JPS6183666A - Carbon fiber reinforced gypsum model and original mold and intermediate mold for molded mold, gypsum powder and manufacture - Google Patents

Carbon fiber reinforced gypsum model and original mold and intermediate mold for molded mold, gypsum powder and manufacture

Info

Publication number
JPS6183666A
JPS6183666A JP59203764A JP20376484A JPS6183666A JP S6183666 A JPS6183666 A JP S6183666A JP 59203764 A JP59203764 A JP 59203764A JP 20376484 A JP20376484 A JP 20376484A JP S6183666 A JPS6183666 A JP S6183666A
Authority
JP
Japan
Prior art keywords
mold
gypsum
dispersed
fibers
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59203764A
Other languages
Japanese (ja)
Inventor
吉昭 服部
誠 石原
桜井 照世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59203764A priority Critical patent/JPS6183666A/en
Publication of JPS6183666A publication Critical patent/JPS6183666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Moulds, Cores, Or Mandrels (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、母材の石膏内に所定長さの炭素繊維を単繊維
状態で所定の割合で均一にjQ人分散させることにより
、機械的外力および温度差による内部応力などに対する
材料力学的強度を高めるとともに、石膏の硬化時体積膨
張および硬化後の乾燥完了時体積膨張を減少させ、かつ
、成型品の熱膨張率を減少させた炭素1214強化石膏
製模双および成形部用原型とその中間型、並びにそれら
の石膏粉末およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention eliminates internal stress caused by external mechanical forces and temperature differences by uniformly dispersing carbon fibers of a predetermined length in a monofilament state at a predetermined ratio in plaster, which is a base material. Carbon 1214-reinforced gypsum models and moldings that increase the mechanical strength of the material, reduce the volumetric expansion of gypsum during curing and drying after curing, and reduce the coefficient of thermal expansion of molded products. The present invention relates to part prototypes, intermediate molds thereof, gypsum powder thereof, and methods for manufacturing the same.

本明m書において「石膏製模型」とは、3次元物体の形
状見本又は最緯百的形状のことを云う。
In this specification, the term "gypsum model" refers to a sample shape of a three-dimensional object or a shape at its latitude.

従って、石膏を用いて一般には目的とする最終製品の部
分又は全体形状と同一となるように造ったひな盟あるい
は見本のことでもあり形態的にはそれ自体がQ終曲目的
物であるものをいう。従って、金4等の模型の場合は横
壁自身が、目的とする最、柊製品である場合もある。ま
た、「石膏製成形匿用原上」とは、数回の鋳込復製工程
を経て量産のための成形型を成度する場合における複製
の基礎となる石膏な巣の型のことをいう。すなわち「原
型」とは成形型を成型するためのスタートティンにある
型のことであり、成型作業の1jS実上の原点となる型
のことをいう。それ自体は最終的目的物ではないが、原
をから最終製品までの膨張及び収縮が、問題にならない
場合で、且つ形状が、最終製品と相似であるときは、模
型と識別できないことがある。その場合、最終製品が1
°個または数個の極少位生産のときは、その製品は模型
の複写物として取扱い、いかにソ品のスタートライン上
のものであっても原型とは云わない。更に「石膏製中間
型」とは、原型から成形型を鋳込成型工程により複製す
る場合、この両型の中間に成型されるすべての型のこと
をいう。例えばR磁器成7I45型の成型の場合、原型
→元型→ケース型→成形型という型の複製工程において
原型とt!2形型の中間において鋳込成型される元型、
ケース型という2種類の石膏製の型のことをいう。
Therefore, it is also a model or model made using plaster to have the same shape as a part or the whole of the intended final product, and in terms of form, it is itself a Q-end object. . Therefore, in the case of a model such as Gold 4, the side wall itself may be a holly product, which is the target. In addition, "plaster molded original material" refers to a plaster nest mold that serves as the basis for reproduction when a mold for mass production is completed through several casting reproduction processes. In other words, the "original mold" refers to the mold in the starting tin for molding the mold, and refers to the mold that is the actual starting point of the molding operation. Although it is not the final object itself, if expansion and contraction from the original to the final product is not a problem, and if the shape is similar to the final product, it may not be distinguishable from the model. In that case, the final product is 1
When producing small quantities of one or more products, the product is treated as a copy of a model, and is not considered a prototype, no matter how close it is to the starting line. Furthermore, the term "gypsum intermediate mold" refers to all molds that are formed between the two molds when a mold is reproduced from the original mold by a casting process. For example, in the case of molding the R porcelain Sei 7I45 type, the t! A master mold that is cast in the middle of two molds,
There are two types of plaster molds called case molds.

従来、石膏製模型2石−寸製原型戊るいはその中間型の
強度を増大させるには種々の方法があり、例えばβ型半
水石膏を主体としてその中にα型半水石膏を混合して混
水量を威少せしめたり、石膏内にセメンF成るいは樹脂
を混入させたりする方法があり、更に石膏内に麻等の天
然峨雄成るいはガラス繊維を混入させる方法もある。
Conventionally, there have been various methods to increase the strength of a two-stone plaster model or an intermediate model thereof. There are methods to reduce the amount of water mixed in, or to mix cement F or resin into the plaster, and there is also a method to mix natural materials such as hemp or glass fiber into the plaster.

石膏内にセメント成るいは慰脂を混入する場合、強度自
体の向上は図られるが、その他の石膏の物性が変化する
という欠点を有している。また、石膏内に麻等の天然繊
維を混入する場合、天然繊維は合成繊維に比較して引張
り強さが小さいので、石膏に対する混入皿を多くしなけ
れば強度の増大を図ることができない。しかも天然繊維
は単繊維自体が太いので、原車の場合、型の表Mgに入
り込んだ1に維の内部が成形面に露出し易く、露出した
tB維始により複ゴシされる澄(中間現成るいは成形型
)の成形面が傷付けられると共に、繊維端が露出した部
分の表面性状が不均質となり、?!1製された箆の対応
する部分がrフ製不良となり易い等の欠点を有している
When cement or lubricant is mixed into gypsum, the strength itself can be improved, but it has the disadvantage that other physical properties of the gypsum change. Furthermore, when mixing natural fibers such as hemp into plaster, the tensile strength of natural fibers is lower than that of synthetic fibers, so the strength cannot be increased unless there are many plates for mixing the plaster. Moreover, since the single fibers of natural fibers themselves are thick, in the case of a raw car, the inside of the fibers is easily exposed to the molding surface due to the Mg that has entered the surface of the mold, and the exposed tB fibers tend to be compounded (intermediate development). The molding surface of the mold (or mold) is damaged, and the surface texture of the exposed fiber end becomes uneven. ! This method has drawbacks such as the fact that the corresponding part of the 1-manufactured broom tends to be defective due to r-fu.

更に、石膏内にガラス繊ホを尾大する場合は、模型、原
型等の強度自体は僅かに向上するが、ガラスiff 稚
は硬直性を有するため、表rg部に入り込んだガラス繊
維の端部が表面にn出し、模型の場合には美感が損われ
ろと共に、K型成るいは中間型の場合には、複製される
型の成形面が慢付けられるという欠点がある。
Furthermore, if the glass fibers are made larger in the plaster, the strength of the model, prototype, etc. will be slightly improved, but since the glass fibers are rigid, the ends of the glass fibers that have entered the surface area will be In the case of a model, the appearance of the mold may be spoiled by protruding on the surface, and in the case of a K-type or intermediate mold, there is a disadvantage that the molding surface of the mold to be replicated is stuck.

本発明は、優れた強度特性、柔軟性、軽量性。The present invention has excellent strength properties, flexibility, and lightness.

低熱膨張性を備え、しかも径が極めて小さい炭素繊維を
所定の長さに切断して、所定の重量割合で硬化石膏マト
リックス内に均一に分散させて混入することにより、成
形型用原型成るいは中間型においては、硬化時膨張率、
乾燥完了脱型時の膨張率及び熱膨張係数を低下せしめる
ことにより、型の複製精度を高めると共に、型の材料力
学的強度を高め、これにより機械的外力に対ずろI′!
度(耐久性)と熱的歪による内部応力に対する強度(耐
久性)の双方を高めたものである。同様にして模型にお
いては、機械的強度を高めることにより、保存成るいは
取扱い時に受ける外力により皮雑な形状を有する部分が
折損、破損等されるのを防止すると共に、特に複製模型
においてはその複製精度(寸法精度)を高めることによ
り、高精度の模捜の製作を可能ならしめたものである。
By cutting carbon fibers with low thermal expansion and extremely small diameter into predetermined lengths, and evenly dispersing and mixing them into the hardened gypsum matrix at a predetermined weight ratio, a mold master or In the intermediate type, the expansion rate during curing,
By lowering the expansion coefficient and thermal expansion coefficient at the time of demolding after drying, the precision of mold replication is improved, and the mechanical strength of the material is increased, thereby reducing the resistance to external mechanical forces.
It has increased both its strength (durability) and its strength (durability) against internal stress caused by thermal strain. Similarly, by increasing the mechanical strength of models, parts with rough shapes can be prevented from being broken or damaged due to external forces during storage or handling, and this is particularly important in reproduction models. By increasing the reproduction accuracy (dimensional accuracy), it has become possible to produce highly accurate moso.

本発明の対象となる石膏製模型、原型としては、金目お
よび非金属、無機・有機を問わずそれらの材料のプレス
、鋳造、切削、研削、塑性加工、レーザ加工などその他
各A電の化学的・物理的すべての材料加工における石膏
製模型及び加工時に五を利用するものにおいてはその型
を成泡するための原型が含まれる。成形加工時に型を利
用するものでも、その型を成型するための基石噴となる
匹(又は形因物)と製品の形状が略々同一の場合で、C
a科材料や記念カアプのように成形型数が1個又は数個
の極少数個のときは模型及び模型apA型の中に含まれ
る。特に模型としては、電気機器、輸送機器、化工装置
、加工工作機械自体およびこれら模型も含まれる。
The plaster models and prototypes to which the present invention is applied include pressing, casting, cutting, grinding, plastic working, laser processing, etc. of metal, non-metallic, inorganic and organic materials, and other chemical processes such as various A-electronic processes.・In the case of plaster models for all physical material processing and those that utilize five during processing, this includes the prototype for foaming the mold. Even if a mold is used during the molding process, if the shape of the product is almost the same as the base stone (or material) used to mold the mold, C.
When the number of molds is very small, one or a few, such as A-family materials and commemorative Kaaps, they are included in models and model apA types. In particular, models include electrical equipment, transportation equipment, chemical equipment, processing machine tools themselves, and models thereof.

また、成形型用原型およびその中間型としては、陶磁器
の鋳込成形量、ロクロ成形型プレス成形型。
In addition, as the master mold for molds and their intermediate molds, we use ceramic casting molds, potter's wheel molds, and press molds.

成るいは紙バルブ泥漿や7丁インセラミックスの水性懸
濁液を原料とする紙器の防込成形型、プレス成形型のよ
うに石膏の吸水性を利用する成形型の成型に用いられる
もの、合成ゴム製品、プラスチック製品、非鉄金Fi1
品更には原料に粘土類を含まないいわゆるファイン七う
ミックス製品等のプレス成形型、射出成形型、鋳込成形
型、押出成形型の成型に用いられるものが含まれ、更に
、航空機機体−自動車ボディの板金プレス金型用原型、
原型を製作するための原形(最初の形態見本拳図案)成
るいはその中間的な型層が含まれる。
Paper container molds made from aqueous suspensions of paper valve slurry and 7-choin ceramics, used for molding molds that utilize the water absorbing properties of plaster, such as press molds, and synthetic molds. Rubber products, plastic products, non-ferrous metals Fi1
The products include those used for press molding, injection molding, casting molding, and extrusion molding of so-called fine seven mix products that do not contain clay as raw materials, and also include aircraft fuselages and automobiles. Prototype for body sheet metal press mold,
It includes the original form (first form sample fist design) for producing the original form, or an intermediate mold layer.

また、本発明に用いられる炭素繊維の種類は、ポリアク
リロニトリル系、ピッチ系、レーヨン基或るいは、リグ
ニンポバール系のいずれでもよいが、模を成るいは成形
型用原型の強度を増大させる関係から高強度式るいは高
弾性の炭素繊維が望ましく、具体的には引張強さ200
]cgf/mm2@g/mm2)以上、引張弾性係数2
0.OOOkgf/mm2(にg/m m勺以上のもの
が望ましい。
Furthermore, the type of carbon fiber used in the present invention may be polyacrylonitrile-based, pitch-based, rayon-based, or lignin poval-based, but carbon fibers that form a pattern or increase the strength of the master mold for molding may be used. High-strength or high-elasticity carbon fiber is desirable, specifically tensile strength of 200
]cgf/mm2@g/mm2) or more, tensile modulus of elasticity 2
0. OOOkgf/mm2 (g/mm2 or more is desirable).

本発明においては、団塊状になり易い炭素繊維を母材の
石膏マトリ、クス内に団塊を生ずることなく、単一繊維
状態で均一に分散せしめて混入することが極めて重要な
要素であり、かかる観点から強化材として石膏マトリッ
クス内に混入せしめる炭素繊維の長さおよび石膏に対す
る重量割合が定められる。
In the present invention, it is extremely important to uniformly disperse and mix the carbon fibers, which tend to form into nodules, in the gypsum matrix and the matrix of the matrix without forming nodules in the form of single fibers. From this point of view, the length and weight proportion of the carbon fibers to be incorporated into the gypsum matrix as reinforcing material relative to the gypsum are determined.

炭素繊維を無数本の単繊維に離散せしめて母材の石膏マ
トリックス内に混入するのであるが、後述する理的によ
り炭素繊維の長さは5ないし200鶴、望ましくは5な
いしlooFlmにすることが必要である。
The carbon fibers are dispersed into countless single fibers and mixed into the gypsum matrix of the base material, but based on the theory described below, the length of the carbon fibers can be 5 to 200 m, preferably 5 to 100 m. is necessary.

第1図に、石膏100重に部、水60重量部。Figure 1 shows 100 parts by weight of gypsum and 60 parts by weight of water.

炭素緘維0.5ffiit部の割合から成ル15a+m
X25mmX250mmの石膏試験片における炭素繊維
の長さと、抗折強度(曲げ強度)との関係を示す試験結
果のグラフが表わされており、これから明らかのように
炭素繊維の長さが15−以下では抗折強度が急激に低下
することがわかる・ここで、母材の石膏マトリックス内
に分散させて混入せしめる炭素繊維の長さを5ないし2
00關と限定したのは、長さが5gg未満であると母材
の石膏粒子と炭素繊維の単繊維との総接着面積の不足に
より模型式るいは成形型用原型の十分な強度の向上が図
れなく、また長さが200m以上であると、単繊維への
離散粉末および水との混合かく拌時成るいはハンドレイ
アップ時における取扱いが面倒になると共に、石膏マト
リ、クス内への均一分散が困難となるためである。
Made from the proportion of 0.5ffiit part of carbon fiber 15a+m
A graph of the test results showing the relationship between the length of carbon fiber and bending strength (bending strength) in a gypsum test piece measuring 25 mm It can be seen that the bending strength suddenly decreases.Here, the length of the carbon fibers dispersed and mixed into the gypsum matrix of the base material is 5 to 2.
The reason for limiting the length to 00 is that if the length is less than 5 gg, the total adhesion area between the gypsum particles of the base material and the carbon fiber single fibers will be insufficient, and the strength of the model or mold prototype will not be sufficiently improved. If the length is longer than 200 m, it will be difficult to handle when stirring the discrete powder and water into single fibers or when laying it up by hand, and it will also be difficult to handle it when stirring the discrete powder and water into single fibers or when laying it up by hand. This is because dispersion becomes difficult.

鋳込作業を必要とするときは、炭素繊維の長さは100
m以下でないと作業困難となる。従って中間型の場合は
さないしLoosmの炭素繊維を利用する必要がある。
When casting work is required, the length of carbon fiber is 100 mm.
If it is not less than m, it will be difficult to work. Therefore, in the case of an intermediate type, it is necessary to use Loosm carbon fiber.

まず、常法により製造された炭素繊維を5ないし100
slI、または6ないし200flの長さに切断した後
に、所定の方法により無数本の単繊維に!!赦させる。
First, 5 to 100 carbon fibers manufactured by a conventional method are
slI, or cut into lengths of 6 to 200fl, and then made into countless single fibers using a prescribed method! ! Forgive me.

