JPS6183559A - Electrostatic discharging device - Google Patents
Electrostatic discharging deviceInfo
- Publication number
- JPS6183559A JPS6183559A JP20398784A JP20398784A JPS6183559A JP S6183559 A JPS6183559 A JP S6183559A JP 20398784 A JP20398784 A JP 20398784A JP 20398784 A JP20398784 A JP 20398784A JP S6183559 A JPS6183559 A JP S6183559A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- discharge
- dielectric
- area
- photoreceptor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/02—Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
- G03G15/0275—Arrangements for controlling the area of the photoconductor to be charged
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
Abstract
Description
【発明の詳細な説明】
援血豆1
本発明は静電記録装置、電子写真装置等に用いられる放
電装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a discharge device used in electrostatic recording devices, electrophotographic devices, etc.
背漉巷1
例えば電子写真装置においては、感光体に帯電および像
露光を施して静電潜像を形成している。第1図はかかる
電子写真装置の一例を示すもので、所謂NP方式の画像
形成プロセスを使用するものである。Background of the Invention For example, in an electrophotographic apparatus, a photoreceptor is charged and exposed to image light to form an electrostatic latent image. FIG. 1 shows an example of such an electrophotographic apparatus, which uses a so-called NP image forming process.
第1図において、TL子写真感光体1は電気的に接地さ
れたドラム状導電体(アルミニウム等)2の周面に光導
電体層(1tE化カドミウム等)3を形成し、その上に
透明絶縁層(ポリエチレンテレフタレート等)4を居合
した周知の形式のものである。感光体1は矢印方向に回
転し、その回転に従ってコロナ放電装置5により一様に
帯電される。In FIG. 1, the TL photographic photoreceptor 1 has a photoconductor layer (1tE cadmium, etc.) 3 formed on the circumferential surface of a drum-shaped conductor (aluminum, etc.) 2 that is electrically grounded, and a transparent This is a well-known type having an insulating layer 4 (polyethylene terephthalate, etc.). The photoreceptor 1 rotates in the direction of the arrow, and is uniformly charged by the corona discharge device 5 as it rotates.
放電装置5は周知の形式のり、C,コロナ放電装置より
成り、その放電極性は光導電体層3がN型の場合は正、
P型の場合は負である。感光体1は次に放電装置5とは
逆極性のり、C,またはA、C,コロナ放電装置6で二
次帯電(前記−次帯電により感光体表面に付与された電
荷の除電)が行われ、これと同時に放電装置6に設けた
スリント状開07を通して像光(この場合は被複写原稿
の光学像)が露光される。次に、非像光照射手段8によ
って像情報は含まない略一様な光(非像光)が露光され
る0以上の工程で感光体lには被複写原稿に対応する高
コントラストの静電潜像が形成されるが、このような工
程による静TLH1像形成の物理現象説明は特公昭42
−23910号公報等により周知であるので、煩雑を避
ける為、詳しい説明は省略する。The discharge device 5 consists of a well-known type of corona discharge device, and its discharge polarity is positive when the photoconductor layer 3 is of N type;
In the case of P type, it is negative. The photoreceptor 1 is then subjected to secondary charging (removal of the charge imparted to the surface of the photoreceptor by the secondary charging) using a corona discharge device 6 using a glue having a polarity opposite to that of the discharge device 5. At the same time, image light (in this case, an optical image of the original to be copied) is exposed through a slint-like opening 07 provided in the discharge device 6. Next, in a step of 0 or more in which substantially uniform light (non-image light) containing no image information is exposed by the non-image light irradiating means 8, the photoreceptor l is exposed to a high-contrast electrostatic charge corresponding to the original to be copied. A latent image is formed, but the explanation of the physical phenomenon of static TLH1 image formation through such a process is given in the Japanese Patent Publication No. 42
Since it is well known from Publication No.-23910, etc., detailed explanation will be omitted to avoid complexity.
