contact with the channel region to control the current flowing between the two main electrode regions. A static "JL reader" comprising a gate region and a sensitizing region of one conductivity type, which is provided at least a diffusion length of carriers caused by co-photoexcitation from the gate region and promotes the movement of carriers to the gate region. It is characterized by having a plurality of transistors arranged.

ここで、例えば基板を戸とし、その反対導電型のP+拡
散層から横方向に拡かった空乏層を受光領域とすると共
に、この受光領域から離れた位置に、例えばN+基板に
達する深さの1福の狭いN+層を形成したとする。この
ようにすると、N 層は受光領域で生成した電子−正孔
対のうち、電子に対してはポテンシャルの谷間として、
逆に正孔に対しては壁として作用する。したがって、電
子−正孔対はN+層の存在によって容易に解離し、電子
はN+層に吸い取られ、正孔はN”Wtのポテンシャル
の壁で反射されてP+領域に拡散する。しかも、その正
孔は電子濃度の小さい領域を拡散することになるから、
その拡散長は長くなる。このように拡散長が長くなると
、より遠くの受光領域で生成した正孔をもP+領域に収
集でき、したがって感度が良くなることになる。
Here, for example, the substrate is used as a door, and the depletion layer that spreads laterally from the P+ diffusion layer of the opposite conductivity type is used as the light-receiving region. Suppose that a narrow N+ layer with 1 fortune is formed. In this way, the N layer acts as a potential valley for electrons among the electron-hole pairs generated in the light-receiving region.
Conversely, it acts as a wall for holes. Therefore, electron-hole pairs are easily dissociated due to the presence of the N+ layer, electrons are absorbed by the N+ layer, and holes are reflected by the N''Wt potential wall and diffused into the P+ region. Since the holes will diffuse through regions with low electron concentration,
Its diffusion length becomes longer. When the diffusion length becomes longer in this way, holes generated in a more distant light-receiving region can also be collected in the P+ region, resulting in improved sensitivity.

このことを実験的に確めた結果を第3図A−Cおよび第
4図を参照して説明する。第3図A−Cは実験に用いた
試料で、第3図AはSiより成るN+基板21上にi 
Jt722をエピタキシャル成長させ、この1層22に
戸拡散領域28を形成してPIN7オトダイオードを構
成し、第31JBはその隣接するPIN7オトダイオー
ド間にNQ”板21C達するV溝を形成して誘電体24
を埋込み、また第3図C゛はvft誘電体埋込みに代え
て戸基板21に達する戸拡散層25を形成したものであ
る。なお、第3図BおよびCにおいて、戸拡散領域23
と誘電体24およびN+拡散領域25との間の距rAX
はそれぞれ等しくなっている。実験は、各試料とレーザ
のような光源を用いた微小径の光ビームスポットとを相
対的に移動させながら、P工Nフォトダイオードの表面
に光ビームスポットを照射して各位置XにおけるPIN
フォトダイオードの光電流Iphを測定し、その感度分
布・を求める。
The results of experimentally confirming this will be explained with reference to FIGS. 3A to 3C and FIG. 4. Figures 3A to 3C show samples used in the experiment, and Figure 3A shows an i
Jt722 is epitaxially grown, and a diffusion region 28 is formed in this one layer 22 to form a PIN7 photodiode, and the 31st JB is formed with a V-groove reaching the NQ'' plate 21C between adjacent PIN7 photodiodes to form a dielectric 24.
In addition, in FIG. 3C, a door diffusion layer 25 reaching the door substrate 21 is formed instead of embedding the VFT dielectric. In addition, in FIGS. 3B and 3C, the door diffusion area 23
distance rAX between dielectric 24 and N+ diffusion region 25
are each equal. The experiment was carried out by moving each sample and a small-diameter light beam spot using a light source such as a laser, and irradiating the light beam spot onto the surface of the P-N photodiode to determine the PIN at each position X.
The photocurrent Iph of the photodiode is measured and its sensitivity distribution is determined.