束状の炭素繊維をjlt繊維に離散させる方法の一例と
して以下のものがある。まず、束状の炭素繊維を酸化雰
囲気中で加熱して表面に塗布された取扱い安定化用のサ
イジング剤を酸化させて除去するか、またはアセトン溶
剤で洗い流し処理してサイジング剤を除去する。加熱し
てサイジング剤を除去する場合の加熱温度は、表面に塗
布されたサイジング剤との関係により相対的に定められ
るものであるが、炭素繊維の一般的な安全使用最高温度
である300℃前後で行うことが望ましい。サイジング
剤を加熱除去した炭素−には、炭素繊維を構成する無数
本(通常は1,000ないし24,000本)の極めて
径の小さい(通常はコないし10/7111)単Jaa
に容易に分散される。
An example of a method for dispersing bundled carbon fibers into jlt fibers is as follows. First, a bundle of carbon fibers is heated in an oxidizing atmosphere to oxidize and remove the sizing agent for handling stabilization applied to the surface, or the sizing agent is removed by washing with an acetone solvent. The heating temperature when removing the sizing agent by heating is determined relatively depending on the relationship with the sizing agent applied to the surface, but it is around 300°C, which is the general maximum safe use temperature for carbon fiber. It is desirable to do so. The carbon from which the sizing agent has been removed by heating is treated with carbon fibers containing countless (usually 1,000 to 24,000) very small diameter (usually 1 to 10/7111) carbon fibers that make up the carbon fibers.
easily dispersed into

次に、サイジング剤を除去して所定の長さに切断された
炭素繊維を水槽内に投入し、超音波振動を加えつつかく
拌羽根により緩やかに回転させると、先程の加熱により
サイジング剤が除去されて分散され易くなった炭素f8
維は、超音波振動と駿やかなかく拌との相乗作用により
、団塊を生ずることなく無数本の径の極めて小さい単繊
維に分散される。かく拌の際に、かく拌羽根により炭素
繊維が(j付けられることがないように、その回転数は
、直径60C1B程度の水槽において40ないし60 
rpmにする必要がある。分散処理後に、分散された缶
数本の単繊まIを水槽より取出し、脱水して乾燥する。
Next, the sizing agent is removed and the carbon fibers cut to a predetermined length are placed in a water tank, and the sizing agent is removed by heating when the carbon fibers are gently rotated by a stirring blade while applying ultrasonic vibrations. Carbon f8 becomes more easily dispersed
Due to the synergistic effect of ultrasonic vibration and rapid stirring, the fibers are dispersed into countless single fibers with extremely small diameters without forming any lumps. During stirring, the rotation speed should be set at 40 to 60° in a water tank with a diameter of about 60C1B so that the carbon fibers are not attached by the stirring blade.
It needs to be in rpm. After the dispersion treatment, several cans of dispersed single fibers are taken out from the water tank, dehydrated and dried.

また、束状の炭素m維を単繊維に離散させる他の方法と
して、炭素繊維を予め水溶性サイジング剤でサイジング
処理しておく方法がある。即ち、水溶性サイジング剤に
よりサイジング処理された束状の炭素mmfr:5ない
しloosms又は5ないし200tmの長さに切断し
ておき、そして、1回の混合割合に適合した炭素繊維を
予め計1し、この計量された炭素繊維を、1@の混合割
合に適合した水を入れた容器内に投入してかく拌羽根に
より緩やかにかく拌させると、炭素繊維に塗布された水
溶性サイジング剤が直ちに水中に溶出して自己拡散する
と共に、かく拌羽根のかく押作用により束状の炭素繊維
は水中において団塊を生ずることなく無数本の径の極め
て小さい単繊維に均一に分散される。この方法による場
合も、かく拌の際に、かく拌羽根により炭素繊維が傷付
けられないように、その回転数は直径60cm程度の容
器において4Qないし60 rpmにする必要がある。
Another method for dispersing bundled carbon m-fibers into single fibers is to pre-size the carbon fibers with a water-soluble sizing agent. That is, a bundle of carbon fibers sized with a water-soluble sizing agent is cut into lengths of mmfr: 5 to loosms or 5 to 200 tm, and a total of 1 carbon fiber that matches the mixing ratio of one time is cut in advance. When the weighed carbon fibers are put into a container containing water that matches the mixing ratio of 1@ and are gently stirred with a stirring blade, the water-soluble sizing agent applied to the carbon fibers is immediately absorbed. The carbon fibers are eluted into the water and self-diffused, and the bundle-like carbon fibers are uniformly dispersed into countless single fibers with extremely small diameters without forming lumps in the water due to the pushing action of the stirring blades. Even in the case of this method, the rotation speed must be set at 4Q to 60 rpm in a container with a diameter of about 60 cm to prevent the carbon fibers from being damaged by the stirring blades during stirring.

この方法により炭X繊維を単繊維に離散させる場合には
、炭素繊維の単−雄が水中において均一に分散された容
器内にそのまま1回の混合量に適合した石膏粉末、並び
に硬化遅延剤、減水剤等の添加剤を投入して混合かく拌
することにより石膏泥漿をつくる。
When dispersing Charcoal A gypsum slurry is created by adding additives such as water reducing agents and mixing and stirring.

次に、単繊維に離散された炭素繊維を混入した石膏泥漿
をつくる方法について述べるならば、石譬粉末に対する
炭素繊維の割合は、後述する理由により0.01ないし
2.4重量%(硬化した模泡成るいは成形用原型の母材
の石膏に対する炭素21の割合に換算するとほぼ0.0
08ないし2.0重量%)、望ましくは0.1ないし1
.0重量%にすることが必要である。第2図は、石臂粉
末100重量部、水60重2部の原料調合に対して、長
さ20朋の炭素繊維を所要針部部(種々の¥fX量部)
の割合で混入した15IIImX25mmX250mm
 (i’)石膏試験片における混入炭素繊維の石膏粉末
に対する重量%と、抗折強度との関係を示す紙膜結果の
グラフである。第2図から明らかのように、石膏粉末に
混入する炭素繊維の重fIk割合が大きくなる程、抗折
強度が大きくなる。
Next, to describe a method for making gypsum slurry containing dispersed carbon fibers mixed into single fibers, the ratio of carbon fiber to gypsum powder should be 0.01 to 2.4% by weight (hardened When converted to the ratio of carbon 21 to the plaster of the base material of the model foam or molding model, it is approximately 0.0.
08 to 2.0% by weight), preferably 0.1 to 1
.. It is necessary to reduce the amount to 0% by weight. Figure 2 shows the required needle part (various ¥fX amount parts) of carbon fiber with a length of 20 mm for a raw material mixture of 100 parts by weight of stone arm powder and 2 parts by weight of 60 parts of water.
15IIIm x 25mm x 250mm mixed in the proportion of
(i') It is a graph of paper film results showing the relationship between the weight percent of mixed carbon fiber to gypsum powder in a gypsum test piece and bending strength. As is clear from FIG. 2, the greater the fIk ratio of carbon fibers mixed in the gypsum powder, the greater the bending strength.

ここで、石膏粉末に対する炭素uA維の混入割合を0.
01ないし2.4重世%とするのは、炭素椙雑の混入割
合が0.01重f%未満では石膏粉末に対する炭素繊維
の割合が少な過ぎて模型式るいは成形散剤原型の十分な
強度の向上を図ることができない。また炭−Jg織繊維
混入割合が2.4重量%をこえると、石膏泥漿又は泥状
物をつくる際に炭素繊維の割合が多過ぎて、石膏泥漿又
は泥状物内に炭素繊維を単繊維状態で混入することがで
きないこと及びハンドレイアップなど1lli?層作業
が困難になることによる。中間型の場合炭素繊維混入率
を石膏粉末に対し0.0工ないし1.0%とする。1.
0%をこえると単繊維状態で石膏泥漿中に均一に分散さ
せることができず炭素繊維の団塊が生じ易くなると共に
、石膏泥漿を母&丙に流し込む際の流動性が悪くなって
鋳込作朶困頓となり、成型された中間型内部に炭素繊維
の団塊が生じ易くなり、祷密な巾間聾としての機能を満
足しなくなる。
Here, the mixing ratio of carbon uA fibers to gypsum powder is 0.
The reason for setting it at 0.01 to 2.4 weight percent is that if the mixing ratio of carbon fiber is less than 0.01 weight percent, the ratio of carbon fiber to gypsum powder is too small, and the model or molded powder prototype may not have sufficient strength. It is not possible to improve the situation. Furthermore, if the ratio of charcoal-Jg woven fibers mixed exceeds 2.4% by weight, the ratio of carbon fibers will be too large when making gypsum slurry or slurry, and carbon fibers will be mixed into the gypsum slurry or slurry as single fibers. 1lli such as not being able to mix in the state and hand lay-up? This is because layer work becomes difficult. In the case of an intermediate type, the carbon fiber mixing rate is set to 0.0% to 1.0% based on the gypsum powder. 1.
If it exceeds 0%, the carbon fibers cannot be uniformly dispersed in the gypsum slurry in the form of single fibers, making it easy to form carbon fiber nodules, and the fluidity when pouring the gypsum slurry into the matrix becomes poor, making casting difficult. This causes carbon fiber lumps to form inside the molded intermediate mold, making it impossible to satisfy the function of a dense interspace deaf.

そして、面述のサイジング剤を除失して予め祖Fa維に
離散された炭素繊維を用いて、炭素は雌が均一に分散さ
れた石す泥ダ(をつくるには、混合用容器内に一回の混
合量に適合した水および硬化遅延剤、減水剤、充填材と
しケイ石粉令炭酸カルシウムー石灰石粉等の膨張収縮制
御剤等の必要な添加剤を予め入れておき、次に、この容
器内に予め計量された所定量の単繊維に離散された炭素
繊維3投入し、最俵に所定量の石膏粉末を投入してこの
容器を真空かく拌機に装着すると共に、かく拌羽根を低
速回転させて混合かく拌すると、炭素1z雑の単繊維が
石婦泥叱内に団塊を生ずることなく均一に分散された石
・力泥シtが得られる。炭素鳴維が石膏泥炭内に団!I
I ’2生ずることなく均一に分散されるのは、石膏粉
末に対する炭素繊維の割合が極めて少ないからである。
Then, by removing the sizing agent mentioned above and using the carbon fibers that have been dispersed into fibers in advance, the carbon fibers are placed in a mixing container to create a stone slurry with uniformly dispersed carbon fibers. Fill the container with necessary additives such as water suitable for the amount of mixing at one time, a hardening retardant, a water reducing agent, and an expansion/contraction control agent such as filler and silica powder (calcium carbonate-limestone powder). A pre-measured amount of carbon fibers (3) dispersed into monofilaments is placed in the container, a predetermined amount of gypsum powder is added to the topmost bale, the container is attached to a vacuum stirrer, and the stirring blades are turned at low speed. When mixed and stirred by rotation, a stone/chikaratoshit can be obtained in which carbon single fibers are uniformly dispersed within the gypsum peat without forming any lumps. !I
The reason why the carbon fibers are uniformly dispersed without producing I'2 is that the ratio of carbon fibers to gypsum powder is extremely small.

そして、石膏!4+”ll模型成るいは原型を製造する
方法は担々あるが、ある場合には、目的とする原型! 又は模型に近似のオリジナル陣物(顕現)を押型法で「
呈どりJして母型をっくる0次に目的とする模型式るい
は原型よりもやや大きいまたは小さい18B成るいは雄
型部を有する粘土や石膏又はプラスチック製のこの母型
内に炭素繊維が均一に分散された上記石膏泥漿を流し込
んで所定時間放電し、硬化後に母型を分離して脱厘し、
しかる後に所定温度で十分に乾燥すると、内部に炭素慎
維が均一に分散された石膏硬化体が得られ、この石膏硬
化体をフクロ上で削り出したり、成るいは小さ百の母型
からの硬化体の場合はこれにさらに石膏を塗布させたり
して、所望の石膏製模型式るいはIiX型を得る。成る
いは適肖なプラスチック芯型の上にfltに手塗り法に
よりレイアップし、太き目の硬化体を得たのち削り出し
により少し太き目の模型又は原型を製作し、これより前
記母型を複写で得たのちに前記工程に移ることもある。
And plaster! There are many ways to manufacture a model or a prototype, but in some cases, the desired prototype! or an original jinbutsu (manifestation) that approximates the model is made by the pressing method.
Place carbon fiber inside this matrix made of clay, plaster or plastic, which has a 18B or male mold part that is slightly larger or smaller than the target model or original model. The above-mentioned gypsum slurry in which gypsum is uniformly dispersed is poured, discharged for a predetermined period of time, and after hardening, the matrix is separated and removed,
After drying sufficiently at a predetermined temperature, a hardened gypsum body with carbon fibers uniformly dispersed inside is obtained. In the case of a hardened body, plaster is further applied to it to obtain a desired plaster model type or IiX type. Lay it up by hand coating on a suitable plastic core mold to obtain a thick hardened product, then cut it out to make a slightly thicker model or prototype, and from this, use the above-mentioned method. The above process may be carried out after obtaining a mother mold by copying.

このような、これら模型、原型造り作業を数回繰り返す
こともある。いずれの場合も注型(鋳込)作業の場合は
、炭素繊維混入量は石膏粉末に対し1%までであるが、
塗り作業の場合は2.4%可能である。
This process of creating models and prototypes may be repeated several times. In either case, in the case of casting (casting) work, the amount of carbon fiber mixed in is up to 1% of the gypsum powder, but
In the case of painting work, 2.4% is possible.

炭素繊維の単iλ維の径は極めて小さく、シかも豊かな
柔軟性を有しているので、模型の表面成るいは原墓の成
形面に炭素繊維の匈j部が露出しても殆んど問題はない
。しかし、特に以後複製工程を行う原型の場合において
、成形面に炭素0維の端部が露出するのを防止する必要
がある場合は、前記のように母型に流し込んで原型の基
麺となる石膏硬化体を型成形する際に、母型内に炭素j
3維の混入されていない純粋な石膏泥漿を流し込んで予
め薄い層を形成しておき、しかる後に炭素繊維が混入さ
れた石台泥梨を流し込んで石膏硬化体を成形すると、原
型の成形面に炭素繊維の端部が露出するのを防止できる
。同様のことが模型についてもいえる。
The diameter of a single carbon fiber fiber is extremely small and it has great flexibility, so even if the protrusion of the carbon fiber is exposed on the surface of the model or the molded surface of the original grave, it will hardly be exposed. There's no problem. However, if it is necessary to prevent the ends of the carbon fibers from being exposed on the molding surface, especially in the case of a master mold that will be subjected to a subsequent replication process, it can be poured into a mother mold as described above to serve as the base noodle of the master mold. When molding a gypsum hardened body, carbon j is added into the matrix.
3. Pour pure gypsum slurry with no fibers mixed in to form a thin layer in advance, and then pour stone base mud mixed with carbon fibers to form a hardened gypsum body. It is possible to prevent the ends of the carbon fibers from being exposed. The same thing can be said about models.

ここで、彫刻模様のあるプラスチック板状体を鋳込成形
するための石′:FM製成形型を多数個製造する場合を
第3図を参照して説明する。
Here, a case will be described with reference to FIG. 3, in which a large number of molds made of FM are manufactured for casting a plastic plate-shaped body having a carved pattern.

まず、上記したようにして、炭素を維が均一にを使用し
、内・外表面は純石膏を使用した石膏製原型1をつくる
。このIIx型1のt5!様面から下部元型2を複製U
作する。この下部元型2は今ばSの精密CU造の場合、
マスター型とも呼ばれている。この下部元種2から上方
の雄型部を有する雌型3と下方の唯整4をR頃製作する
。この下方の雌型4は石膏泥漿注入05を有する。この
上下の雌型3゜4を合わせたものがいわゆる下型用ケー
ス型6である。このケース型6に石身泥漿注入口5より
炭素*aが均一に分[及された上記石t!泥漿を注入す
る。常圧(大気上)で石1↓泥漿を注入する場合は、1
f3t’N(ハ)に示されるケース型6は上下半転した
状態で行わねばならない。所定時間数1dシ硬化後上型
である日型3と下型である雄型4とを分離して目的の成
形型下型フを取り出す。回頭にして原型の上面から上部
元型を製作し、この上部元型から、ヒ型明ケース澹を製
作し、これに石−+J泥漿を注型してr!2彩型り癩8
を得る。この上ゴ8.下型7を組み合わせ成形型9とな
る。本発明に係る炭素t51維強化石膏製原型成るいは
中間型は、鎗用uS熱が張係数、硬化過程での体積膨張
串ならびに乾燥完了後体積llr張克がいずnも小さい
ので、1ユU記した合計3回の形状複Iρ工1平におい
て、上述の炭素tく維を均一に分散混入させた石膏を利
用するならば、原型から成形型まで寸法変化の少ない高
精度の型の複製が可能となる。
First, as described above, a plaster model 1 is made using carbon fibers uniformly and pure gypsum on the inner and outer surfaces. This IIx type 1 t5! Duplicate the lower archetype 2 from the aspect U
make This lower prototype 2 is now S precision CU construction,
Also called master type. From this lower master mold 2, a female mold 3 having an upper male mold part and a lower mold 4 are manufactured around R. This lower female mold 4 has a plaster slurry injection 05. The combination of the upper and lower female molds 3.degree. 4 is the so-called lower case mold 6. Carbon*a was evenly distributed into this case mold 6 from the stone slurry inlet 5. Inject the slurry. When injecting 1 stone ↓ slurry at normal pressure (atmospheric pressure), 1
The case type 6 shown in f3t'N (c) must be rotated half upside down. After curing for a predetermined number of hours, the upper mold 3 and the lower mold 4 are separated to take out the desired lower mold. Turn the head and create an upper model from the top of the model. From this upper model, create a H-type light case, and cast stone + J slurry on it. 2 colored molds 8
get. 8. The lower mold 7 is combined to form a mold 9. The master mold or intermediate mold made of carbon T51 fiber-reinforced plaster according to the present invention has a small tensile coefficient, a volume expansion skewer during the curing process, and a small volume after drying. If you use plaster in which the above-mentioned carbon fibers are evenly dispersed and mixed in a total of 3 times of shape duplication as shown in U, it is possible to reproduce a high-precision mold with little dimensional change from the original mold to the mold. becomes possible.