上記潜像は現像装置9においてトナーを用いて現像(可
視像化)され、得られたトナー像は転写用コロナ放電装
置10により、矢印方向に搬送される転写紙11に転写
され、転写後、定着器12により転写紙11に定着され
る。一方、転写後の感光体1は清掃器13で清掃され、
再使用される。The latent image is developed (visualized) using toner in a developing device 9, and the obtained toner image is transferred by a transfer corona discharge device 10 onto a transfer paper 11 conveyed in the direction of the arrow. , is fixed on the transfer paper 11 by the fixing device 12. On the other hand, the photoreceptor 1 after the transfer is cleaned by a cleaner 13,
Reused.
被複写原稿Oは原稿台14に戴置される。原稿台14は
矢印方向に往動じ、その際原稿0が走査され、像光が感
光体1に投影される。すなわち、原稿台14の往動時に
原fIOはランプ15によって照明され、原稿0を反射
した光はミラー16、レンズ17.ミラー18.更にス
リット開ロアを経て感光体1に入射する。これにより、
原稿Oの光学像が感光体1にスリット露光される。A document O to be copied is placed on a document table 14 . The document table 14 moves forward in the direction of the arrow, and at this time, the document 0 is scanned and image light is projected onto the photoreceptor 1 . That is, when the document table 14 moves forward, the original fIO is illuminated by the lamp 15, and the light reflected from the document 0 is transmitted to the mirror 16, lens 17, . Mirror 18. Further, the light enters the photoreceptor 1 through the slit opening lower part. This results in
An optical image of the original O is slit exposed onto the photoreceptor 1.
原稿走査が終了すると原稿台14は矢印と逆方向に復動
し、往動起点位置に復帰する。g稿台14の復動時には
ランプ15は消灯される。When scanning of the original is completed, the original table 14 moves back in the direction opposite to the arrow and returns to the forward movement starting position. The lamp 15 is turned off when the manuscript table 14 moves backward.
L/ 7 ス17 ft 第1 T9 例ではズームレ
ンズであり、光路上でのレンズ位置を例えば破線位置1
7’に変更して原稿・レンズ間の光路長とレンズ・感光
体間の光路長との比を変更し、且つレンズ17の焦点距
離をこの比に対応して変更することにより、感光体1へ
の原稿像の結像倍率を変更できる。尚、レンズ17の位
置変更、焦点距離変更機構、更には感光体周速度と原稿
走査速度の比の変更機構等は周知のものであり、煩雑を
避ける為、ここでは説明を省略する。L/7 S17 ft 1st T9 The example is a zoom lens, and the lens position on the optical path is, for example, the dotted line position 1.
7' to change the ratio of the optical path length between the document and the lens to the optical path length between the lens and the photoconductor, and by changing the focal length of the lens 17 in accordance with this ratio, the photoconductor 1 You can change the imaging magnification of the original image. Note that the mechanism for changing the position of the lens 17, the focal length changing mechanism, and the changing mechanism for changing the ratio of the photoreceptor circumferential speed to the original scanning speed are well known, and their explanations will be omitted here to avoid complexity.
さて、以上の如き電子写真装置において、放電装置5,
6は感光体1の回転中は作動しており、一方、感光体l
は原稿走査開始前、つまり像露光開始前から回転を開始
し、また原稿走査終了後も回転を継続する。これは、像
露光前に感光体の感度を整えたり、また像露光終了後は
転写、清掃等の処理を行なう為等である。ところが、こ
のように像光が感光体に露光されない状態で感光体が回
転している場合、感光体表面領域の電位は暗部電位とな
るので、かかる領域にトナーが付着することになる。こ
の望ましからざるトナー付着を防止する為、従来装置で
は像光非露光時にコロナ放電装置6のスリット開ロアを
通して感光体に補助光を照明し、その表面電位を明部電
位としていた。また、像露光中においても、選択された
幅寸法(転写紙搬送方向に対し垂直方向における寸法)
の転写紙が当接しない感光体表面領域にトナーが付着す
るのを防止する為、かかる領域にコロナ放電装置6のス
リット開ロアを通して補助光を同様に照明し、この領域
の表面電位を明部電位としていた。Now, in the electrophotographic apparatus as described above, the discharge device 5,
6 operates while the photoreceptor 1 is rotating, while the photoreceptor l
starts rotating before the start of document scanning, that is, before the start of image exposure, and continues to rotate even after the document scanning is completed. This is to adjust the sensitivity of the photoreceptor before image exposure, and to perform processes such as transfer and cleaning after image exposure. However, when the photoreceptor is rotating in such a state that the image light is not exposed to the photoreceptor, the potential of the surface area of the photoreceptor becomes the dark area potential, and thus toner adheres to this area. In order to prevent this undesirable toner adhesion, in the conventional apparatus, auxiliary light is illuminated on the photoreceptor through the slit opening lower of the corona discharge device 6 when the image light is not exposed, and the surface potential of the photoreceptor is set as the bright area potential. Also, even during image exposure, the selected width dimension (dimension in the direction perpendicular to the transfer paper conveyance direction)
In order to prevent toner from adhering to the surface area of the photoreceptor that is not in contact with the transfer paper, auxiliary light is similarly illuminated on this area through the slit opening lower part of the corona discharge device 6, and the surface potential of this area is adjusted to the bright area. It was set as electric potential.