第4図はその実験結果を示すもので、縦軸は光電流工、
hを、横軸はP+拡散領域23からの距離Xを表わし、
曲彫a 、 bおよびCがそれぞれ第3図A、Bおよび
Cの試料についての感度分布を示・す。曲iaが示すよ
うに、隣接するPINフォトダイオード間に何もない場
合には、光電流工phは距離Xに対して指数関数的に減
少する。これに対し、曲線すおよびCが示すように、隣
接するPINフォトダイオード間に分離領域として作用
する誘電体24およびN 拡散領域25があると、光電
流工phは分離領域内で急激に減少し、その間における
光電流工phの変化はN+拡散層25を設けた方が、誘
電体24を設けたものに比べ遥かに小さいみこの結果か
ら、戸拡散M25は感度を著しく増加させる増感領域と
して作用することが実証された。なお、第3図Gにおい
て、戸拡教鎮域28と「拡散層25との間の距離はど拡
散層25の不純物濃度が1 ×1(112am−8(7
)ときは60μmqlXIQ  Crn のときは20
 μm、 I X 10110l4” (7)ときは6
 μm % I X 10  am  のときは1/j
m程度が好適である。
Figure 4 shows the experimental results, where the vertical axis is the photocurrent;
h, the horizontal axis represents the distance X from the P+ diffusion region 23,
Curved lines a, b, and C show the sensitivity distributions for the samples of FIG. 3, A, B, and C, respectively. As curve ia shows, the photocurrent ph decreases exponentially with distance X when there is nothing between adjacent PIN photodiodes. On the other hand, as shown by curves C and C, when there is a dielectric 24 and an N diffusion region 25 between adjacent PIN photodiodes, which acts as an isolation region, the photocurrent ph decreases rapidly within the isolation region. , the change in photoelectric current pH during this period is much smaller when the N+ diffusion layer 25 is provided than when the dielectric layer 24 is provided, and from this result, the diffusion M25 is considered to be a sensitizing region that significantly increases sensitivity. It has been proven that it works. In addition, in FIG. 3G, the distance between the door expansion area 28 and the diffusion layer 25 is such that the impurity concentration of the diffusion layer 25 is 1 × 1 (112 am-8 (7
) is 60μmqlXIQ Crn is 20
μm, I X 10110l4” (7) then 6
μm % I X 1/j when 10 am
Approximately m is suitable.

(実施例) 第1図AおよびBは本発明の第1実施例を示すもので、
第1図Aは一画素の断面構造を、第1図・Bはその等価
回路を示す。本例では、N基板31上にN−エピタキシ
ャル層32を成長させ、このエピタキシャル層32にN
+ソース領域33およびこれを囲むようにP+ゲート領
域84を形成すると共に、隣接する画素間でP+ゲート
領域34から少く共正孔の拡散長を隔てた位置に、分離
領域としても作用するN+拡散層より成る増感領域35
をN+基板31に達するように形成する。なお、36.
37および38はそれぞれソース電極、ゲート電極およ
びドレイン電圧極を示し、ソース電゛極86はγ地し、
ゲート′i1!極37には抵抗89をりrしてバイアス
電源40からバイアス電圧VGを印加し、またドレイン
電極a8には負荷抵抗41を介してバイアス電源42か
らドレイン電圧vDsを印加して負荷抵抗41での光電
流による電圧降下を出力端子43から取出すようにする
(Embodiment) FIGS. 1A and 1B show a first embodiment of the present invention.
FIG. 1A shows the cross-sectional structure of one pixel, and FIG. 1B shows its equivalent circuit. In this example, an N-epitaxial layer 32 is grown on an N substrate 31, and this epitaxial layer 32 is coated with N.
A + source region 33 and a P+ gate region 84 are formed to surround it, and an N+ diffusion layer that also serves as an isolation region is formed between adjacent pixels at a position separated by a co-hole diffusion length from the P+ gate region 34. Sensitized area 35 consisting of layers
is formed so as to reach the N+ substrate 31. In addition, 36.
37 and 38 indicate a source electrode, a gate electrode, and a drain voltage pole, respectively, and a source electrode 86 is on the γ ground;
Gate 'i1! A resistor 89 is connected to the pole 37 to apply a bias voltage VG from a bias power source 40, and a drain voltage vDs is applied from a bias power source 42 to the drain electrode a8 via a load resistor 41. The voltage drop caused by the photocurrent is taken out from the output terminal 43.

第5図は本発明の他の実施例を示すものである。FIG. 5 shows another embodiment of the invention.

本例では、エピタキシャル層82に幅の狭い■溝をN+
基板31に達する深さまで堀込んで、このV溝の側面に
沿ってN+拡散領域より成る増感領・域35を形成して
V溝を絶縁物45で埋込み、N+基板31の裏面にドレ
イン電衝38を形成した点が第1図A、Bに示すものと
異なり、P+ゲート領域34と増感領域85との間は同
様に少く共正孔の拡散長を隔てている。本例においては
、V溝を形成してその側面に沿って増感領域35を形成
するものであるから、これを第1図A、Eのようにエピ
タキシャル層82の表面がら拡散して形成する場合に比
べて、■溝を含むその両側の増感領域85の幅を1〜2
μmと極めて小さくできる利点があり、受光面積をより
広くできる。
In this example, a narrow groove is formed in the epitaxial layer 82.
The trench is dug to a depth that reaches the substrate 31, a sensitizing region 35 consisting of an N+ diffusion region is formed along the sides of the V-groove, the V-groove is filled with an insulator 45, and a drain voltage is applied to the back surface of the N+ substrate 31. 1A and 1B in that the P+ gate region 34 and the sensitizing region 85 are similarly separated by a small co-hole diffusion length. In this example, since a V-groove is formed and the sensitizing region 35 is formed along the side surface thereof, it is formed by diffusing it from the surface of the epitaxial layer 82 as shown in FIGS. 1A and 1E. Compared to the case of
It has the advantage of being extremely small to μm, allowing for a wider light-receiving area.