また、上述した方法により炭素l!、FMが均一に分散
された石膏泥漿をつくると、石膏泥ムレlをつくろ毎に
微たの炭素繊維を正確に計量しなければならず面倒であ
る。そこで、軽址でしかも浮遊性に富み、取扱い困難な
炭素繊維を循環するジェット空気流吃るいは揺動回転を
利用して予め石膏粉末内に均一に単戯維状すで混入分散
せしめ、これを原料石膏粉末として泪いても良い。これ
により石膏泥漿をつくる毎に一回の混合量に適合した微
量の炭素繊維のみを計度するという面倒な操作を不要に
することができる。
Moreover, carbon l! When a gypsum slurry in which FM is uniformly dispersed is made, it is troublesome to accurately measure the minute amount of carbon fiber each time the gypsum slurry is made. Therefore, the carbon fibers, which are lightweight, highly buoyant, and difficult to handle, were mixed and dispersed uniformly into the gypsum powder in advance using circulating jet air flow or rocking rotation. It may also be used as a raw material gypsum powder. This eliminates the need for the troublesome operation of measuring only a small amount of carbon fibers suitable for the amount of mixing once each time gypsum slurry is made.

替環するジェット空気流を利用した混合方法について具
体的に述べろと、石膏粉末と単1c維に離散された炭素
繊維とを石膏粉末に対して炭素檎維をG、OLないし5
正伍俤の割合で混合装屋内に投入すると、石膏粉末と単
繊維に離牧された炭素懺謙とがジェット空気流により飛
散された状態で多数回循環する間に適切に混合され、し
かる後にサイク党ン成るいはバックフィルターにより空
気流内から分Y11回収すると、石に?粉末と/iiζ
11に口数された炭素繊維とが均一【こ混合した炭譜瞥
λJ入つ石膏粉末が得られろ。ここで、ジェット空気流
の圧力は工ないし2kg!、ム” (x ic/c+g
”)の低圧力であることが必要であり、空気圧を高くす
ると混合の際に、石膏粒子どうし、成るいは石膏粒子と
炭素繊維との四突力が大きくなって、石1粒子および炭
素繊nのいずれもが粉砕されて石膏を材としての物性が
変化し、好ましくない◇ また、石償粉末に炭素繊維を均一に混合する別の方法と
して揚動回転を利J■シたγ・L合方法がある。
To specifically describe the mixing method using a jet air flow that changes the ring, the gypsum powder and the carbon fibers dispersed into 1C fibers are mixed into the gypsum powder and the carbon fibers are mixed into G, OL or 5G.
When the gypsum powder and the carbon fibers separated into single fibers are poured into the mixing chamber at the correct ratio, the gypsum powder and the carbon fibers are dispersed by the jet air stream and circulated many times to be properly mixed. If Y11 is collected from the air stream by a cycler or a back filter, will it turn into stone? powder and /iiζ
A gypsum powder containing carbon fibers uniformly mixed with 11 carbon fibers is obtained. Here, the pressure of the jet air flow is 2 kg! , M” (x ic/c+g
”) is required, and if the air pressure is increased, the thrust force between the gypsum particles or between the gypsum particles and the carbon fibers will increase, causing a single stone particle and carbon fiber to ◇ In addition, as another method for uniformly mixing carbon fibers with gypsum powder, lifting rotation is used as a method for γ・L. There is a way.

これは第4図に示されるように、3屈自在の袋体11内
に石膏粉末と、石1(隻維に雛敗された炭ゴ1ユ維とを
石交粉末に対して炭プサ簀4弐絋を0.1ないし5正伍
俤の割合で投入し、袋体11の底部に取付けられた揺1
tilJ!412を、回転ど÷に13に信心して装着さ
れた揺動軸14によりj言動回転させろと、袋体11内
の混合物が加速されて、ぞのム度の大きさ並びに方向が
任意に変化し、これにより袋体11内の石膏粉末および
炭素kM Aaが均一に混合される。
As shown in Fig. 4, gypsum powder and stone 1 (1 piece of charcoal that has been crushed by a single fiber) are placed in a bag 11 that can be bent freely. Put 4 liters of bamboo in the ratio of 0.1 to 5 liters,
tilJ! When 412 is rotated by the swing shaft 14 attached to 13, the mixture inside the bag body 11 is accelerated, and the magnitude and direction of the momentum change arbitrarily. As a result, the gypsum powder and carbon kM Aa in the bag body 11 are uniformly mixed.

尚、石膏粉末内に炭素la維を混入する際に、硬化遅延
剤、減水剤等の必要な添加剤を同時に混入することも可
能である。
Incidentally, when mixing the carbon la fibers into the gypsum powder, it is also possible to simultaneously mix necessary additives such as a hardening retardant and a water reducing agent.

また、上記した石膏粉末は、無数本の単絨番准状態に離
散された炭素繊維が石膏粉末内に均一に混入分散された
ものであるが、ポリビニールピロリドン、ポリビニール
アルコール傅の水溶性サイジング剤でサイジング処理さ
れた炭素1維のjつ合は、予しめ45翰維に理数する必
要はなく、石膏泥漿をつくる際に水溶性サイジング剤が
水中にγB出して自己分散する性質を有するので、袋体
内の石・省粉末内に束状のままで投入し混入することが
できる。
In addition, the above-mentioned gypsum powder is made by uniformly mixing and dispersing carbon fibers dispersed into countless single fibers in the gypsum powder, but water-soluble sizing materials such as polyvinyl pyrrolidone and polyvinyl alcohol It is not necessary to calculate the number of carbon fibers sized with the agent to 45 fibers in advance, since the water-soluble sizing agent has the property of releasing γB into water and self-dispersing when making gypsum slurry. It can be mixed into the stone/saving powder inside the bag as a bundle.

更に、石膏粉末内に炭素懺堆を使用時における這i11
割合よりも高い割合(上限:51量%)で混入分散した
原料面τを粉末を使用する場合は、使用時において再度
方寸粉末を混合して、石膏粉末と炭fJaMとを石膏粉
末に対して炭素F、! 維が、0.1ないし1瓜i1%
又は0.1ないし2−4 重if%のニiJ合になるま
で希釈しなければならないが、この方法によれば炭素繊
准が混入された石;q粉末の輸送費の節減を図ることが
できる。
Furthermore, when using carbon slag in gypsum powder,
When using powder with the raw material surface τ mixed and dispersed at a higher proportion than the above ratio (upper limit: 51%), mix the square powder again at the time of use, and add the gypsum powder and charcoal fJaM to the gypsum powder. Carbon F! fiber is 0.1 to 1%
Alternatively, it must be diluted to a concentration of 0.1 to 2-4% by weight, but this method can reduce the transportation cost of stone mixed with carbon fibers; can.

ここで石膏粉末に対する炭素繊維の割合を0.01ない
し5m 量%とするのは、52iHa%をこえると単繊
維状態での混入が1]覆であり、0.01瓜ユ%未;1
では、そのままでは強化型材として利用できないからで
ある。希釈せずにそのまま型戊型原1’)として用いる
場合は、石−&’S>末に対して、炭薫俄雑の混入割合
を0,01ないし1!iiム%又は0.01ないし2.
4重fi%とする。
Here, the ratio of carbon fiber to gypsum powder is set to 0.01 to 5 m%, because if it exceeds 52 iHa%, the mixture in the form of single fibers will be 1].
This is because it cannot be used as a reinforcing material as it is. When using it as a mold original 1') without diluting it, the ratio of charcoal smoke to the stone is 0.01 to 1! ii % or 0.01 to 2.
It is assumed to be 4 times fi%.

炭素繊維を混入した石膏は、模型成るいはry、型の型
材として利用する場合、水和硬化時におけるΣ張車が小
さいと共に、半乾4f’J4 ’ff4化完了脱型時の
の本12 E張車および使用時藷膨張係数が小さいので
、母願に14シ込んで反復複製する1′乏の複製品の精
度がよく、正確な複製品ができる。また、熱膨張゛係数
が小さいので、温度変化による膨張・収縮が小さく、高
博度の模型式るいは原型となる。従って、数回の反復複
製を桶り返しても、最初の型と最錫のをとの複製誤差が
少く良好である。この点は一般工業模型成るいは原型の
ゴ材として最も重要なことである。
When plaster mixed with carbon fiber is used as a material for a model, rye, or mold, the Σ tension during hydration hardening is small, and the sigma tension is small when the mold is removed after semi-dry 4f'J4'ff4 is completed. Due to the E-stretch wheel and the small expansion coefficient when used, the accuracy of the 1'-thin reproduction product, which is repeatedly reproduced by inserting 14 sheets into the original material, is high and accurate reproduction products can be produced. In addition, since the coefficient of thermal expansion is small, expansion and contraction due to temperature changes is small, making it a highly accurate model or prototype. Therefore, even if the mold is repeatedly replicated several times, the reproduction error between the first mold and the tin mold is small and the quality is good. This point is most important for general industrial models or original materials.

尚、石膏製模型およびffXFJIを製作する場合は、
鋳込成形法の他、FRPのハンダレイアップ法と同様に
手作業で石膏泥漿を危布積洛する方法も適用でき、しか
5二重用石膏製模型の場合(ま一般に大型のものが多く
、この場合は大きな強度を要求されることもあって、石
膏泥漿又は泥状物中に混入される炭素繊維の長さの上限
は200m、混入量の上限は水和物で2.0重世(まで
多くしても作業上差支えない。
In addition, when producing plaster models and ffXFJI,
In addition to the casting method, a method of manually applying plaster slurry, similar to the FRP solder lay-up method, can also be applied, but in the case of 5-layer plaster models (generally large ones, In this case, great strength is required, so the upper limit of the length of carbon fiber mixed into the gypsum slurry or slurry is 200 m, and the upper limit of the amount of carbon fiber mixed with hydrate is 2.0 times ( There is no problem in the work even if the number is increased.

また、模型自体は金属製、木製成るいは天然物であって
、これを上記石膏泥漿又は泥状物中に押型法により型ど
りして石2嘔横型複写i+u捜とし、これより石膏製日
型複写コニ、型を製作することもできる。
The model itself is made of metal, wood, or a natural product, and is molded into the above-mentioned plaster slurry or slurry by a molding method to obtain a stone-shaped horizontal copy i+u. Copies and molds can also be made.

次に、本発Il!lJの実施例並びに比較例を挙げる。Next, the original Il! Examples and comparative examples of lJ are given below.

実施例1 ポリアクリロニトリル系匙鬼維を約300℃で′Aへ処
理した後に、更に窒素ガス雰囲気中で約13oO℃で熱
処理して黒鉛化し、直径約7μmの単4:1雑を約60
00本−束とした炭緊囁維を用いた。この炭?I FJ
 雑の物性は、引張qさ300kgf/m+y+” (
IC/mm2)、引張弾性係数23.OOOkgf/m
m” (IC/mm2)、密度1゜75ジノ、IAea
係771 0. lXl0−’7’Q 、J伝>jJ率
15Kca工/mhr”Oα7.4sw/wax) 、
比熱0.17Q&工/g’0(0,71に:r/kg*
K)であった。この炭X< ta 1mを約20鴎の長
さに切断して、水中にて超音波振動とかく拌との櫂東作
用により無数本の章心碓に離散させた。β右回粉末工O
O重量部、水60重量部。
Example 1 After treating polyacrylonitrile-based fibers to 'A' at about 300°C, they were further heat-treated at about 130°C in a nitrogen gas atmosphere to graphitize, and AA 4:1 miscellaneous particles with a diameter of about 7 μm were
A bundle of 00 charcoal fibers was used. This charcoal? IFJ
The physical properties of the miscellaneous material are tensile strength 300kgf/m+y+” (
IC/mm2), tensile modulus of elasticity 23. OOOkgf/m
m” (IC/mm2), density 1°75 dino, IAea
Person in charge 771 0. lXl0-'7'Q, Jden>jJ rate 15Kca/mhr"Oα7.4sw/wax),
Specific heat 0.17Q &engineering/g'0 (to 0.71: r/kg*
K). This charcoal (X < ta 1 m) was cut into lengths of approximately 20 lengths, and dispersed into countless pieces of charcoal under water using the Kaito action of ultrasonic vibration and stirring. β right turn powder machining O
O parts by weight, 60 parts by weight of water.

炭素繊維0.1重」部、硼砂(硬化超延剤)0.2重量
部の割合で混合かく拌して、炭素繊維の単繊維が均一に
分散された石膏泥漿をつくり、この石膏泥漿を母型内に
流し込んで陶磁器皿をロクロ成形するための外骨用石膏
製原型に略々同じ形状体を得た。これに若干の修正加工
を加え原型とした。
0.1 part by weight of carbon fiber and 0.2 part by weight of borax (curing agent) are mixed and stirred to create a gypsum slurry in which carbon fiber single fibers are uniformly dispersed. A body with approximately the same shape as an external plaster mold for casting a ceramic plate on a potter's wheel by pouring it into a matrix was obtained. This was made into a prototype with some modifications.

この外骨用石膏製原型は、切断断面全体に亘って炭素繊
維の単繊維が均一に分散され、この分散状況は肉眼で見
ることが可能な程度であった。
In this plaster model for external bones, carbon fiber single fibers were uniformly dispersed over the entire cut cross section, and the state of dispersion was such that it could be seen with the naked eye.

実施例2 実施例1と同一の条件並びに方法により炭素繊維の単繊
維が均一に分散された石膏泥漿をつくり、母をを低速回
転させつつ炭素繊維の混入されていない純粋な石膏泥漿
を予め流し込んで厚さ1ないし3騙の薄膜を形成してお
き、しかる後に母型の回転を停止させて炭素繊維が混入
された石膏泥漿を流し込んで、陶磁器皿をロクプ成形す
るための外骨用石膏製原型に略々同じ形状体を得た。こ
れに若干の修正を加え原型とした。この外4馴石膏製原
型の成形面である外周面は、純石膏から成る薄膜で被縫
されており、炭素繊維は成形面に全く露出していなかっ
た。
Example 2 A gypsum slurry in which single fibers of carbon fibers were uniformly dispersed was made under the same conditions and method as in Example 1, and pure gypsum slurry without carbon fibers mixed in was poured in advance while rotating the matrix at low speed. A thin film with a thickness of 1 to 3 mm is formed in advance, and then the rotation of the matrix is stopped and plaster slurry mixed with carbon fiber is poured in to form a plaster prototype for the external bone for molding a ceramic plate. A body with approximately the same shape was obtained. This was made into a prototype with some modifications. The outer circumferential surface, which is the molding surface of this outer gypsum master mold, was sewn with a thin film made of pure gypsum, and no carbon fibers were exposed on the molding surface.