更に、良く知られているように、第1図の如庸TffQ
倍MUmてし舊【1ノー!FF−1”EZMQ2wI+
倍本fy*M−)ると同一原稿であってもその像の幅が
変化する。Furthermore, as is well known, Joyong TffQ in Figure 1
Double MUm Teshige [1 no! FF-1”EZMQ2wI+
If the document is double-printed (fy*M-), the width of the image will change even if it is the same document.
換言すれば、同一の原稿に間して感光体lの像露光領域
の幅(感光体移動方向と垂直な方向における寸法)が選
択された倍率によって変化する。そしてこの場合も感光
体の像露光領域以外の外部領域に、前記スリット開ロア
を通して補助光を照射し、この領域を明部電位としてい
た。In other words, the width of the image exposure area of the photoreceptor l (dimension in the direction perpendicular to the direction of photoreceptor movement) for the same document changes depending on the selected magnification. In this case as well, auxiliary light was applied to an external area of the photoreceptor other than the image exposure area through the slit opening lower, and this area was set at a bright area potential.
i1立11
しかしながら、かかる従来技術では、感光体の像露光領
域(画像領域)以外の外部領域をトナーの付着しない明
部電位とする為の補助光照射用の補助光源が余分に必要
となり、また、電力消費量もこれに従って増大してしま
う。However, in this conventional technique, an additional auxiliary light source is required for irradiating an auxiliary light to bring the external area other than the image exposure area (image area) of the photoconductor to a bright area potential where toner does not adhere. , power consumption also increases accordingly.
本発明は上述の如き従来技術の不都合を解消することを
主な目的とするもので、より具体的には、放電領域を制
御することにより、画像領域以外の感光体領域(非画像
領域)への望ましからざるトナー付着を防止し得る放電
装置を提供することを第一の目的とする。The main purpose of the present invention is to solve the above-mentioned disadvantages of the conventional technology. A first object of the present invention is to provide a discharge device capable of preventing undesirable toner adhesion.
え見立l」
この目的を達成するため、本発明においては、誘電体と
、該誘電体の長手方向に該誘電体を挾んで延びる誘導電
極及び放電電極と、誘導電極と放電電極との間に交互電
圧を印加して放電電極の近傍にイオンを発生させる交互
電圧印加手段とを有する放電装置において、誘導電極を
複数列において互いに食い違い関係に配列された複数個
の電極要素より構成し、更に、交互電圧印加手段による
該複数個の電極要素の各々への交互電圧の印加を選択制
御する電圧印加制御手段を設け、放電領域を可変設定可
能としたものである。In order to achieve this object, the present invention provides a dielectric, an induction electrode and a discharge electrode extending between the dielectric in the longitudinal direction of the dielectric, and a discharge electrode between the induction electrode and the discharge electrode. and an alternating voltage application means for generating ions in the vicinity of the discharge electrode by applying an alternating voltage to the discharge electrode. A voltage application control means is provided for selectively controlling the application of alternating voltages to each of the plurality of electrode elements by the alternating voltage application means, so that the discharge area can be variably set.
見立1
本発明放電装置の構成を説明する前に、本発明放電装置
で採用する放電の原理について第2図を参照して説明す
る。Mitate 1 Before explaining the configuration of the discharge device of the present invention, the principle of discharge employed in the discharge device of the present invention will be explained with reference to FIG.