第6図AおよびBは本発明の更に他の実施例を示すもの
である。本例では、リニアアレイセンサを示し、第6図
Aは画素構造?、第6図Bは全体の等価回路を表わす。
FIGS. 6A and 6B show still another embodiment of the present invention. In this example, a linear array sensor is shown, and FIG. 6A shows the pixel structure. , FIG. 6B represents the entire equivalent circuit.

本例においては、画素構造としてはP+ゲート領域8傷
上に絶縁膜47を介してゲート電極37を設けることに
よりゲートキャパシタを形成した点が第1図Aのものと
異なるものであり、全体の回路構成としては第2図A。
In this example, the pixel structure is different from that in FIG. The circuit configuration is shown in Figure 2A.

Bにおけるような寄生のシールディングゲートヲ有する
SITを有しない分画路が簡単になる利点がある。
There is an advantage that the branching path without the SIT with a parasitic shielding gate as in B is simplified.

なお、本発明は上述した例にのみ限定されるものではな
く、幾多の変形または変更が可能である。
Note that the present invention is not limited to the above-mentioned example, and can be modified or changed in many ways.

例えば、第5図においては絶縁物45を埋込むV溝とN
+拡散領域より成る増域領域35とを分離して設けても
よく、この場合には更にV溝絶縁物埋込みに代えてP+
領域による空乏層分離を適用することもできる。また、
増感領域35は適当なバイアスを印加することにより、
基板81から離間して形成してもよい。
For example, in FIG.
The gain region 35 consisting of + diffusion region may be provided separately, and in this case, instead of filling the V groove with an insulator, a P+
Depletion layer separation by region can also be applied. Also,
By applying an appropriate bias to the sensitized region 35,
It may be formed apart from the substrate 81.

(発明の効果) 以上述べたように、本発明によれば増感領域を設けるこ
とにより、ゲート領域でのキャリアの収集率を高めるこ
とができるから、光電変換効率を高くできしたがって感
度を向上させることができると共に、受光領域を大きく
とれ、したがって短波長光の分光感度をも向上させるこ
とができる。
(Effects of the Invention) As described above, according to the present invention, by providing a sensitizing region, it is possible to increase the collection rate of carriers in the gate region, thereby increasing the photoelectric conversion efficiency and thus improving the sensitivity. In addition, the light-receiving area can be increased, and the spectral sensitivity to short wavelength light can also be improved.

例えば、増感領域を分離領域としても作用させて本発明
に係るSITイメージセンサを構成した場・合には、こ
れを第2図Aに示すような空乏層分離を適用して構成す
る場合に比べ、感度および光感度を20〜30%改善で
きる。
For example, when the SIT image sensor according to the present invention is constructed by making the sensitizing region also function as a separation region, when the SIT image sensor according to the present invention is constructed by applying depletion layer separation as shown in FIG. 2A, In comparison, sensitivity and photosensitivity can be improved by 20 to 30%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図AおよびBは本発明の第1実施例を説明するため
の図、 第2図AおよびBは従来例を説明するための図、第8図
A−Cおよび第4図は本発明の詳細な説明するための図
、 第5図は本発明の第2実施例を説明するための図、 第6図AおよびBは本発明の第3実施例企説明するため
の図である。 31・・・基板       32・・・エピタキシャ
ル層a3・・・ソース領域    れ・・・ゲート領域
35・・・増感領域     36・・・ソース11極
37・・・ゲート電′#8   38・・・ドレイン電
極45・・・絶縁物      47・・・絶縁膜第1
図 第2図 第3図 A ph 第4図 第5図
Figures 1A and B are diagrams for explaining the first embodiment of the present invention, Figures 2A and B are diagrams for explaining the conventional example, and Figures 8A-C and 4 are diagrams for explaining the present invention. FIG. 5 is a diagram for explaining the second embodiment of the present invention, and FIGS. 6A and B are diagrams for explaining the third embodiment of the present invention. 31... Substrate 32... Epitaxial layer a3... Source region Re... Gate region 35... Sensitizing region 36... Source 11 pole 37... Gate electrode'#8 38... Drain electrode 45... Insulator 47... Insulating film first
Figure 2 Figure 3 A ph Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] 1.一導電型の高抵抗半導体より成るチャネル領域と、
このチャネル領域を介して対向して設けた一導電型の一
方の主電極領域および他方の主電極領域と、これら両主
電極領域間に流れる電流を制御するために前記チャネル
領域に接して設けた反対導電型のゲート領域と、このゲ
ート領域から少く共光励起によつて生じるキャリアの拡
散長を隔てて設けられ、キャリアの前記ゲート領域への
移動を促進する一導電型の増感領域とを具える静電誘導
トランジスタを複数個配列したことを特徴とする半導体
光電変換装置。
1. a channel region made of a high-resistance semiconductor of one conductivity type;
One main electrode region and the other main electrode region of one conductivity type are provided facing each other through the channel region, and a main electrode region is provided in contact with the channel region in order to control the current flowing between these two main electrode regions. A gate region of opposite conductivity type and a sensitizing region of one conductivity type that is provided at least a diffusion length of carriers generated by co-photoexcitation from the gate region and promotes the movement of carriers to the gate region. A semiconductor photoelectric conversion device characterized by having a plurality of electrostatic induction transistors arranged in an array.
2.前記増感領域をもつて隣接する静電誘導トランジス
タを分離するよう構成したことを特徴とする特許請求の
範囲第1項記載の半導体光電変換装置。
2. 2. The semiconductor photoelectric conversion device according to claim 1, wherein the sensitizing region is configured to separate adjacent static induction transistors.
3.隣接する静電誘導トランジスタ間に絶縁分離領域を
設け、この絶縁分離領域の側面に沿つて前記増感領域を
配設したことを特徴とする特許請求の範囲第1項記載の
半導体光電変換装置。
3. 2. The semiconductor photoelectric conversion device according to claim 1, wherein an insulating isolation region is provided between adjacent static induction transistors, and the sensitizing region is provided along a side surface of the insulating isolation region.
JP59206088A 1984-10-01 1984-10-01 Semiconductor photoelectric conversion device Expired - Lifetime JPH0760887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206088A JPH0760887B2 (en) 1984-10-01 1984-10-01 Semiconductor photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206088A JPH0760887B2 (en) 1984-10-01 1984-10-01 Semiconductor photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPS6184061A true JPS6184061A (en) 1986-04-28
JPH0760887B2 JPH0760887B2 (en) 1995-06-28