実施例3 メリアクリロニトリル系繊維を約300℃で熱処理した
後に、更に窒素ガス雰囲気中において約2500℃で特
殊熱処理して黒鉛化し、直径約7μmの単繊維をポリビ
ニールビワリドンでサイジング処理して約60oO本を
一束にした炭素繊維を用いた。この炭素繊維の物性は、
引張強さ250kgf/mmm2(IC/mm2)、引
張弾性係数35.OOOkgf/mmmm2(/am2
)、密度1.’17 g/am3.ka膨張係数−O,
LXIO/’Q、熱伝導率1. OOKCal/m*h
r*’0(116W/m、eK)、比熱0.17 Q 
a +、/g ’O(0,71kJ/kg@lc)であ
った。この束状の炭素g4維を25瓢の長さに切断し、
β石膏粉末100重量部に対して炭素繊維の割合が0.
3重量部となるように炭素素繊維を予め計量しておき、
この炭素繊維を予め計量された水の入った容器に、投入
して補助的にかく拌すると、束状の炭素機維は自己分散
して無数本の単tBmに離散されると共に、かく押作用
により水中に均一に分散した。しかる後に、石膏粉末、
硼砂(硬化遅延剤)および昭和電工株式会社製メルメン
)?−2O(減水剤)を投入して混合かく拌することに
より、石膏粉末100重量部、水60重量部、炭素繊維
0.3重量部、硬化遅延剤0.12重量部、減水剤0.
2重量部の割合から成る均質な石膏泥漿をつくり、この
石膏泥漿を母型内に流し込んで陶磁器楕円面を成形する
ための鋳込成形用石膏製原箆に略々同じ硬化石膏形状体
を得たつこの形状体を楕円用回転マクロ上に載誼し、石
膏切削バイトで修正を加え原型とした。この鋳込成形層
石膏8I!l原型の炭素繊維の分散状況は、実施例1と
同様にほぼ均一であった。
Example 3 Meliacrylonitrile fibers were heat-treated at about 300°C, then special heat-treated at about 2,500°C in a nitrogen gas atmosphere to graphitize them, and single fibers with a diameter of about 7 μm were sized with polyvinyl biwaridone to produce about Carbon fibers made of 6000 carbon fibers were used. The physical properties of this carbon fiber are
Tensile strength: 250 kgf/mmm2 (IC/mm2), tensile modulus: 35. OOOkgf/mmmm2(/am2
), density 1. '17 g/am3. ka expansion coefficient −O,
LXIO/'Q, thermal conductivity 1. OOKCal/m*h
r*'0 (116W/m, eK), specific heat 0.17 Q
a +, /g'O (0,71 kJ/kg@lc). This bundle-shaped carbon G4 fiber was cut into a length of 25 gourds,
The ratio of carbon fiber to 100 parts by weight of β-gypsum powder is 0.
Weigh the carbon fibers in advance to make 3 parts by weight,
When this carbon fiber is put into a container containing pre-measured water and stirred auxiliary, the bundle-like carbon fibers are self-dispersed and dispersed into countless units of tBm. It was evenly dispersed in water. After that, gypsum powder,
Borax (hardening retardant) and Melmen manufactured by Showa Denko Co., Ltd.)? -2O (water reducing agent) was mixed and stirred to produce 100 parts by weight of gypsum powder, 60 parts by weight of water, 0.3 parts by weight of carbon fiber, 0.12 parts by weight of hardening retardant, and 0.0 parts by weight of water reducing agent.
A homogeneous gypsum slurry consisting of 2 parts by weight was prepared, and this gypsum slurry was poured into a matrix to obtain a hardened gypsum shape that was approximately the same as a cast gypsum blank for molding a ceramic ellipsoid. Tatsuko's shape was placed on a rotating ellipse macro, and the model was modified using a plaster cutting tool. This cast molding layer plaster 8I! The state of dispersion of the carbon fibers in the prototype was almost uniform as in Example 1.

比較例1 β石膏粉末10O重it部、水60重量部、硼砂0.2
重量部の割合で混合かく拌して炭素2雌の入っていない
純粋な石膏泥漿をつくり、この石膏泥漿をケース型内に
流し込んで陶磁器皿をロクロ成形するための外44月石
膏製原型を得た。
Comparative Example 1 100 parts by weight of β-gypsum powder, 60 parts by weight of water, 0.2 parts by weight of borax
Mix and stir in proportions of parts by weight to make pure gypsum slurry that does not contain carbon dioxide, and pour this gypsum slurry into a case mold to obtain an outer gypsum prototype for potter's wheel molding of a ceramic plate. Ta.

次に、本発明の模型複製の実施例並びに比較例を挙げる
Next, examples and comparative examples of model reproduction of the present invention will be given.

実施側番 ポリアクリルニトリル系繊維を約300℃で熱処理した
後に、更に窒素ガス雰囲気中で約1300℃で熱処理し
て黒鉛化し、直径約7μmの単繊維を約6000本−束
とした炭素!a雄を用いた。この炭素繊維の物性は、5
[張強さ300kgf/mm  (Kg/ml112)
、引張弾性係数23.OOOkgf/mmmm2(7m
m2入密度1.75 glon 、線y張係数−〇、I
 X 10  /”O。
After heat-treating the practical polyacrylonitrile fiber at about 300°C, it was further heat-treated at about 1,300°C in a nitrogen gas atmosphere to graphitize it, and it was made into a bundle of about 6,000 single fibers with a diameter of about 7 μm! Carbon! A male was used. The physical properties of this carbon fiber are 5
[Tensile strength 300kgf/mm (Kg/ml112)
, tensile modulus of elasticity 23. OOOkgf/mmmm2 (7m
m2 density 1.75 glon, linear y tensile coefficient -〇, I
X 10/”O.

熱伝導率1.5Ka &l/m*hre’c (17,
45W/m5K) 。
Thermal conductivity 1.5Ka &l/m*hre'c (17,
45W/m5K).

比熱0.17cal/g”C(0,71kJ/kg*K
)であった。
Specific heat 0.17cal/g”C (0.71kJ/kg*K
)Met.

この炭素繊維を約20篩の長さに切断して、水中にて超
音波振動とかく拌との相乗作用により無数本の単繊維に
離散させた。β石膏粉末100重量部1水60重量部、
炭素繊維0.1重量部、硼砂(硬化遅延剤)0.2重量
部の割合で混合かく拌して、炭素繊維の単amが均一に
分散された石膏泥漿をつくり、この石膏泥漿を石膏!A
雌型内に流し込んでガスタービンのタービン羽根の複製
石膏雄型模型を得た。この複製石膏雄型模型は、断面を
含めて全体に亘って炭素ta維の単繊維が均一に分散さ
れ、この分散状況(ま肉眼で見ることが可能な程度であ
った。
This carbon fiber was cut into lengths of about 20 sieves, and dispersed into countless single fibers in water by the synergistic action of ultrasonic vibration and stirring. β gypsum powder 100 parts by weight 1 water 60 parts by weight,
Mix and stir 0.1 part by weight of carbon fiber and 0.2 part by weight of borax (hardening retardant) to create a gypsum slurry in which carbon fiber am is uniformly dispersed. A
A replica plaster male model of a gas turbine turbine blade was obtained by pouring it into a female mold. In this replica plaster male model, single fibers of carbon ta fibers were uniformly dispersed over the entire area including the cross section, and this dispersion state (to the extent that it could be seen with the naked eye).

比較例2 β石膏粉末100重皿部、水60重R部、硼砂0.2重
量部の割合で混合かく拌して炭素繊維の入っていない純
粋な石膏泥漿をつくり、この石膏泥漿を石膏製雌型内に
流し込んでタービン羽根の複製石膏雄型模型を得た。
Comparative Example 2 A pure gypsum slurry containing no carbon fibers was prepared by mixing and stirring 100 parts by weight of β-gypsum powder, 60 parts by weight of water, and 0.2 parts by weight of borax. A replica plaster male model of the turbine blade was obtained by pouring it into a female mold.

上記実施例4および比較例2の複製石膏雄型模型の各温
度における長さの変化率並びに離覆時の複製精度は次の
通りであった。
The rate of change in length at each temperature and the replication accuracy during detachment of the replica plaster male models of Example 4 and Comparative Example 2 were as follows.

長さの変化率に関しては、第5図に示されるように、約
1時間後の発熱反応による模型の最高発熱時(53,2
℃)において、水和体積膨張のほかに、温度変化に基づ
く熱膨張が存するため、炭素でいたのに対し、炭素繊維
を混入した本発明に係る模型は0.066% (500
wに対しo、33簡)膨張していた。
As for the rate of change in length, as shown in Figure 5, the maximum heat generation of the model (53, 2
℃), in addition to hydration volumetric expansion, there is thermal expansion due to temperature change.
o for w, 33 simple) had expanded.

また、50℃のg8風乾燥装置で20時間半乾燥した後
室温23.5℃まで冷却し、脱型した時の複製精度に関
しては、従来の横型は0.025%(500鵡に対し0
.125 m)の体積膨張していたのに対し、本発明に
係る模型は0.018%(500鱈に対し0.09 m
)体積1張していた。
In addition, when drying in a G8 air dryer at 50°C for 20 hours and a half, cooling to room temperature 23.5°C, and removing the mold, the reproduction accuracy of the conventional horizontal type was 0.025% (0 for 500 parrots).
.. 125 m), whereas the model according to the present invention had a volumetric expansion of 0.018% (0.09 m for 500 cods).
) The volume was 1 tension.

その後50℃の熱風乾燥装置にて約2週間乾燥をしたと
ころ複製精度に関しては従来品は500111IIに対
して0.06mの乾燥収M(従って体積膨張は0.06
5m) L、ていたのに対し、本発明品は5゜OWに対
し0.04mの乾燥収縮があり(従って母型に対しては
0.05mの体@R膨張)、本発明品は従来品に比しい
ずれの段階においても体積膨張が小さいことが立証され
た。
After that, it was dried for about 2 weeks in a hot air dryer at 50°C. Regarding the reproduction accuracy, the conventional product had a dry yield M of 0.06 m for 500111II (therefore, the volume expansion was 0.06
5m) L, whereas the product of the present invention had a drying shrinkage of 0.04m for 5°OW (therefore, the body @R expansion of 0.05m for the matrix); It was demonstrated that the volumetric expansion was smaller at all stages compared to the product.

前記各実施例L2.3および比較例1の各石膏製原型の
抗折強度、吸水能力、大気中における破壊温度差、嵩比
重並びに硬化時膨張率などの物性は、下表の通りであっ
た。
The physical properties of each of the plaster molds of Example L2.3 and Comparative Example 1, such as bending strength, water absorption capacity, difference in fracture temperature in the atmosphere, bulk specific gravity, and expansion coefficient upon curing, were as shown in the table below. .

以下余白 吸水能力はテストピースを常温常圧下で水中に浸漬した
とき、吸水した水の重量百分率である。
Hereinafter, the margin water absorption capacity is the weight percentage of water absorbed when the test piece is immersed in water at room temperature and pressure.

破壊温度差は高温大気中で加温した試験片をすばやく室
内に取り出し室温大気中に放置した場合、破壊に到る最
小の温度差を表わす。
The fracture temperature difference represents the minimum temperature difference that will result in fracture when a test piece that has been heated in a high-temperature atmosphere is quickly taken out indoors and left in a room-temperature atmosphere.

硬化時膨張率は母型に石膏泥漿を鋳込み硬化させ脱聾後
、乾燥直前に測定したときの長さの母型に対し変化した
割合である。
The coefficient of expansion upon hardening is the ratio of the change in length to the matrix when gypsum slurry is poured into the matrix, hardened, and deafened, and then measured immediately before drying.

上表から明らかのように、炭素繊維を混入した石膏型は
、混入しない石膏型に比較して抗折強度および大気中に
おける破壊温度差は大巾に向上していると共に、他の物
性においても優れていることが判明した。
As is clear from the above table, the gypsum mold mixed with carbon fiber has significantly improved bending strength and the difference in fracture temperature in the atmosphere compared to the gypsum mold without carbon fiber mixed, and has also improved in other physical properties. It turned out to be excellent.

第5図は実施例1の石膏硬化体の切断面から製作した薄
片な走査型電子顕微鏡で2000倍で撮った写真である
。左上端がら中央へ延べる細長い真直ぐな円柱が、混入
した炭素章繊維であり破片状の結晶がβ型2水石膏であ
る。
FIG. 5 is a photograph taken with a scanning electron microscope of a thin section made from a cut surface of the hardened gypsum body of Example 1 at a magnification of 2000 times. The elongated straight cylinder extending from the upper left corner to the center is the mixed carbon chapter fiber, and the fragment-like crystals are β-type dihydrate gypsum.

第7図は、α型石膏粉を月いた他は実施例1すなわち@
Iffと同一のもので同じ< 2000倍の走査型電子
顕微鏡写真である。
Figure 7 shows Example 1 except that α-type gypsum powder was used.
This is a scanning electron micrograph of the same image as Iff, magnified <2000 times.

また、第8図は、石膏100重量部、水60重量部、長
さ25鵡のビ、チ糸炭素繊維を所定重量部混入した石膏
泥漿を鋳込んで成形した15N×25wX25 (1+
sの石膏試験片を曲げ試験装置で曲げ試験をした場合の
経過時間と、抗折力との関係を示しており、混入炭素繊
維の重量比率をパラメーターとした場合の試12+結果
である。第8図のグラフから明らかのように混入炭素繊
維の割合が大きくなる程抗折力が大きくなると共に、最
大抗折力で単純破断するもろさが解消されて宋材として
のいわゆる粘りが生じていることがわかる。尚、本試験
のスパンは200#+l+で、荷重は中央に加えられ、
荷重点の変位速度は1 ts 7m i rr  であ
った。
Fig. 8 shows a 15N x 25w x 25 (1+
It shows the relationship between the elapsed time and transverse rupture strength when a gypsum test piece of s was subjected to a bending test using a bending test device, and is the result of trial 12+ when the weight ratio of mixed carbon fiber was used as a parameter. As is clear from the graph in Figure 8, as the proportion of mixed carbon fiber increases, the transverse rupture strength increases, and the brittleness of simple rupture at the maximum transverse rupture force is eliminated, resulting in the so-called stickiness of Song wood. I understand that. The span of this test was 200#+l+, and the load was applied to the center.
The displacement speed of the loading point was 1 ts 7 m i rr.

第9図に、純粋な石膏試験片と、炭素繊維で強化した石
膏試験片との各温度における長さの変化率を示す曲線が
示されており、炭素m維を混入した石膏の試験片の長さ
の変化(膨張)率は、炭素繊維を混入しない石膏試験片
の長さの変化(膨張)率に比較して、正および負のいず
れの場合にも僅かに小さいことがわかる。これは、熱膨
張率が殆んど零に等しい炭素繊維が石膏の各粒子間に入
り込んでいるため、この炭素繊維が石膏の膨張式るいは
収縮を抑制するためであると解される。従って、炭素繊
維を混入した石膏製原型成るいは模型は、温度による膨
張式るいは収縮が小さく、複製された模型成るいは中間
型、成形上の寸法精度が向上する。
Figure 9 shows curves showing the rate of change in length at various temperatures for a pure gypsum specimen and a gypsum specimen reinforced with carbon fibers, and for a gypsum specimen reinforced with carbon fibers. It can be seen that the length change (expansion) rate is slightly smaller in both positive and negative cases than the length change (expansion) rate of the gypsum specimen without carbon fibers mixed therein. This is understood to be because carbon fibers with a coefficient of thermal expansion of almost zero are inserted between each particle of gypsum, and this carbon fiber suppresses the expansion or contraction of gypsum. Therefore, the gypsum master mold or model mixed with carbon fibers exhibits less expansion or contraction due to temperature, and the dimensional accuracy of the replicated model or intermediate mold is improved.

ここで、抗折強度および抗折力の大巾な向上により、模
型式るいは原型の材料力学的強度が増大され、従来保存
・取扱時に受ける外力により破損されていた複雑な形状
を有する部分式るいは折損され易い部分の機械的強度が
増大せしめられ、これにより模型式るいは原型の破損が
防止されて寿命が長くなると共に、運搬成るいは取扱い
が容易となる。更に、機械的強度の大巾な向上により、
凸状部等の肉厚を薄くすることが可能となり、ひいては
複雑成るいは繊細な形状を有する模型式るいは原型の製
作が可能となる。
By greatly improving transverse rupture strength and transverse rupture strength, the material mechanical strength of the model or original model is increased, and partial models with complex shapes that were conventionally damaged by external forces during storage and handling are now available. The mechanical strength of the parts that are susceptible to breakage is increased, thereby preventing damage to the model or original model, extending its life, and making it easier to transport and handle. Furthermore, due to the significant improvement in mechanical strength,
It becomes possible to reduce the thickness of the convex portions, etc., and as a result, it becomes possible to manufacture a model or prototype having a complicated or delicate shape.

また、炭素繊維の混入により大気中における破壊温度差
が向上するのは、温度上昇により石膏自体は所定怠膨張
するが、炭素繊維自体は殆んど膨張しないので、石膏型
内部において炭素繊維にはその長さ方向に引張力が加わ
ると共に、石膏には圧縮力が加わり、このため炭素繊維
の長さ方向に内部応力が生じて丁度P3コンクリートの
ようにプレストレスが導入された状態になっているため
であると解される。
In addition, the difference in fracture temperature in the atmosphere improves when carbon fiber is mixed in. Although the plaster itself expands to a certain degree due to temperature rise, the carbon fiber itself hardly expands. At the same time that a tensile force is applied to the plaster in its length direction, a compressive force is also applied to the plaster, which creates internal stress in the length direction of the carbon fibers, creating a state where prestress is introduced just like in P3 concrete. It is understood that this is for the purpose of

大気中における破壊温度差の大巾な上昇は、石膏製の模
を成るいは原型が大きな温度差に対して耐え得ること管
意味し、成型後の模型式るいは原型又は中間型の乾燥温
度を上げることが可能となる。従って、成型毎の模型式
るいは原型又は中間型の乾燥時間を短縮させることが可
能となり、横型式るいは原型の製作・複製に要する時間
が短縮される。
A large increase in the breakdown temperature difference in the atmosphere means that the plaster model or model can withstand a large temperature difference, and the drying temperature of the model or model or intermediate model after molding. It becomes possible to raise the Therefore, it becomes possible to shorten the drying time of the model, master mold, or intermediate mold for each molding, and the time required for manufacturing and duplicating the horizontal mold or master mold is shortened.