この放電原理の概要は、誘電体を挾む電極間に交流電圧
を印加し、これにより、一方の電極の端面と誘電体との
接合部分に正負イオンを発生させ、外部電界により所望
の極性のイオンを抽出するものである。より詳細に述べ
ると、第2図に示すように、放電装置は被帯電部材25
に対して配置された放電部材21を有し、該放電部材2
1は誘電体24、誘導電極22および放電電極23を含
む。誘導電極22と放電電極23の間には交互電圧印加
手段27により交互電圧が印加され、一方、放電部材2
1に対して相対的に矢印Aの方向に移動する被帯電部材
25は導電体基体25a上に絶縁体若しくは光導電体よ
りなる層25bを設けたもので、導電体基体25aと放
電電極23の間には直流または交流のバイアス電圧印加
手段28によりバイアス電圧が印加される。誘導電極2
2と放電電極23との間へ交互電圧を印加することによ
り、放電電極23周辺から放電を起こさせ、十分な正負
イオンを発生させたのち、放電電極23と導電体基体2
5a間に印加されているバイアス電圧による電界で、上
記正又は負イオンを選択的に抽出して被帯電部材25を
帯電させるものである。The outline of this discharge principle is that an alternating current voltage is applied between electrodes that sandwich a dielectric material, positive and negative ions are generated at the junction between the end face of one electrode and the dielectric material, and a desired polarity is created by an external electric field. It extracts ions. More specifically, as shown in FIG. 2, the discharge device includes a charged member 25.
has a discharge member 21 disposed against the discharge member 2;
1 includes a dielectric 24, an induction electrode 22, and a discharge electrode 23. Alternate voltages are applied between the induction electrode 22 and the discharge electrode 23 by the alternate voltage application means 27, while the discharge member 2
The member to be charged 25, which moves in the direction of arrow A relative to 1, has a layer 25b made of an insulator or a photoconductor provided on a conductor base 25a, and a layer 25b made of an insulator or a photoconductor is provided on a conductor base 25a. A bias voltage is applied between them by a DC or AC bias voltage applying means 28. Induction electrode 2
By applying an alternating voltage between the discharge electrode 23 and the discharge electrode 23, a discharge is caused from around the discharge electrode 23, and sufficient positive and negative ions are generated.
The member to be charged 25 is charged by selectively extracting the positive or negative ions using an electric field caused by a bias voltage applied between the electrodes 5a.
このような装置において、誘電体24の厚みを薄くする
(例えば、厚みを500 gm以下、好ましくは20〜
200gm位にする)ことによって、従来のコロナ放電
装置に比して低い印加電圧で安定した放電が得られる。In such a device, the thickness of the dielectric 24 is reduced (for example, the thickness is 500 gm or less, preferably 20 gm or less).
(approximately 200 gm), stable discharge can be obtained with a lower applied voltage than in conventional corona discharge devices.
しかも、従来のコロナ放電装置に比較して小型の放電装
置とすることができる。Furthermore, the discharge device can be made smaller than conventional corona discharge devices.
これは誘電体24の厚さを小さくすることにより、この
誘電体24を挾む二極間に印加する交互電圧が低くても
二極間の電界強度を高められるからである。このために
、一方の電極(放電電極)の縁の電界強度が放電するに
十分に高ければ、放電が可能となり、この電極が接する
誘電体24の表面に沿って沿面放電が生ずる。This is because by reducing the thickness of the dielectric 24, the electric field strength between the two electrodes can be increased even if the alternating voltage applied between the two electrodes sandwiching the dielectric 24 is low. For this reason, if the electric field strength at the edge of one electrode (discharge electrode) is high enough to cause a discharge, discharge is possible, and a creeping discharge occurs along the surface of the dielectric 24 in contact with this electrode.