Family

ID=16517613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206088A Expired - Lifetime JPH0760887B2 (en) 1984-10-01 1984-10-01 Semiconductor photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH0760887B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388861A (en) * 1986-10-01 1988-04-19 Semiconductor Res Found Solid-state image pickup device and manufacture thereof
JPS63253675A (en) * 1987-04-09 1988-10-20 Mitsubishi Electric Corp Semiconductor device
CN105448945A (en) * 2015-12-29 2016-03-30 同方威视技术股份有限公司 Coplanar electrode photodiode array and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388861A (en) * 1986-10-01 1988-04-19 Semiconductor Res Found Solid-state image pickup device and manufacture thereof
JPS63253675A (en) * 1987-04-09 1988-10-20 Mitsubishi Electric Corp Semiconductor device
CN105448945A (en) * 2015-12-29 2016-03-30 同方威视技术股份有限公司 Coplanar electrode photodiode array and manufacturing method therefor
JP2018518838A (en) * 2015-12-29 2018-07-12 同方威視技術股▲分▼有限公司 Coplanar electrode photodiode array and manufacturing method thereof
US10411051B2 (en) 2015-12-29 2019-09-10 Nuctech Company Limited Coplanar electrode photodiode array and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0760887B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
EP0625803B1 (en) Photodiode structure
KR101116412B1 (en) Phototransistor
US4639756A (en) Graded gap inversion layer photodiode array
US4427990A (en) Semiconductor photo-electric converter with insulated gate over p-n charge storage region
Johnson et al. Highly photosensitive transistors in single‐crystal silicon thin films on fused silica
JPH0656898B2 (en) Semiconductor device
US3970843A (en) Photosensitive junction devices having controllable sensitivity
US5828091A (en) Interline charge coupled device solid state image sensor
JPS59107578A (en) Semiconductor photoelectric conversion device
JP2001060713A (en) Semiconductor having light receiving element, manufacture thereof optical pickup device
JPH0732263B2 (en) Heterojunction photodiode array
JPH03185879A (en) Photoelectric converter
US4488163A (en) Highly isolated photodetectors
JP3049015B2 (en) Active pixel cell with bandgap design
US4488038A (en) Phototransistor for long wavelength radiation
JPH06181302A (en) Ccd imaging device
US4608587A (en) Semiconductor optoelectro transducer
JPS6184061A (en) Semiconductor photoelectric converter
US4603342A (en) Imaging array having higher sensitivity and a method of making the same
US4157560A (en) Photo detector cell
US20080272413A1 (en) Light-Sensitive Component
US6228674B1 (en) CMOS sensor and method of manufacture
US5019876A (en) Semiconductor photo-electric converter
JPS59188278A (en) Semiconductor image pickup device
JPH08130324A (en) High breakdown strength planar photodecector