上述したことを総合すると、本発明には次のような効果
がある。
In summary, the present invention has the following effects.

(1)、長さ5ないし200關の炭素繊維を石膏に対し
てo、o o aないし2.0重量%の割合で母材の石
膏内に均一に混入分数した本発明に係る石膏ywt、m
は、従来の純粋な石膏から成る原型に比較して水和硬化
による脱型時膨張車、熱膨張係数のいずれも小さいので
、原型から元型、ケース型、成形型と複製する場合の全
工程での積算誤差が少なく高精度の成形型の製作が可能
となる。
(1) Gypsum ywt according to the present invention, in which carbon fibers having a length of 5 to 200 mm are uniformly mixed into the base material plaster at a ratio of o, o o a to 2.0% by weight based on the plaster; m
Compared to the conventional master mold made of pure gypsum, both the expansion wheel and the coefficient of thermal expansion during demolding due to hydration hardening are smaller, so the entire process of replicating from the master mold to the case mold and mold It is possible to manufacture highly accurate molds with little integration error.

(2)、また、抗折強度および靭性の双方が大巾に向上
することにより、模を成るいは原型の機械的強度が増大
され、従来保存・取扱時に受ける外力により破損されて
いた複雑な形状を有する部分、成るいは折損され易い部
分の折損又は破損が防止され、模型式るいは原型の特命
が長くなる。
(2) Also, by greatly improving both the bending strength and toughness, the mechanical strength of the model or original model is increased, and complex structures that were conventionally damaged by external forces during storage and handling can be improved. Breaking or damage of a shaped part or a part that is easily broken is prevented, and the life of the model or prototype is extended.

また、機械的強度の大巾な向上により、凸状部等の肉厚
を簿くすることが可能となり、ひいては複雑成るいは繊
細な形状を有する模型式るいは原型の製作が可能となる
In addition, the significant improvement in mechanical strength makes it possible to reduce the thickness of convex portions, etc., which in turn makes it possible to manufacture models or prototypes with complex or delicate shapes.

(3)、炭素繊維を単繊維状態で均一に分散混入した石
膏の水和硬化時あるいは乾燥完了時膨張率、および母型
として使泪時における熱膨張係数のいずれも、純粋な石
膏に比較して小さいので、本発明に係る模型(特に複製
模型)の寸法精度が向上し、目的の寸法通りの模型の製
作が可能となる。
(3) The expansion coefficient of gypsum containing carbon fibers uniformly dispersed in the form of single fibers during hydration and hardening or upon completion of drying, and the coefficient of thermal expansion when used as a matrix, compared to pure gypsum. Since the size of the model is small, the dimensional accuracy of the model (especially a reproduction model) according to the present invention is improved, and it becomes possible to manufacture a model with the desired dimensions.

(4)、炭素繊維は豊かな柔軟性を有しているので、石
膏製模型内に炭素繊維が混入されていても、その表面は
滑らかで、しかも適度に柔い。従って、模型式るいは原
型の切削加工性は極めて良好であり、望みの形状に自在
に削り出すことができる。
(4) Since carbon fiber has rich flexibility, even if carbon fiber is mixed into a plaster model, its surface will be smooth and moderately soft. Therefore, the machinability of the model or prototype is extremely good, and it can be freely cut into a desired shape.

(5)、原型式るいは中間型の場合、その製作に際し母
型内に純粋な石膏泥漿を流し込んで薄い暦を形成し、し
かる後に炭素繊維が混入された石膏泥漿を流し込むこと
により、原型式るいは中間車の成形面に純石膏から成る
簿い層が形成されて炭素繊維の端部が成形面に露出する
のが防止される。原型式るいは中間型をこのように構成
することにより、複製される型の表面(成形面)が傷付
けられるのを防止することができる。
(5) In the case of a prototype type or an intermediate type, when manufacturing it, pure gypsum slurry is poured into the matrix to form a thin calendar, and then gypsum slurry mixed with carbon fiber is poured in to form the prototype type. Alternatively, a protective layer made of pure gypsum is formed on the molding surface of the intermediate wheel to prevent the ends of the carbon fibers from being exposed to the molding surface. By configuring the original model or intermediate mold in this manner, it is possible to prevent the surface (molding surface) of the mold to be replicated from being damaged.

横車の場合においては、表面を純石膏から成る薄い層で
被覆することにより、炭素繊維の単繊維の露出により美
感が損われるのを防止することができる。
In the case of cross wheels, coating the surface with a thin layer of pure gypsum prevents the aesthetic appearance from being spoiled due to exposure of single carbon fibers.

(6)、模型式るいは原をの強化材として、径が軽めで
小さくて強度が大きく、しかも柔軟性に富んだ炭素繊維
を用いているので、石膏に対する強化材の混入割合が少
なくても模型式るいは原型の機械的外力、熱的不均質に
対する強度を増大させることができ、大型の形状体のも
のでもコストが安価で済み、又、成型作業が容易となる
(6) As the reinforcing material for the model or original, we use carbon fiber, which is light in diameter, small in size, strong, and highly flexible, so even if the ratio of reinforcing material to the plaster is small. The strength of the model or prototype against mechanical external forces and thermal inhomogeneity can be increased, and even large-sized bodies can be manufactured at low cost, and molding operations can be facilitated.

(7)、裔温加熱焼失性を有する炭素繊維を強化材とし
て混入しであるので、使用中に破損したり、成るいは使
用不能となった石膏製成型成るいは原型及び中間型は、
粉砕して長時間に亘って緩やかに加熱処理することによ
り、内部に混入された炭素繊維のみを容易に焼失除去す
ることができ、石膏硬化体の可使■が可能となる。この
点ガラス繊維等の加熱焼失性を有しないものを強化材と
して混入した場合は、混入された強化材のみを除去して
石膏硬化体を再生成るいは再利朋することは極めて困鑓
か、成るいは不可能である。
(7) Since carbon fiber is mixed in as a reinforcing material and has the property of burning out when heated, plaster moldings, master molds, and intermediate molds that are damaged or become unusable during use are ,
By pulverizing the material and subjecting it to gentle heat treatment over a long period of time, only the carbon fibers mixed inside can be easily burned off and the hardened gypsum material can be used. In this regard, if a material that does not have heat-burning properties such as glass fiber is mixed in as a reinforcing material, it is extremely difficult to remove only the mixed reinforcing material and regenerate or reuse the hardened gypsum. , or it is impossible.

(8)、炭素繊維を所定長さに切断して無数本の単繊維
に予め離散させておき、石膏粉末と、該石膏粉末に対し
て所定の重ffi割合の単繊維に離散された前記炭素繊
維とを循環しているジェット空気流内に投入して両者を
均一に混合せしめた後に回収して、石膏粉末内に単繊維
に離散された炭素繊維を均一に混入分散せしめておくこ
とにより、石膏泥漿をつくる毎に一回の混合量に適合し
たWl、量の炭素繊維のみを計量する操作を不要にする
ことができる。
(8) Carbon fibers are cut into a predetermined length and dispersed in advance into countless single fibers, and gypsum powder and the carbon fibers are dispersed into single fibers having a predetermined weight ffi ratio with respect to the gypsum powder. By introducing the fibers into a circulating jet air stream to uniformly mix the two, and then collecting them, the carbon fibers, which have been dispersed into single fibers, are uniformly mixed and dispersed within the gypsum powder. It is possible to eliminate the need for measuring only the Wl and amount of carbon fibers that are suitable for one mixing amount each time gypsum slurry is made.

【図面の簡単な説明】[Brief explanation of drawings]