第3図は交流電圧の周波数10kHz、ピーク・ピーク
値VPP”4.3kVの条件のもとての放電電極23へ
のバイアス印加電圧と接地された導電体基体25aへ流
れるイオン電流密度との関係を示す図である。第3図か
ら分るように、印加電圧を増加するとイオン電流密度は
指数関数的に上昇する。従って、放電電極への印加電圧
を制御することにより、被帯電部材への放電量を制御す
ることができる。Figure 3 shows the relationship between the bias applied voltage to the discharge electrode 23 and the density of the ion current flowing to the grounded conductor base 25a under the conditions of an AC voltage frequency of 10 kHz and a peak-to-peak value VPP of 4.3 kV. As can be seen from Fig. 3, the ion current density increases exponentially as the applied voltage increases.Therefore, by controlling the applied voltage to the discharge electrode, the ion current density can be increased by controlling the applied voltage to the charged member. The amount of discharge can be controlled.
第4図は本発明に従った放電装置の一実施例を示す斜視
図であり、第2図示のものと対応する部材は同一の符号
で示す、第4図において、放電装置は不図示の被帯電部
材に対して配置される放電部材21を有し、該放電部材
はセラミックガラス等より成る誘電体24と、該誘電体
の長手方向に該誘電体を挾んで延びる誘導電極22およ
び放電電極23を含む。FIG. 4 is a perspective view showing an embodiment of the discharge device according to the present invention, in which members corresponding to those shown in the second figure are designated by the same reference numerals. The discharge member 21 has a discharge member 21 arranged with respect to the charging member, and the discharge member includes a dielectric body 24 made of ceramic glass or the like, and an induction electrode 22 and a discharge electrode 23 extending across the dielectric body in the longitudinal direction of the dielectric body. including.
第4図に示されるように、誘導電極22は単一体ではな
く、二列に配列され且つ互いに独立した複数個の電極要
素22aより成り、各列の電極要素は他列の電極要素に
対して互いに食い違い関係(第4図では千鳥配列関係)
に配列されている。これに対して、放電電極23は誘電
体24の長手方向に延びる単一体より構成されている。As shown in FIG. 4, the induction electrode 22 is not a single body, but consists of a plurality of electrode elements 22a arranged in two rows and independent from each other, and the electrode elements in each row are different from the electrode elements in other rows. Mutual discrepancy relationship (staggered arrangement relationship in Figure 4)
are arranged in On the other hand, the discharge electrode 23 is composed of a single body extending in the longitudinal direction of the dielectric 24.
放電装置は更に、誘導電極22の各電極要素22aと放
電電極23との間に交互電圧を印加する交流電源等の交
互電圧印加手段27と、各電極要素への交互電圧の印加
を制御する電圧印加制御手段とを有する。図示の実施例
において、電圧印加制御手段は交互電圧印加手段27を
誘導電極22の電極要素22aの各々に互いに独立して
接続するためのマルチプレクサ30と、交互電圧を・電
極要素22aに選択的に印加すべく該マルチプレクサ3
0を制御する制御回路32とを有する。The discharge device further includes an alternating voltage applying means 27 such as an AC power source that applies an alternating voltage between each electrode element 22a of the induction electrode 22 and the discharge electrode 23, and a voltage that controls the application of the alternating voltage to each electrode element. and an application control means. In the illustrated embodiment, the voltage application control means includes a multiplexer 30 for connecting the alternating voltage application means 27 to each of the electrode elements 22a of the inductive electrode 22 independently of each other; The multiplexer 3 to apply
0.
一方、放電電極23と不図示の被帯電部材との間には直
流電源等のバイアス電圧印加手段28によりバイアス電
圧が印加される。尚、マルチプレクサ30と放電部材2
1間の接続は無用な放電を生じないように完全な絶縁性
が保たれるようになされている。On the other hand, a bias voltage is applied between the discharge electrode 23 and a charged member (not shown) by a bias voltage applying means 28 such as a DC power supply. In addition, the multiplexer 30 and the discharge member 2
The connection between 1 and 1 is made to maintain complete insulation to prevent unnecessary discharge.
作動について説明すると、例えば本発明放電装置を第1
図に示すような電子写真装置における一次帯電用の放電
装置として用いた場合、制御回路32は転写紙の幅(転
写紙搬送方向と垂直方向の寸法)、被複写原稿の幅(原
稿走査方向と垂直方向の寸法)、或いは可変倍率型装置
にあっては倍率に応じた画像領域の幅(被帯電部材すな
わち感光ドラムの移動方向と垂直方向の寸法)等に対応
したr幅」信号をマルチプレクサ30に印加する。マル
チプレクサ30は該信号に応答して交互電圧印加手段2
7からの交互電圧を誘導電極22の電極要素22aのう
ち上記「幅」に対応する数個の電極要素に選択的に印加
する。To explain the operation, for example, when the discharge device of the present invention is
When used as a discharge device for primary charging in an electrophotographic apparatus as shown in the figure, the control circuit 32 controls the width of the transfer paper (dimension in the direction perpendicular to the transfer paper conveyance direction), the width of the original to be copied (dimension in the direction perpendicular to the original scanning direction). or, in the case of a variable magnification type device, an r width signal corresponding to the width of the image area according to the magnification (dimension in the direction perpendicular to the moving direction of the charged member, that is, the photosensitive drum), etc., to the multiplexer 30. to be applied. The multiplexer 30 responds to the signal by alternating voltage applying means 2.
7 is selectively applied to several electrode elements corresponding to the above-mentioned "width" among the electrode elements 22a of the induction electrode 22.
第2図に関して説明した放電原理において、放電電極2
3近傍におけるイオン発生は誘導電極22と放電電極2
3間への交互電圧の印加により生ずるものである。従っ
て、この交互電圧の印加をON◆OFF制御すれば放電
電極近傍におけるイオン発生が制御可能となり、それ故
、放電すなわち被帯電部材へのイオン付着を制御し得る
。In the discharge principle explained with reference to FIG.
Ion generation in the vicinity of 3 is caused by the induction electrode 22 and the discharge electrode 2.
This is caused by applying voltage alternately between the two. Therefore, by controlling the application of this alternating voltage between ON and OFF, it is possible to control the generation of ions in the vicinity of the discharge electrode, and therefore, it is possible to control the discharge, that is, the attachment of ions to the charged member.
本発明は誘導電極を前述の如く複数個の電極要素から成
る分割型とし、個々の電極要素に対する交互電圧の印加
を選択制御することにより、放電電極におけるイオン発
生領域を可変設定可能とするものである。すなわち、第
4図に戻って、誘導電極22の電極要素22aのうちマ
ルチプレクサ30によって交互電圧を印加されたものに
関しては、近傍の放電電極部分の周辺に正負イオンが発
生するが、交互電圧が印加されない電極要素に関しては
イオン発生はみられない。従って、不図示の被帯電部材
を誘導電極22の配列方向に対し垂直方向に移動させつ
つバイアス電圧を印加すると、上記「幅」に対応する数
個の電極要素22aの近傍の放電電極23部分の周辺に
発生した正負イオンのうち所定のイオンが抽出されて被
帯電部材に付着するが、交互電圧を印加されなかった電
極要素に関しては被帯電部材の対応する領域へのイオン
付着は生じない。その結果、被帯電部材の画像領域に対
応する領域のみが帯電され、被画像領域に対応する領域
は帯電されないので、この非画像領域へのトナー付着を
防止することができる。In the present invention, the induction electrode is made into a divided type consisting of a plurality of electrode elements as described above, and the ion generation area in the discharge electrode can be variably set by selectively controlling the application of alternating voltage to each electrode element. be. That is, returning to FIG. 4, with respect to the electrode elements 22a of the induction electrode 22 to which alternating voltages are applied by the multiplexer 30, positive and negative ions are generated around the nearby discharge electrode portion, but when the alternating voltage is applied No ion generation is observed for electrode elements that are not used. Therefore, when a bias voltage is applied while moving a charged member (not shown) in a direction perpendicular to the arrangement direction of the induction electrodes 22, the portion of the discharge electrode 23 near the several electrode elements 22a corresponding to the above-mentioned "width" Of the positive and negative ions generated in the surrounding area, predetermined ions are extracted and adhere to the charged member, but ions do not adhere to the corresponding regions of the charged member for electrode elements to which no alternating voltage is applied. As a result, only the area of the charged member corresponding to the image area is charged, and the area corresponding to the image area is not charged, so that it is possible to prevent toner from adhering to the non-image area.