笥1図は、硬化石膏内に混入する炭素繊維の長さと、硬
化石膏試験片の抗折強度との関係を示すグラフである。 第2図は、石膏内に混入する炭素繊維の石膏に対する重
量割合と、石膏試験片の抗折強度との関係を示すグラフ
である。 第3図は、彫刻模様のあるプラスチック鋳込成形用板状
体の石膏製成形型の成型工程を示すもので、(イ)は原
型、(ロ)は下部元型、(ハ)は下型用ケース型、に)
は成形型の夫々断面図である。 第4図は、揺動回転を利用した混合方法の原理図である
。 第5図は、炭素繊維強化石膏模型と純石膏模型との成型
時における経過時間と水和硬化時膨張率との関係を示す
グラフである。 #!6図は、β型石膏粉末を用いた場合の石膏試料片の
走査量電子顕微鏡写真であり、第7図は、α型石膏粉末
を用いた場合の同様の写真である。・第8図は、石膏型
内に混入する炭素繊維の石膏に対するf2 fn 割合
をパラメーターとした石膏型の試験片の曲げ試験におけ
る抗折力の時間変化を示す測定グラフである。 第9図は、純粋石膏試験片と、炭素繊維強化石膏試験片
との各温度における長さの変化率を示すグラフである。 (主要部分の符号の説明) 1 :原     型 2、下部光を(中間型) 6:下型用ケース型(中間型) 9:成 形 型 11:袋   体 12°揺 動 盤 13:回 転 軸 図面、7)浄書、内容に変更な1.) 第 0 図 図ui・つ浄暑(内容:ご、変更なし6)手続補正書 昭和59年11322日 特許庁長官   志 賀    学 殿’:&:’1(
特許庁審判長              殿)(持詐
庁冨査宮             殿)3、補正する
習 事件との関係         特許出願人4、代  
理  人  〒500 人9本願の明細誓を以下のように補正する。 1、拵1頁第7行目ないし第8頁第15行目の特許請求
の範囲を以下のように補正する。 「(1)、母材の石膏組織内に長さ5ないし200s+
sの炭素繊維が単Jia+維に離散された状急で石膏に
対してo、o o aないしa、OZ量%の割合で均一
に混入分散されていることを特徴とする炭素繊維強化石
膏製原型または模型複写型。 (2)、長さ5ないし10ossiの炭素繊維が石膏に
対してo、o o aないし0.9重量%の割合で母材
の石膏内に均一に混入分散されていることを特徴とする
特許請求の範囲第1項記載の炭3IC繊維強化石膏製模
型または模M複写型。 (Sへ母材の石′I−組織内に長さ5ないし200鱈の
炭素m維が単繊維に離散された状態で石膏に対してo、
o o aないし2.0重量%の割合で均一に混入分散
されていることを特徴とする炭素繊維強化石膏製原型。 (4)、長さ5ないし100鵡の炭素繊維が石膏に対し
てo、o o aないし0.9N世襲の割合で母材の石
膏内に均一に混入分散されていることを特徴とする特許
請求の範囲第3項記載の炭素繊維強化石膏製原型。 (5)、長さ15ないし30鴎の炭素繊維が石膏に対し
て0.05ないし0.3重量%の割合で母材の石膏内に
均一に混入分散されていることを特徴とする特許請求の
範囲第3項記載の炭素繊維強化石膏製成形型用rg、型
。 (Oへ成形型が、陶磁器の鋳込成形型、ロクロ戎形を成
るいは紙パルプ泥漿を原料とする紙器の鋳込成形型、プ
レス成形型のように石膏の吸水性を利用する成形型であ
ることを特徴とする特許請求の範囲第3項ないし第5項
記載の炭素繊維強化石膏製成形型用原型。 (〕)、成形型が、プラスチック製品9会成ゴム製品。 非鉄金属製品の鋳込成形型、押出成形型、射出成形型な
どの成形型であることPvf徴とする特許請求の範囲第
3項ないし第5項記載の炭素繊維強化石膏i成形型用原
型。 (8)、成形型が、原料に粘土類を含まないいわゆるフ
ァインセラミックス製品のプレス成形型、射出成形型、
&IJ込成形型などの成形型であることを特徴とする特
許請求の範囲第3項ないし第5項記載の炭素繊維強化石
膏製成形型用原型。 (9)、母材の石1iF組織内に長さりないし100鴎
の炭素hjA維が単繊維に離散された伏動で石膏に対し
てo、o o aないし0.9重量%の割合で均一に混
入分散されていることを特徴とする炭素繊維強化石膏製
成形型用中間型。 l5a)、長さ15ないし30mの炭yt繊維が石膏に
対して0.05ないし0.3重量%の割合で母材の石膏
内に均一に混入分散されていることを特徴とする特許請
求の範囲第9項記載の炭素繊維強化石膏製成形型用中間
量。 (11)、成形型が、陶磁器の鋳込成形型、ロクロ成形
型或るいは紙パルプ泥漿を原料とする紙器の鋳込成形釜
、プレス成形型のように石膏の吸水性を利用する成形型
であることを特徴とする特許請求の範囲第9ないし10
項記載の炭素繊維強化石膏製成形型用中間型。 α2)、成形型が、プラスチック製品、非鉄金属製品の
鋳込成形機、押出成形型、射出成形型などの成形型であ
ることを特徴とする特許請求の範囲第9ないし10項記
載の炭素繊維強化石膏製成形型用中間型。 (13)、成形型が、原料に粘土類を含まないいわゆる
フ、アインセラミックス製品のプレス成形型、射出成形
部、鋳込成形温、押出成形眉型の成型に用いられること
を特徴とする特許請求の範囲第9ないし10項記載の炭
素繊維強化石膏製成形型用中間型。 (14) 、型の母材の石膏内に長さ5ないし200謡
の炭素電離が単繊維に離散された状態で石膏に対してo
、o o aないし2.0風温%の割合で均一に混入分
散され、しかも型の表層部が炭素繊維の混入割合が他部
よりも少ない石膏で被覆されていることを特徴とする炭
素繊維強化石7#製模型または模型複写型。 (15)、型の母材の石膏内に長さ5ないし200s+
aの炭素繊維が単繊維に離散された状態で石膏に対して
0.008ないし2.0重社%の割合で均一に混入分散
され、しかも型の表層部が炭素繊維の混入割合が他部よ
りも少ない石膏で被覆されていることを特徴とする炭素
繊維強化石膏製W、型。 (16)、釜の母材の石膏内に長さ5ないしLoomの
炭素繊維が単繊維に離散された状態で石膏に対して0.
008ないし0.9重i%の割合で均一に混入分散され
、しかも型の表面が炭素繊維が混入されていない純粋な
石膏で被覆されていることを特徴とする炭素繊維強化石
:it製成形型用中間型。 (17)、石膏粉末内に5ないし200mの長さの単繊
維に離散された炭素m維を、該石膏粉末に対して0.0
1ないし5重ft−の割合で均一に混入分散して成る石
膏製模型又は模型複写をあるいは原型用炭素繊維入り石
膏粉末。 (18)、石膏粉末内に5ないしloo+wの長さの単
繊維に離散された炭素繊維を、該石膏粉末に対して0.
01ないし1.0重量%の割合で均一に混入分散したこ
とを特徴とする特許請求の範囲第17項記載の石膏製模
型又は模型複写をあるいは原型用炭素m維入り石膏粉末
。 (19)、石、膏粉末内に5ないしloomの長さの単
繊維に離散された炭素繊維を、該石膏粉末に対して0.
01ないし5重量%の割合で均一に混入分散して成る石
膏製中間型用炭素繊維入り石膏粉末。 (20)、石膏粉末内に5ないし100鶴の長さの単繊
維に離散された炭素繊維を、該石膏粉末に対して0.0
1ないし1.0重祉%の割合で均一に混入分散したこと
を特徴とする特許請求の範囲第19項記載の石膏製中間
型用炭素繊維入り石膏粉末。 (21) 、炭素繊維を5ないし200mの長さに切断
して無数本の単繊維に予め離散させておき、石膏粉末と
、該石膏粉末に対して0.01ないし5重量%の単繊維
に離散された前記炭素繊維と?循環しているジェット空
気流内に投入して両者を均一に混合せしめた後に回収す
ることを特徴とする石膏製模型又は模型複写型あるいは
原型用炭素繊維入り石膏粉末の製造方法。 (2z)、炭素繊維を5ないし200$11の長さに切
断して無数本の単繊維に予め離散させておき、石膏粉末
と、該石膏粉末に対して0.01ないし5重M%の単繊
維にw1敗された前記炭素繊維と2撓屈自在の袋体内に
投入して揺動回転させることを特徴とする石膏製模型又
は模型複写型あるいは原型用炭素繊維入り石膏粉末の製
造方法。 (23)、炭素繊維を5ないし100!II+の長さに
切断して無数本の単繊維に予め離散させておき、石膏粉
末と、該石膏粉末に対して0.1ないし5重量%の単繊
維に離散された前記炭素繊維とを循環しているジェット
空気流内に投入して両者を均一に混合せしめた後に回収
することを特徴とする石膏製中間型用炭素繊維入り石膏
粉末の製造方法。 (24)、炭素繊維を5ないし100關の長さに切断し
て無数本の単繊維に予め離散させておき、石膏粉末と・
該石膏粉末に対して0.0工ないし5重量%の単繊維に
離散された前記炭素繊維とを撓屈自在の袋体内に投入し
て揺動回転させることを特徴とする石膏製中間型用炭素
繊維入り石膏粉末の製造方法。」 2、第10頁第8および9行目の[・・複写物として取
扱い、いかに製品の・・コを、「−・複写物として取扱
い、その原点となる型は模型と し、いかに製品の・・
」と補正する。 3、第14頁第8行目の「争・ワク付成形型プレス成形
型、」を、「・・ロクロ成形型ニブレス成形型、」と補
正する。 4.816頁第16および177行目「・−単繊維への
離散粉末および水との・・」を、「−Φ単繊維への離散
工粉末および水との・・」と補正する。 5、第14頁第8行目の「・・場合は2.4%可能であ
る。」を、[・嚇場合は2.4%!!可能である−と補
正する。 6、第28頁第11行目の「・拳方法として揚動回転を
・・」を、「・一方法として!動回転を−・」と補正す
る。 7、第28頁第114および155行目「・・炭素繊維
を0.1ないし5重量%・・」を、「・・炭素繊維をジ
ユユないし5重i≦・りと補正する。 8、第37頁第2行目の「・・水60重量部、炭素繊m
o、1重量部・・」を、「水aOZ鑓部、星!(膨張抑
制剤)20重i部、炭素繊維0.1重量部ψ・」と補正
する。 96第37頁第12および133行目「・・水60重f
f1部、硼砂0.2重量部・・」を、「+1@水60と
補正する。 B1本願の図面第3図を本書に添付した図面のように補
正する。 一以 上− 箒 3 図 (イ) (ロ) 手続補正書(IE遍 昭和59年12月19日 特許庁長官  志 賀    学   殿(特許庁1y
判長              殿)  1(特許庁
審査官             殿)1、事件の表示 昭和59年特   許願第203764号3、補正する
者 事件との関係     特許出願人 住所(居所)  三重県四日市市會井町756番地の1
4、代  理  人  〒500 昭和59年11月22日付提出の手続補正書の第2頁第
4行目乃至49頁第13行目に記載された「特許請求の
範囲」を以下のように補正する。 「(1)、母材の石膏組織内に長さ5ないし200mの
炭素繊維が単繊維に離散された状態で石膏に対して0.
008ないし2.0 fflffl%の割合で均一に混
入分散されていることを特徴とする炭素繊維強化石膏製
模型または模型複写型。 (2)、長さ5ないしXOO關の炭素tB維が石膏に対
してo、o o aないし0.9fkfit%の割合で
母材の石膏内に均一に混入分散されていることを特徴と
する特許請求の範囲第1項記載の炭素in維強化石膏製
模型または模型複写型。 (3)、母材の石膏組織内に長ささないし200關の炭
素ta維が単繊維に離散された状態で石膏に対して0.
008ないし2.0重量%の割合で均一に混入分散され
ていることを特徴とする炭素#a維強化石膏g原型。 (4)、長さ5ないし1001Isの炭素繊維が石膏に
対してo、o o aないし0.9重it%の割合で母
材の石膏内に均一に混入分散されていることを特徴とす
る特許請求の範囲第3項記載の炭素繊維強化石膏製原型
。 (5)、長さ15ないし30m5の炭素繊維が石膏に対
して0.05ないし0.3重ffi%の割合で母材の石
膏内に均一に混入分散されていることを特徴とする特許
請求の範囲第3項記載の炭素繊維強化石膏製成形型用原
型。 (6)、成形型が、陶磁器の鋳込成形型、ロクロ成形型
或るいは紙パルプ泥漿を原料とする紙器の鋳込成形型、
プレス成形型のように石膏の吸水性を利用する成形型で
あることを特徴とする特許請求の範囲第3項ないし第5
項記載の炭素繊維強化石膏製成形型用原型。 (ア)、成形型が、プラスチック製品1介成ゴム製品。 非鉄金F4製品の鋳込成形型、押出成形型、射出成形型
などの成形型であることを特徴とする特許請求の範N第
3項ないし第5項記載の炭素繊維強化石膏製成形型用原
型。 (8)、成形型が、原料に粘土類を含まないいわゆるフ
ァインセラミックス製品のプレス成形型、射出成形型、
鋳込成形型などの成形型であること?特徴とする特許請
求の範囲第3項ないし第5項記載の炭素繊維強化石膏製
成形型用原型□、(9)、母材の石膏組織内に長さ5な
いし100mの炭素繊維が単繊維に離散された状態で石
膏に対して0.008ないし0.9重最%の割合で均一
に混入分散されていることを特徴とする炭素繊維強化石
膏製成形型用中間型。 (10)、長さ15ないし30+amの炭素繊維が石膏
に対してo、05ないし0.3重量%の割合で母材の石
野内に均一に混入分散されていることを特徴とする特許
請求の範囲第9項記載の炭素繊維強化石膏製成形型用中
間型。 (11)、成形型が、陶磁器の紡込威形型、ロクロ成形
型或るいは紙バルブ泥漿を原料とする紙器の鋳込成形型
、プレス成形型のように石膏の吸水性を利用する成形型
であることを特徴とする特許請求の範囲第9ないし10
項記載の炭素繊維強化石膏製成形型層中間型。 (12)、成形型が、プラスチック製品、非鉄金属製品
の鋳込成形型、押出成形型、射出成形型などの成形型で
あることを特徴とする特許請求の範囲第9ないし10項
記載の炭素繊維強化石膏製成形型層中間型。 (13)、成形型が、原料に粘土類を含まないいわゆる
ファインセラミックス製品のプレス成形型、射出成形型
、鋳込成形型、押出成形用型の成型に用いられることを
特徴とする特許請求の範囲第9ないし10項記載の炭素
m維強化石膏製成形型用中間型。 (14)、型の母材の石膏内に長さ5ないし200mの
炭素繊維が単繊維に離散された状態で石膏に対してo、
o o aないし2.0型温%の割合で均一に混入分散
され、しかも型の表層部が炭素は維の混入割合が他部よ
りも少ない石膏で被覆されていることを特徴とする炭素
繊維強化石膏製模型または模型複写型。 (15)、型の母材の石膏内に長さ5ないし200鰭の
炭素繊維が単繊維に離散された状態で石膏に対して0.
008ないし2.01ii%の割合で均一に混入分散さ
れ、しかも型の表層部が炭素LB維の混入割合が他部よ
りも少ない石膏で被着されていることを特徴とする炭素
繊維強化石膏製原型。 (16)、型の母材の石膏内に長さ5ないし〕、OOm
の炭素繊維が単繊維に離散された状態で石膏に対してo
、o o aないし0.9重量%の割合で均一に混入分
散され、しかも型の表面が炭素繊維が混入されていない
純粋な石膏で被覆されていることを特徴とする炭當繊m
強化石膏製成形型用中間型。 (17) 、石膏粉末内に5ないし200關の長さの単
繊維に離散された炭素繊維を、該石膏粉末に対して0゜
01ないし5mbk%の割合で均一に混入分散して成る
石膏製模型又は模型複写型あるいは原型用炭素繊維入り
石膏粉末。 (18)、石膏粉末内に5ないしloosmlの長さの
単繊維に離散された炭素繊維を、該石膏粉末に対して0
゜01ないし1.0重食%の割合で均一に混入分散した
ことを特徴とする特許請求の範囲第17項記載の石膏製
模型又は模型複写型あるいは原型用炭素繊維入り石膏粉
末。 (19)、石膏粉末内に5ないしLoomの長さの単繊
維に′M敬された炭:A繊維を、該石膏粉末に対して0
゜01ないし5重輩%の割合で均一に混入分散して成る
石・W鎖中間型用炭素繊維入り石膏粉末。 (20)、石膏粉末内に5ないし100鵡の長さの単繊
維に離散された炭素繊維?、該石膏粉末に対して0゜0
1ないし1.0重f%の割合で均一に混入分散したこと
を特徴とする特許i?l求の範囲第19項記載の石膏製
中間上用炭素−維入り石膏粉末。 (21)、炭素繊維を5ないし200關の長さに切断し
て無数本の!1磁維に予め離散させておき、石膏粉末と
、該石膏粉末に対して0.01ないし5重1fk%の単
m維に離散された前記炭素繊維とを循環しているジェッ
ト空気流内に投入して両者を均一に混合せしめた後に回
収することを特徴とする石膏製模型又は模型複写型ある
いは原型用炭素繊維入り石膏粉末の製造方法。 (22)、炭素繊維を5ないし200罪の長さに切断し
て輔数本の単繊維に予め離散させておき、石膏粉末と、
該石膏粉末に刻して0,01ないし5玉量%の単繊維に
離散された前記炭素繊維とを撓屈自在の袋体内に投入し
て揺動回転させることを特徴とする石膏製模型又は模型
複写型あるいは原型用炭素繊維入り石膏粉末の製造方法
。 (23)、炭素は雄を5ないし100RIIの長さに切
断して無数本の単繊維に予め離散させておき、石膏粉末
と、該石膏粉末に対して0.01ないし5重量%の単繊
維に離散された前記炭素繊維とを循環しているジェット
空気流内に投入して両者を均一に混合せしめた後に回収
することを特徴とする石膏製中間温用炭素繊維入り石膏
粉末の製造方法。 (24)、炭素繊維を5ないし10osusの長さに切
断して無数本の単繊維に予め離散させておき、石膏粉末
と、該石膏粉末に対して0.01ないし5M全%の単繊
維に離散された前記炭素繊維とを撓屈自在の袋体内に投
入して揺動回転させることを特徴とする石膏製中間型用
炭素繊維入り石膏粉末の製造方法。」 以上 手続補正書 沼川60年1 月25日 (特許庁審判長1長               殿
)(特許庁審在1:y               
殿)1、事件の表示 昭和59年 1青  許頚第203764号3、補正す
る者 事件との関係     ’Zet 3’r出助出入1所
(居所)  三重県四日市市曽井町756番地の14、
代  理  人  〒500 居 所    岐阜市加納朝日町3Y目5番地本願の図
面第5図および第7図の写真の原本を提出致します。 以上 手続補正書動却 昭和60年 2月18日 特許庁長官   志 賀    学 殿昏 (特許庁審判長             殿)(特許
庁審査官             殿)3、補正する
者 事件との関係       特1件出願人住所(居所)
 三重県四日T1i市胃井町756.jp池の18、補
正の内容  ツ[j峨−1のill、lす別紙−1 本願の明細書の第49頁第8乃至10行目のロ第5図は
、・・・・・・写真である。」の全文を削除して、「第
5図は、β型石:に粉末を用いた石膏試料片を走査型電
子顕微鏡で撮影した結晶構造の写真であり、第7図は、
α型石膏粉末を用いた石膏試料片を同様にして逼影した
結晶構造の写真である。」と補正する。 −以上一
Figure 1 is a graph showing the relationship between the length of carbon fibers mixed in hardened gypsum and the bending strength of a hardened gypsum test piece. FIG. 2 is a graph showing the relationship between the weight ratio of carbon fiber mixed in the plaster to the plaster and the bending strength of the plaster test piece. Figure 3 shows the molding process of a plaster mold for a plastic casting plate with an engraved pattern, (a) is the original, (b) is the lower mold, and (c) is the lower mold. Case type, for)
are sectional views of the molds. FIG. 4 is a diagram showing the principle of a mixing method using rocking rotation. FIG. 5 is a graph showing the relationship between the elapsed time during molding of a carbon fiber-reinforced gypsum model and a pure gypsum model and the expansion coefficient during hydration and hardening. #! FIG. 6 is a scanning electron micrograph of a gypsum sample piece when β-type gypsum powder is used, and FIG. 7 is a similar photograph when α-type gypsum powder is used. - Fig. 8 is a measurement graph showing the change in transverse rupture strength over time in a bending test of a plaster mold test piece in which the ratio f2 fn of carbon fiber mixed in the plaster mold to the plaster was used as a parameter. FIG. 9 is a graph showing the rate of change in length at each temperature of a pure gypsum test piece and a carbon fiber reinforced gypsum test piece. (Explanation of symbols of main parts) 1: Original mold 2, lower light (intermediate mold) 6: Case mold for lower mold (intermediate mold) 9: Molding mold 11: Bag body swings 12° Board 13: Rotates Axis drawings, 7) Engravings, changes in content 1. ) No. 0 Diagram ui・tsujoshu (Contents: No changes 6) Procedural amendment dated 11322, 1980 Mr. Manabu Shiga, Commissioner of the Patent Office':&:'1(
Chief Adjudicator of the Japan Patent Office) (Chief Fraud Office Fujinomiya) 3. Relationship with the Xi incident to be amended Patent applicant 4.
500 persons 9 The detailed declaration of the application is amended as follows. 1. The claims on page 1, line 7 to page 8, line 15 are amended as follows. (1) A length of 5 to 200s+ within the gypsum structure of the base material.
A product made of carbon fiber-reinforced gypsum, characterized in that carbon fibers of s are dispersed into single Jia+ fibers and uniformly mixed and dispersed in the plaster at a ratio of o, o o a to a, OZ amount %. Original or model copy. (2) A patent characterized in that carbon fibers having a length of 5 to 10 ossi are uniformly mixed and dispersed in the base material of plaster at a ratio of o, o o a to 0.9% by weight based on the plaster. A charcoal 3IC fiber-reinforced plaster model or M copy mold according to claim 1. (S to the base material stone' I - carbon fibers of 5 to 200 lengths are dispersed into single fibers in the structure and o to the plaster,
A carbon fiber-reinforced gypsum master mold characterized in that carbon fibers are uniformly mixed and dispersed in a proportion of o o a to 2.0% by weight. (4) A patent characterized in that carbon fibers having a length of 5 to 100 mm are uniformly mixed and dispersed in the base material of plaster at a hereditary ratio of o, o o a to 0.9 N to the plaster. A carbon fiber-reinforced plaster mold according to claim 3. (5) A patent claim characterized in that carbon fibers having a length of 15 to 30 mm are uniformly mixed and dispersed in the base material gypsum at a ratio of 0.05 to 0.3% by weight based on the gypsum. RG and mold for carbon fiber-reinforced gypsum molds according to item 3. (To O) The mold consists of a ceramic casting mold, a potter's wheel, a paper carton casting mold made from paper pulp slurry, and a mold that utilizes the water absorption properties of plaster, such as a press mold. A master mold for a carbon fiber-reinforced gypsum mold according to claims 3 to 5, wherein the mold is a plastic product 9-component rubber product. A master mold for a carbon fiber-reinforced gypsum i-molding mold according to claims 3 to 5, which is a mold such as a casting mold, an extrusion mold, or an injection mold, and has Pvf characteristics. (8) The molds are press molds, injection molds, etc. for so-called fine ceramic products that do not contain clay as raw materials.
The master mold for a carbon fiber-reinforced gypsum mold according to claims 3 to 5, which is a mold such as a &IJ-containing mold. (9) Carbon fibers of length to 100 length are dispersed into single fibers in the matrix stone 1iF structure, and the ratio of o, o o a to 0.9% by weight to the plaster is uniform. An intermediate mold for a carbon fiber-reinforced gypsum mold, characterized by being mixed and dispersed in carbon fiber. l5a), a patent claim characterized in that charcoal fibers having a length of 15 to 30 m are uniformly mixed and dispersed in the base material gypsum at a ratio of 0.05 to 0.3% by weight based on the gypsum. An intermediate amount for carbon fiber-reinforced gypsum molds as described in Range 9. (11) The mold is a ceramic casting mold, a potter's wheel mold, a paper carton casting kettle made from paper pulp slurry, or a mold that utilizes the water absorption properties of plaster, such as a press mold. Claims 9 to 10 are characterized in that
Intermediate mold for carbon fiber-reinforced gypsum mold described in Section 1. α2) The carbon fiber according to claims 9 to 10, characterized in that the mold is a mold such as a casting molding machine, an extrusion mold, or an injection mold for plastic products or non-ferrous metal products. Intermediate mold for reinforced plaster molds. (13) A patent characterized in that the mold is used to mold a press mold, an injection molding part, a casting molding temperature, and an extrusion molding eyebrow shape of a so-called fume ceramic product that does not contain clay as a raw material. An intermediate mold for a carbon fiber-reinforced gypsum mold according to claims 9 or 10. (14) Carbon ionization with a length of 5 to 200 mm in the plaster of the base material of the mold is dispersed into single fibers, and the plaster is omitted.
, o o a to 2.0% of the air temperature, and the surface layer of the mold is covered with plaster containing a smaller proportion of carbon fiber than other parts. Reinforced stone 7# model or model copy. (15), length 5 to 200s+ in the plaster of the base material of the mold
The carbon fibers of a are dispersed into single fibers and are uniformly mixed and dispersed at a ratio of 0.008 to 2.0% to the plaster, and the surface layer of the mold has a different proportion of carbon fibers. W, mold made of carbon fiber reinforced gypsum, characterized in that it is covered with less gypsum. (16) Carbon fibers with a length of 5 to loom are dispersed into single fibers in the plaster of the base material of the pot, and the carbon fibers are 0.0.