例えば転写紙がA4サイズの場合、紙幅は約210mm
であるので、この紙幅に対応する被帯電部材の領域のみ
が帯電されるように、制御回路32から「幅」信号が出
力され、これに応答してマルチプレクサ30が電極要素
22aのうちの対応するものへ交互電圧を印加する。従
って、この紙幅に対応する被帯電部材の領域のみが一次
帯電される。For example, if the transfer paper is A4 size, the paper width is approximately 210mm.
Therefore, a "width" signal is output from the control circuit 32 so that only the region of the charged member corresponding to this paper width is charged, and in response, the multiplexer 30 selects the corresponding one of the electrode elements 22a. Apply alternating voltages to something. Therefore, only the region of the charged member corresponding to this paper width is primarily charged.
このように、本発明によれば、誘導電極の複数個の電極
要素の各々への交互電圧の印加を選択制御することによ
り、放電領域を確実に可変設定可能とすることができ、
被画像領域への望ましからざるトナー付着を防止するこ
とができる。更に、例えば誘導電極を単一列に配列され
た複数個の電極要素から構成した場合、これら電極要素
間の空隙部の存在により放電電極の長手方向に放電ムラ
が生ずることになる。これに対して、本発明によれば、
誘導電極の電極要素は複数列において互いに食い違い関
係に配列されているので、一つの列における電位ムラは
他の列における電極要素に対応する放電電極部分からの
放電により均一化されるので、放電装置全体として放電
電極長手方向で均一な電位が達成される。As described above, according to the present invention, by selectively controlling the application of alternating voltages to each of the plurality of electrode elements of the induction electrode, it is possible to reliably set the discharge region variably.
Undesirable adhesion of toner to the imaged area can be prevented. Further, for example, when the induction electrode is composed of a plurality of electrode elements arranged in a single row, the presence of gaps between these electrode elements causes discharge unevenness in the longitudinal direction of the discharge electrode. On the other hand, according to the present invention,
Since the electrode elements of the induction electrode are arranged in a staggered relationship in multiple rows, potential unevenness in one row is equalized by discharge from the discharge electrode portions corresponding to the electrode elements in other rows, so that the discharge device Overall, a uniform potential is achieved in the longitudinal direction of the discharge electrode.
第5図は本発明の放電装置の別の実施例を示す図である
。第5図実施例は誘導電極の構成を除いて第4図実施例
と同様の構成を有しており、第4′lA実施例の構成要
素と対応する部材には同一の符号を付しである。FIG. 5 is a diagram showing another embodiment of the discharge device of the present invention. The embodiment shown in FIG. 5 has the same structure as the embodiment shown in FIG. be.
第5図において、誘導電極22は3個の電極要素22a
より成り、これら電極要素は3列に且つ列方向において
互いに食い違い関係(第5図では列方向において互いに
偏位した関係)に配列されている。従って、制御回路3
2およびマルチプレクサ30により構成される電圧印加
制御手段によって各電極要素22aへの交互電圧の印加
を選択制御することにより、3種の幅の放電領域が設定
できることが理解されよう。In FIG. 5, the induction electrode 22 has three electrode elements 22a.
These electrode elements are arranged in three rows in a staggered relationship with each other in the row direction (in FIG. 5, they are offset from each other in the row direction). Therefore, the control circuit 3
It will be understood that by selectively controlling the application of alternating voltages to each electrode element 22a by the voltage application control means constituted by 2 and the multiplexer 30, discharge regions with three different widths can be set.
尚、以上には、本発明を所謂NP方式の電子写真装置に
おける放電装置に適用した場合について述べてきたが、
本発明はこれに限るものではなく、また、電子写真装置
もNP方式以外の例えばFJ? mカールソンプロセス
方式等のものでもよいことは明らかである。Although the above description has been made regarding the case where the present invention is applied to a discharge device in a so-called NP type electrophotographic apparatus,
The present invention is not limited to this, and the electrophotographic apparatus may also be of a type other than the NP type, such as FJ? It is clear that a method such as a Carlson process method may also be used.