Carbon fiber-reinforced stone characterized by being uniformly mixed and dispersed at a ratio of 0.008 to 0.9% by weight, and the surface of the mold being covered with pure gypsum without carbon fibers mixed in: IT-made molding Intermediate mold for mold. (17) Carbon fibers dispersed into single fibers with a length of 5 to 200 m are added to the gypsum powder at a rate of 0.0 m to the gypsum powder.
Gypsum powder containing carbon fiber for use as a plaster model or model copy or original model, uniformly mixed and dispersed at a ratio of 1 to 5 times ft-. (18) Carbon fibers dispersed into single fibers with a length of 5 to loo+w are added to the gypsum powder at a rate of 0.
18. The carbon fiber-containing gypsum powder for use in plaster models, model reproductions, or master molds according to claim 17, characterized in that the carbon fiber-containing gypsum powder is uniformly mixed and dispersed in a proportion of 0.01 to 1.0% by weight. (19) Carbon fibers dispersed into single fibers with a length of 5 to 100 looms are added to the stone or gypsum powder at a rate of 0.0% relative to the gypsum powder.
A gypsum powder containing carbon fibers for intermediate molds made of gypsum, which is uniformly mixed and dispersed in a proportion of 0.01 to 5% by weight. (20), carbon fibers dispersed into single fibers of 5 to 100 lengths are added to the gypsum powder at a rate of 0.0% relative to the gypsum powder.
The carbon fiber-containing gypsum powder for use in plaster intermediate molds according to claim 19, characterized in that the carbon fiber-containing gypsum powder is uniformly mixed and dispersed at a ratio of 1 to 1.0 percent heavy duty. (21) Carbon fibers are cut into lengths of 5 to 200 m and dispersed in advance into countless single fibers, and then mixed with gypsum powder and 0.01 to 5% by weight of single fibers with respect to the gypsum powder. With the carbon fibers that are discrete? A method for producing carbon fiber-containing gypsum powder for a gypsum model, a model copy, or a master model, which comprises charging the powder into a circulating jet air stream to uniformly mix the two, and then recovering the powder. (2z), carbon fibers are cut into lengths of 5 to 200 $11 and dispersed in advance into countless single fibers, and gypsum powder and 0.01 to 5 weight M% of the gypsum powder are added. A method for producing carbon fiber-containing gypsum powder for a plaster model, a model copy mold, or a master model, which comprises putting the carbon fibers which have been subjected to w1 defeat into single fibers into a flexible bag and rocking and rotating them. (23), 5 to 100 carbon fibers! The carbon fibers are cut into lengths of II+ and dispersed into countless single fibers in advance, and the gypsum powder and the carbon fibers dispersed into single fibers in an amount of 0.1 to 5% by weight based on the gypsum powder are circulated. A method for producing carbon fiber-containing gypsum powder for intermediate molds made of gypsum, characterized in that the carbon fiber-containing gypsum powder is introduced into a jet air stream to uniformly mix the two and then recovered. (24), carbon fibers are cut into lengths of 5 to 100 degrees and dispersed into countless single fibers, and then mixed with gypsum powder.
For an intermediate mold made of gypsum, characterized in that the carbon fibers, which are dispersed into single fibers in an amount of 0.0 to 5% by weight based on the gypsum powder, are put into a flexible bag and rocked and rotated. A method for producing carbon fiber-containing gypsum powder. ” 2, page 10, lines 8 and 9, [...how to treat it as a copy, and how to make it into a product.・・・
” he corrected. 3. On page 14, line 8, ``Press mold, press mold,'' is corrected to ``...Rokuro mold, nibless mold,''. 4. On page 816, lines 16 and 177, "--using discrete powder and water to form a single fiber..." is corrected to "--forming discrete powder and water to Φ single fiber...". 5. On page 14, line 8, change "2.4% possible if..." to [2.4% if threatened! ! Correct that it is possible. 6. In the 11th line of page 28, "-lifting rotation as a fist method..." is corrected to "-as a method! dynamic rotation--". 7, page 28, lines 114 and 155, ``...carbon fiber 0.1 to 5% by weight...'' is corrected to ``...carbon fiber is juyuyu to 5 times i≦・ri.'' 8, No. Page 37, line 2: ``60 parts by weight of water, carbon fiber m
o, 1 part by weight...'' is corrected to ``Water aOZ part, star! (swelling inhibitor) 20 parts by weight, carbon fiber 0.1 part by weight ψ.''. 96, page 37, lines 12 and 133 “...60 weight f of water
1 part f, 0.2 parts by weight of borax...'' is corrected to ``+1 @ 60 parts water. B1 The drawing of the present application, Figure 3, is corrected as shown in the drawing attached to this document. 1 or more - Broom 3 Figure ( b) (b) Procedural amendment (IE published December 19, 1980, Mr. Manabu Shiga, Commissioner of the Patent Office (Patent Office 1y
(To the Chief Judge) 1 (To the Patent Office Examiner) 1. Indication of the case Patent Application No. 203764 of 1983 3. Relationship with the person making the amendment Patent applicant's address (residence) 756 Aii-cho, Yokkaichi City, Mie Prefecture 1
4. Agent 〒500 Amended the "Scope of Claims" stated from page 2, line 4 to page 49, line 13 of the written amendment submitted on November 22, 1980, as follows: do. (1) Carbon fibers with a length of 5 to 200 m are dispersed into single fibers within the gypsum structure of the base material, and 0.
A carbon fiber-reinforced plaster model or model reproduction mold characterized in that carbon fiber reinforced plaster is uniformly mixed and dispersed at a ratio of 0.008 to 2.0 fffffl%. (2) Carbon tB fibers with a length of 5 to XOO are uniformly mixed and dispersed in the base material gypsum at a ratio of o, o o a to 0.9 fkfit% to the plaster. A carbon fiber-reinforced plaster model or model copy according to claim 1. (3) In the gypsum structure of the base material, carbon ta fibers with a length of 200 to 200 mm are dispersed into single fibers and the gypsum structure is 0.0%.
A carbon #a fiber-reinforced gypsum g prototype characterized by being uniformly mixed and dispersed in a proportion of 0.008 to 2.0% by weight. (4) Carbon fibers having a length of 5 to 1001Is are uniformly mixed and dispersed in the base material of plaster at a ratio of o, o o a to 0.9% by weight based on the plaster. A carbon fiber-reinforced gypsum prototype according to claim 3. (5) A patent claim characterized in that carbon fibers having a length of 15 to 30 m5 are uniformly mixed and dispersed in the base material of plaster at a ratio of 0.05 to 0.3 weight ffi% to the plaster. A master mold for a carbon fiber-reinforced gypsum mold according to item 3. (6) The mold is a ceramic casting mold, a potter's wheel mold, or a paper carton casting mold made from paper pulp slurry;
Claims 3 to 5 are characterized in that the mold is a mold that utilizes the water absorbing properties of gypsum like a press mold.
Prototype for carbon fiber-reinforced gypsum mold described in Section 3. (a) The mold is a rubber product with plastic product 1. For carbon fiber reinforced gypsum molds according to claims N, items 3 to 5, which are molds such as casting molds, extrusion molds, injection molds, etc. for non-ferrous metal F4 products. prototype. (8) The mold is a press mold or injection mold for so-called fine ceramic products that do not contain clay as raw materials;
Is it a mold such as a casting mold? The carbon fiber-reinforced gypsum mold prototype □, (9) according to claims 3 to 5, wherein carbon fibers with a length of 5 to 100 m are formed into single fibers within the gypsum structure of the base material. An intermediate mold for a mold made of carbon fiber reinforced gypsum, characterized in that the intermediate mold is uniformly mixed and dispersed in a discrete state at a ratio of 0.008 to 0.9% by weight based on gypsum. (10) A patent claim characterized in that carbon fibers having a length of 15 to 30+ am are uniformly mixed and dispersed in the stone base material at a ratio of 0.05 to 0.3% by weight based on the plaster. An intermediate mold for a carbon fiber-reinforced gypsum mold according to Item 9. (11) Molding in which the mold uses the water absorbing properties of plaster, such as a spinning mold for ceramics, a potter's wheel mold, a paper carton casting mold made from paper valve slurry, or a press mold. Claims 9 to 10 are characterized in that they are molds.
Carbon fiber-reinforced gypsum mold layer intermediate mold described in Section 1. (12) The carbon according to claims 9 to 10, wherein the mold is a mold such as a casting mold, an extrusion mold, or an injection mold for plastic products or non-ferrous metal products. Fiber-reinforced gypsum mold layer intermediate mold. (13) A patent claim characterized in that the mold is used for press molding, injection molding, casting molding, and extrusion molding of so-called fine ceramic products that do not contain clay as a raw material. An intermediate mold for a carbon fiber-reinforced gypsum mold according to item 9 or 10. (14), carbon fibers with a length of 5 to 200 m are dispersed into single fibers in the plaster of the base material of the mold, and o,
o o Carbon fibers are uniformly mixed and dispersed at a mold temperature percentage of a to 2.0%, and the surface layer of the mold is covered with gypsum in which the carbon fibers are mixed in a smaller proportion than other parts. Reinforced plaster cast or model reproduction mold. (15) Carbon fibers with a length of 5 to 200 fins are dispersed into single fibers in the plaster of the base material of the mold, and 0.
Made of carbon fiber-reinforced gypsum, characterized in that the carbon fibers are uniformly mixed and dispersed at a ratio of 0.008 to 2.01ii%, and the surface layer of the mold is covered with plaster containing a smaller proportion of carbon LB fibers than other parts. prototype. (16), Length 5 to], OOm in the plaster of the base material of the mold
carbon fibers are dispersed into single fibers and placed against the plaster.
, o o a to 0.9% by weight, and the surface of the mold is coated with pure gypsum with no carbon fibers mixed in.
Intermediate mold for reinforced plaster molds. (17) A gypsum product made by uniformly mixing and dispersing carbon fibers, which are dispersed into single fibers with a length of 5 to 200 degrees, in gypsum powder at a ratio of 0.01 to 5 mbk% to the gypsum powder. Carbon fiber-containing gypsum powder for models, model reproduction molds, or master molds. (18) Carbon fibers dispersed into single fibers with a length of 5 to loosml are added to the gypsum powder at 0%
18. The carbon fiber-containing gypsum powder for plaster models, model copies, or originals as claimed in claim 17, characterized in that the carbon fiber-containing gypsum powder is uniformly mixed and dispersed at a ratio of 0.01 to 1.0%. (19) Add charcoal: A fibers into monofilaments of length 5 to 100% in gypsum powder to 0% against the gypsum powder.
Carbon fiber-containing gypsum powder for stone/W chain intermediate molds which is uniformly mixed and dispersed at a ratio of 0.01 to 5.0%. (20), carbon fibers dispersed into single fibers with a length of 5 to 100 mm in gypsum powder? , 0°0 for the gypsum powder
Patent i? characterized in that it is uniformly mixed and dispersed at a ratio of 1 to 1.0 weight f%. 19. The carbon-fiber-containing gypsum powder for use as a gypsum intermediate top according to item 19. (21) Cut the carbon fiber into lengths of 5 to 200 inches and create countless pieces! The carbon fibers are dispersed in advance into one magnetic fiber, and the gypsum powder and the carbon fibers, which are dispersed into single m fibers with a weight of 0.01 to 5 times 1 fk% relative to the gypsum powder, are placed in a circulating jet air stream. A method for producing carbon fiber-containing gypsum powder for a gypsum model, a model copy, or a master model, which comprises charging the powder and uniformly mixing the two, and then recovering the powder. (22) Cut the carbon fiber to a length of 5 to 200 mm and disperse it into several single fibers in advance, add gypsum powder,
A gypsum model characterized in that the gypsum powder is chopped and the carbon fibers are dispersed into single fibers having a mass of 0.01 to 5%, and the carbon fibers are put into a flexible bag and rocked and rotated. A method for producing carbon fiber-containing gypsum powder for model reproduction molds or master molds. (23), the carbon is cut into lengths of 5 to 100 RII and dispersed in advance into countless single fibers, and then mixed with gypsum powder and 0.01 to 5% by weight of single fibers with respect to the gypsum powder. A method for producing a carbon fiber-containing gypsum powder for intermediate temperature use made of gypsum, characterized in that the carbon fibers dispersed in the gypsum powder are introduced into a circulating jet air flow, and the two are uniformly mixed and then recovered. (24), carbon fibers are cut into lengths of 5 to 10 osus and dispersed in advance into countless single fibers, and then mixed with gypsum powder and single fibers with a total percentage of 0.01 to 5M relative to the gypsum powder. A method for producing carbon fiber-containing gypsum powder for an intermediate mold made of gypsum, characterized in that the dispersed carbon fibers are placed in a flexible bag and rocked and rotated. ” The above procedural amendments Numakawa January 25, 1960 (Mr. 1 Chief Adjudicator of the Japan Patent Office)
1. Indication of the case 1980 1 Blue Permit No. 203764 3. Relationship with the case by the person making the amendment 'Zet 3'r Susuke Issei 1 (Residence) 14, 756 Soi-cho, Yokkaichi City, Mie Prefecture.
Agent 〒500 Address 3Y-5, Kano Asahi-cho, Gifu City I will submit the originals of the photographs of drawings 5 and 7 of the application. Motion of amendment to the above procedure February 18, 1985 Manabu Shiga, Commissioner of the Patent Office (Chief Adjudicator of the Patent Office) (Examiner of the Patent Office) 3. Relationship with the amended person case Special 1 applicant address (Residence)
756 Ichii-cho, Yokka T1i City, Mie Prefecture. JP Ike 18, Contents of the amendment tsu It is. "Figure 5 is a photograph of the crystal structure of a gypsum sample piece using powder for β-type stone, taken with a scanning electron microscope, and Figure 7 is
This is a photograph of the crystal structure of a gypsum sample piece using α-type gypsum powder. ” he corrected. −1 above

Claims (1)

【特許請求の範囲】 (1)、母材の石膏組織内に長さ5ないし200mmの
炭素繊維が単繊維に離散された状態で石膏に対して0.
008ないし2.0重量%の割合で均一に混入分散され
ていることを特徴とする炭素繊維強化石膏製模型または
模型複写型。 (2)、長さ5ないし100mmの炭素繊維が石膏に対
して0.008ないし0.9重量%の割合で母材の石膏
内に均一に混入分散されていることを特徴とする特許請
求の範囲第1項記載の炭素繊維強化石膏製模型または模
型複写型。 (3)、母材の石膏組織内に長さ5ないし200mmの
炭素繊維が単繊維に離散された状態で石膏に対して0.
008ないし2.0重量%の割合で均一に混入分散され
ていることを特徴とする炭素繊維強化石膏製原型。 (4)、長さ5ないし100mmの炭素繊維が石膏に対
して0.008ないし0.9重量%の割合で母材の石膏
内に均一に混入分散されていることを特徴とする特許請
求の範囲第3項記載の炭素繊維強化石膏製原型。 (5)、長さ15ないし30mmの炭素繊維が石膏に対
して0.05ないし0.3重量%の割合で母材の石膏内
に均一に混入分散されていることを特徴とする特許請求
の範囲第3項記載の炭素繊維強化石膏製成形型用原型。 (6)、成形型が、陶磁器の鋳込成形型、ロクロ成形型
或るいは紙パルプ泥漿を原料とする紙器の鋳込成形型、
プレス成形型のように石膏の吸水性を利用する成形型で
あることを特徴とする特許請求の範囲の範囲第3項ない
し第5項記載の炭素繊維強化石膏製成形型用原型。 (7)、成形型が、プラスチック製品、合成ゴム製品、
非鉄金属製品の鋳込成形型、押出成形型、射出成形型な
どの成形型であることを特徴とする特許請求の範囲第3
項ないし第5項記載の炭素繊維強化石膏製成形型用原型
。 (8)、成形型が、原料に粘土類を含まないいわゆるフ
ァインセラミックス製品のプレス成形型、射出成形型、
鋳込成形型などの成形型であることを特徴とする特許請
求の範囲第3項ないし第5項記載の炭素繊維強化石膏製
成形型用原型。 (9)、母材の石膏組織内に長さ5ないし100mmの
炭素繊維が単繊維に離散された状態で石膏に対して0.
008ないし0.9重量%の割合で均一に混入分散され
ていることを特徴とする炭素繊維強化石膏製成形型用中
間型。 (10)、長さ15ないし30mmの炭素繊維が石膏に
対して0.05ないし0.3重量%の割合で母材の石膏
内に均一に混入分散されていることを特許とする特許請
求の範囲第9項記載の炭素繊維強化石膏製成形型用中間
型。 (11)成形型が、陶磁器の鋳込成形型、ロクロ成形型
或るいは紙パルプ泥漿を原料とする紙器の鋳込成形型、
プレス成形型のように石膏の吸水性を利用する成形型で
あることを特徴とする特許請求の範囲第9ないし10項
記載の炭素繊維強化石膏製成形型用中間型。 (12)、成形型が、プラスチック製品、非鉄金属製品
の鋳込成形型、押出成形型、射出成形型などの成形型で
あることを特徴とする特許請求の範囲第9ないし10項
記載の炭素繊維強化石膏製成形型用中間型。 (13)、成形型が、原料に粘土類を含まないいわゆる
ファインセラミックス製品のプレス成形型、射出成形型
、鋳込成形型、押出成形用型の成型に用いられることを
特徴とする特許請求の範囲第9ないし10項記載の炭素
繊維強化石膏製成形型用中間型。 (14)、型の母材の石膏内に長さ5ないし200mm
の炭素繊維が単繊維に離散された状態で石膏に対して0
.008ないし2.0重量%の割合で均一に混入分散さ
れ、しかも型の表層部が炭素繊維の混入割合が他部より
も少ない石膏で被覆されていることを特徴とする炭素繊
維強化石膏製模型または模型複写型。 (13)、型の母材の石膏内に長さ5ないし200mm
の炭素繊維が単繊維に離散された状態で石膏に対して0
.008ないし2.0重量%の割合で均一に混入分散さ
れ、しかも型の表層部が炭素繊維の混入割合が他部より
も少ない石膏で被覆されていることを特徴とする炭素繊
維強化石膏製原型。 (16)、型の母材の石膏内に長さ5ないし100mm
の炭素繊維が単繊維に離散された状態で石膏に対して0
.008ないし0.9重量%の割合で均一に混入分散さ
れ、しかも型の表面が炭素繊維が混入されていない純粋
な石膏で被覆されていることを特徴とする炭素繊維強化
石膏製成形型用中間型。 (17)、石膏粉末内に5ないし200mmの長さの単
繊維に離散された炭素繊維を、該石膏粉末に対して0.
01ないし5重量%の割合で均一に混入分散して成る石
膏製模型又は模型複写型あるいは原型用炭素繊維入り石
膏粉末。 (18)、石膏粉末内に5ないし100mmの長さに離
散された炭素繊維を、該石膏粉末に対して0.01ない
し1.0重量%の割合で均一に混入分散したことを特徴
とする特許請求の範囲第17項記載の石膏製模型又は模
型複写型あるいは原型用炭素繊維入り石膏粉末。 (19)、石膏粉末内に5ないし100mmの長さの単
繊維に離散された炭素繊維を、該石膏粉末に対して0.
01ないし5重量%の割合で均一に混入分散して成る石
膏製中間型用炭素繊維入り石膏粉末。 (20)、石膏粉末内に5ないし100mmの長さに離
散された炭素繊維を、該石膏粉末に対して0.01ない
し1.0重量%の割合で均一に混入分散したことを特徴
とする特許請求の範囲第19項記載の石膏製中間型用炭
素繊維入り石膏粉末。 (21)、炭素繊維を5ないし200mmの長さに切断
して無数本の単繊維に予め離散させておき、石膏粉末と
、該石膏粉末に対して0.01ないし5重量%の単繊維
に離散された前記炭素繊維とを循環しているジェット空
気流内に投入して両者を均一に混合せしめた後に回収す
ることを特徴とする石膏製模型又は模型複写型あるいは
原型用炭素繊維入り石膏粉末の製造方法。 (22)、炭素繊維を5ないし200mmの長さに切断
して無数本の単繊維に予め離散させておき、石膏粉末と
、該石膏粉末に対して0.01ないし5重量%の単繊維
に離散された前記炭素繊維とを撓屈自在の袋体内に投入
して揺動回転させることを特徴とする石膏製模型又は模
型複写型あるいは原型用炭素繊維入り石膏粉末の製造方
法。 (23)、炭素繊維を5ないし100mmの長さに切断
して無数本の単繊維に予め離散させておき、石膏粉末と
、該石膏粉末に対して0.1ないし5重量%の単繊維に
離散された前記炭素繊維とを循環しているジェット空気
流内に投入して両者を均一に混合せしめた後に回収する
ことを特徴とする石膏製中間型用炭素繊維入り石膏粉末
の製造方法。 (24)、炭素繊維を5ないし100mmの長さに切断
して無数本の単繊維に予め離散させておき、石膏粉末と
、該石膏粉末に対して0.01ないし5重量%の単繊維
に離散された前記炭素繊維とを撓屈自在の袋体内に投入
して揺動回転させることを特徴とする石膏製中間型用炭
素繊維入り石膏粉末の製造方法。
Scope of Claims: (1) Carbon fibers with a length of 5 to 200 mm are dispersed into single fibers within the gypsum structure of the base material, and the carbon fibers are 0.0% relative to the gypsum.
A carbon fiber-reinforced plaster model or model copy mold, characterized in that the carbon fiber reinforced plaster model or model copy mold is uniformly mixed and dispersed in a proportion of 0.008 to 2.0% by weight. (2) A patent claim characterized in that carbon fibers having a length of 5 to 100 mm are uniformly mixed and dispersed in the base material of plaster at a ratio of 0.008 to 0.9% by weight based on the plaster. A carbon fiber-reinforced plaster model or model reproduction mold according to item 1. (3) Carbon fibers with a length of 5 to 200 mm are dispersed into single fibers within the gypsum structure of the base material, and 0.
A carbon fiber-reinforced gypsum master mold characterized in that the carbon fiber reinforced gypsum mold is uniformly mixed and dispersed in a proportion of 0.008 to 2.0% by weight. (4) A patent claim characterized in that carbon fibers having a length of 5 to 100 mm are uniformly mixed and dispersed in the base material gypsum at a ratio of 0.008 to 0.9% by weight based on the gypsum. A carbon fiber-reinforced gypsum prototype according to scope 3. (5) A patent claim characterized in that carbon fibers having a length of 15 to 30 mm are uniformly mixed and dispersed in the base material of plaster at a ratio of 0.05 to 0.3% by weight based on the plaster. A master mold for a carbon fiber-reinforced gypsum mold according to scope 3. (6) The mold is a ceramic casting mold, a potter's wheel mold, or a paper carton casting mold made from paper pulp slurry;
The carbon fiber-reinforced gypsum mold prototype according to claims 3 to 5, which is a mold that utilizes the water absorbing properties of gypsum, such as a press mold. (7) The mold is a plastic product, a synthetic rubber product,
Claim 3, characterized in that it is a mold such as a casting mold, an extrusion mold, an injection mold, etc. for non-ferrous metal products.
A master mold for a carbon fiber-reinforced gypsum mold according to items 5 to 6. (8) The mold is a press mold or injection mold for so-called fine ceramic products that do not contain clay as raw materials;
A master mold for a carbon fiber-reinforced gypsum mold according to any one of claims 3 to 5, which is a mold such as a casting mold. (9) Carbon fibers with a length of 5 to 100 mm are dispersed into single fibers within the gypsum structure of the base material, and 0.
An intermediate mold for a mold made of carbon fiber reinforced gypsum, characterized in that carbon fiber is uniformly mixed and dispersed in a proportion of 0.08 to 0.9% by weight. (10) A patent claim that carbon fibers having a length of 15 to 30 mm are uniformly mixed and dispersed in the base material gypsum at a ratio of 0.05 to 0.3% by weight based on the gypsum. An intermediate mold for a carbon fiber-reinforced gypsum mold according to Item 9. (11) The mold is a ceramic casting mold, a potter's wheel mold, or a paper carton casting mold made from paper pulp slurry;
11. An intermediate mold for a carbon fiber-reinforced gypsum mold according to any one of claims 9 to 10, which is a mold that utilizes water absorbency of gypsum like a press mold. (12) The carbon according to claims 9 to 10, wherein the mold is a mold such as a casting mold, an extrusion mold, or an injection mold for plastic products or non-ferrous metal products. Intermediate mold for fiber-reinforced gypsum molds. (13) A patent claim characterized in that the mold is used for press molding, injection molding, casting molding, and extrusion molding of so-called fine ceramic products that do not contain clay as a raw material. An intermediate mold for a carbon fiber-reinforced gypsum mold according to item 9 or 10. (14), length 5 to 200 mm in the plaster of the base material of the mold
When the carbon fibers are dispersed into single fibers, it is 0 against the plaster.
.. A carbon fiber-reinforced plaster model characterized in that the carbon fibers are uniformly mixed and dispersed at a proportion of 0.008 to 2.0% by weight, and the surface layer of the mold is covered with plaster containing a smaller proportion of carbon fibers than other parts. Or a model copy mold. (13), length 5 to 200 mm in the plaster of the base material of the mold
When the carbon fibers are dispersed into single fibers, it is 0 against the plaster.
.. A master mold made of carbon fiber-reinforced gypsum, characterized in that the carbon fibers are uniformly mixed and dispersed at a proportion of 0.008 to 2.0% by weight, and the surface layer of the mold is covered with plaster containing a smaller proportion of carbon fibers than other parts. . (16), a length of 5 to 100 mm in the plaster of the base material of the mold.
When the carbon fibers are dispersed into single fibers, it is 0 against the plaster.
.. An intermediate for a mold made of carbon fiber-reinforced gypsum, characterized in that the carbon fiber-reinforced gypsum is uniformly mixed and dispersed in a proportion of 0.008 to 0.9% by weight, and the surface of the mold is coated with pure gypsum without carbon fibers mixed therein. Type. (17) Carbon fibers dispersed into single fibers with a length of 5 to 200 mm are added to the gypsum powder at a rate of 0.0% relative to the gypsum powder.
A gypsum powder containing carbon fiber for use in plaster models, model reproduction molds, or master molds, which is uniformly mixed and dispersed in a proportion of 0.01 to 5% by weight. (18), carbon fibers having a length of 5 to 100 mm are uniformly mixed and dispersed in the gypsum powder at a ratio of 0.01 to 1.0% by weight based on the gypsum powder. A carbon fiber-containing gypsum powder for plaster models, model copies, or originals as set forth in claim 17. (19) Carbon fibers dispersed into single fibers with a length of 5 to 100 mm are added to the gypsum powder at a rate of 0.0% relative to the gypsum powder.
A gypsum powder containing carbon fibers for intermediate molds made of gypsum, which is uniformly mixed and dispersed in a proportion of 0.01 to 5% by weight. (20), carbon fibers having a length of 5 to 100 mm are uniformly mixed and dispersed in the gypsum powder at a ratio of 0.01 to 1.0% by weight based on the gypsum powder. A carbon fiber-containing gypsum powder for a gypsum intermediate mold according to claim 19. (21), carbon fibers are cut into lengths of 5 to 200 mm and dispersed in advance into countless single fibers, and then mixed with gypsum powder and 0.01 to 5% by weight of single fibers with respect to the gypsum powder. A gypsum powder containing carbon fibers for use in plaster models, model reproduction molds, or master molds, characterized in that the dispersed carbon fibers are introduced into a circulating jet air flow to uniformly mix the two and then recovered. manufacturing method. (22), carbon fibers are cut into lengths of 5 to 200 mm and dispersed in advance into countless single fibers, and then mixed with gypsum powder and single fibers of 0.01 to 5% by weight based on the gypsum powder. A method for producing carbon fiber-containing gypsum powder for a plaster model, a model copy, or a master model, characterized in that the dispersed carbon fibers are placed in a flexible bag and rocked and rotated. (23), carbon fibers are cut into lengths of 5 to 100 mm and dispersed in advance into countless single fibers, and then mixed with gypsum powder and 0.1 to 5% by weight of single fibers with respect to the gypsum powder. A method for producing carbon fiber-containing gypsum powder for a gypsum intermediate mold, characterized in that the dispersed carbon fibers are introduced into a circulating jet air stream, uniformly mixed, and then recovered. (24), carbon fibers are cut into lengths of 5 to 100 mm and dispersed in advance into countless single fibers, and then mixed with gypsum powder and 0.01 to 5% by weight of single fibers with respect to the gypsum powder. A method for producing carbon fiber-containing gypsum powder for an intermediate mold made of gypsum, characterized in that the dispersed carbon fibers are placed in a flexible bag and rocked and rotated.
JP59203764A 1984-09-27 1984-09-27 Carbon fiber reinforced gypsum model and original mold and intermediate mold for molded mold, gypsum powder and manufacture Pending JPS6183666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59203764A JPS6183666A (en) 1984-09-27 1984-09-27 Carbon fiber reinforced gypsum model and original mold and intermediate mold for molded mold, gypsum powder and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59203764A JPS6183666A (en) 1984-09-27 1984-09-27 Carbon fiber reinforced gypsum model and original mold and intermediate mold for molded mold, gypsum powder and manufacture

Publications (1)

Publication Number Publication Date
JPS6183666A true JPS6183666A (en) 1986-04-28

Family

ID=16479432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59203764A Pending JPS6183666A (en) 1984-09-27 1984-09-27 Carbon fiber reinforced gypsum model and original mold and intermediate mold for molded mold, gypsum powder and manufacture

Country Status (1)

Country Link
JP (1) JPS6183666A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059048A (en) * 1991-06-28 1993-01-19 Mitsui Mining Co Ltd Manufacture of carbon fiber reinforced cement-based material
JPH06155426A (en) * 1993-04-05 1994-06-03 Noritake Co Ltd Carbon fiber reinforced gypsum model, master for mold, intermediate mold thereof, gypsum powder thereof and production thereof
JPH06157117A (en) * 1993-04-05 1994-06-03 Noritake Co Ltd Carbon fiber reinforced gypsum forming mold and gypsum powder and production thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973426A (en) * 1972-11-14 1974-07-16
JPS504123A (en) * 1973-05-12 1975-01-17
JPS58180606A (en) * 1982-04-19 1983-10-22 日本メクトロン株式会社 Male mold for producing wig base
JPS59194804A (en) * 1983-04-19 1984-11-05 株式会社ノリタケカンパニーリミテド Carbon fiber reinforced gypsum die for molding pottery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973426A (en) * 1972-11-14 1974-07-16
JPS504123A (en) * 1973-05-12 1975-01-17
JPS58180606A (en) * 1982-04-19 1983-10-22 日本メクトロン株式会社 Male mold for producing wig base
JPS59194804A (en) * 1983-04-19 1984-11-05 株式会社ノリタケカンパニーリミテド Carbon fiber reinforced gypsum die for molding pottery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059048A (en) * 1991-06-28 1993-01-19 Mitsui Mining Co Ltd Manufacture of carbon fiber reinforced cement-based material
JPH06155426A (en) * 1993-04-05 1994-06-03 Noritake Co Ltd Carbon fiber reinforced gypsum model, master for mold, intermediate mold thereof, gypsum powder thereof and production thereof
JPH06157117A (en) * 1993-04-05 1994-06-03 Noritake Co Ltd Carbon fiber reinforced gypsum forming mold and gypsum powder and production thereof

Similar Documents

Publication Publication Date Title
US4990292A (en) Method for producing carbon fiber-reinforced gypsum models and forming molds
Hogancamp et al. The use of microfine cement to enhance the efficacy of carbon nanofibers with respect to drying shrinkage crack resistance of portland cement mortars
US4298554A (en) Coherent rigid solid material
Lediga et al. Optimizing concrete mix design for application in 3D printing technology for the construction industry
JP6654964B2 (en) Cement composition
JP7178367B2 (en) Molded article formed from curable composition
Shakor et al. Effect of heat curing and E6-glass fibre reinforcement addition on powder-based 3DP cement mortar
JPS6183666A (en) Carbon fiber reinforced gypsum model and original mold and intermediate mold for molded mold, gypsum powder and manufacture
KR102237816B1 (en) SBR Latex Modified Polymer Cement Mixtures for 3D Concrete Printing and Its Manufacturing Method
Sravani et al. Experimental study on partial replacement of fine aggregate with waste foundry sand in concrete
JPS6183665A (en) Carbon fiber reinforced gypsum molded mold, gypsum powder and manufacture
JPH06155426A (en) Carbon fiber reinforced gypsum model, master for mold, intermediate mold thereof, gypsum powder thereof and production thereof
US4599211A (en) Thermal treatment of concretes containing stainless steel
KR100656965B1 (en) Cement terazo composite materials using the high strength cement grout materials
KR20030036382A (en) Cement terazo composite materials using the magnesia
CN114682729A (en) Preparation method of precision casting silica sol shell
US2079665A (en) Lightweight ceramic composition
JPH06157117A (en) Carbon fiber reinforced gypsum forming mold and gypsum powder and production thereof
JP6646908B2 (en) Concrete member for high-speed traffic system structure and method of manufacturing the same
JP4342219B2 (en) INORGANIC MOLD COMPOSITION COMPOSITION AND METHOD FOR PRODUCING TIRE MOLD USING THE SAME
ElNEMR et al. Rheological and Mechanical Characterization of Self-Compacting Concrete using Recycled Aggregate
JP6516567B2 (en) Plate and method of manufacturing the same
JP2020070201A (en) Cement composition and method for producing hardened cementitious materials
JPH06144950A (en) Production of ceramic lightweight building material
JP7433031B2 (en) Cement composition and method for producing hardened cementitious body