魚1の」L因
以上述べたように、本発明によれば、放電領域を簡素な
構成で確実に制御することができるので、本発明装置を
電子写真装置における一次帯電用の放電装置として用い
た場合、非画像領域に対応する被帯電部材の領域を従来
の如き補助光の照射を行なうことなく明部電位に保つこ
とができ、この領域への望ましからざるトナー付着を防
止することが可能となる。従って、補助光光源が不要と
なるばかりでなく、電力消費の節減を図ることが可能と
なる。As stated above, according to the present invention, the discharge area can be reliably controlled with a simple configuration, so the device of the present invention can be used as a discharge device for primary charging in an electrophotographic device. In this case, the area of the charged member corresponding to the non-image area can be maintained at the bright potential without irradiating the charged member with conventional auxiliary light, and undesirable toner adhesion to this area can be prevented. It becomes possible. Therefore, not only is the auxiliary light source unnecessary, but also it is possible to reduce power consumption.
また、複数個の誘導電極要素への交互電圧の印加を選択
制御することにより放電領域を任意に可変設定できるの
で、転写紙の幅変更、像露光領域の結像倍率に基づく幅
の変化に対しても容易に適応できる。In addition, by selectively controlling the application of alternating voltages to multiple induction electrode elements, the discharge area can be variably set as desired, so it is possible to adjust the width of the transfer paper or the width of the image exposure area based on the imaging magnification. can be easily adapted.
更に、本発明によれば、複数個の誘導電極を単一列に配
列されたi数の電極要素から構成した場合の如く列方向
の放電電位が不均一となることがない。Furthermore, according to the present invention, the discharge potential in the column direction does not become non-uniform, which is the case when a plurality of induction electrodes are composed of i number of electrode elements arranged in a single column.
第1図は本発明の放電装置が適用可能な電子写真装置の
一例を示す概略断面図、
第2図は本発明の放電装置で採用されている放電原理を
示す図。
第3図はバイアス電圧印加とイオン電流密度との関係を
示す図、
第4図は本発明の放電装置の一実施例を示す斜視図、
第5図は本発明の放電装置の別の実施例を示す斜視図で
ある。
符号の説明
21は放電部材、22は誘導電極、22aは誘導電極の
電極要素、23は放電電極。
24は誘電体、27は交互電圧印加手段、28はバイア
ス電圧印加手段、30および32は電圧印加ル制御手段
である。
第1 図
第2 図
第3図
印 カロ電 瓜 Voc(v’)
第ム 図
第5 因FIG. 1 is a schematic sectional view showing an example of an electrophotographic apparatus to which the discharge device of the present invention can be applied, and FIG. 2 is a diagram showing the discharge principle employed in the discharge device of the present invention. FIG. 3 is a diagram showing the relationship between bias voltage application and ion current density, FIG. 4 is a perspective view showing one embodiment of the discharge device of the present invention, and FIG. 5 is another embodiment of the discharge device of the present invention. FIG. Explanation of the symbols 21 is a discharge member, 22 is an induction electrode, 22a is an electrode element of the induction electrode, and 23 is a discharge electrode. 24 is a dielectric, 27 is an alternating voltage application means, 28 is a bias voltage application means, and 30 and 32 are voltage application control means. Figure 1 Figure 2 Figure 3 Seal Voc(v') Figure 5 Cause
Claims (1)
る誘導電極及び放電電極と、前記誘導電極と放電電極と
の間に交互電圧を印加して前記放電電極の近傍にイオン
を発生させる交互電圧印加手段とを有する放電装置にお
いて、前記誘導電極は複数列において互いに食い違い関
係に配列された複数個の電極要素を含み、更に、前記交
互電圧印加手段による該複数個の電極要素の各々への交
互電圧の印加を選択制御して放電領域を制御する電圧印
加制御手段を有することを特徴とする放電装置。A dielectric, an induction electrode and a discharge electrode extending across the dielectric in the longitudinal direction of the dielectric, and applying alternating voltages between the induction electrode and the discharge electrode to generate ions near the discharge electrode. In the discharge device, the induction electrode includes a plurality of electrode elements arranged in a staggered relationship with each other in a plurality of rows, and further, each of the plurality of electrode elements is controlled by the alternating voltage application means. 1. A discharge device comprising voltage application control means for selectively controlling the application of alternate voltages to control a discharge region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20398784A JPS6183559A (en) | 1984-10-01 | 1984-10-01 | Electrostatic discharging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20398784A JPS6183559A (en) | 1984-10-01 | 1984-10-01 | Electrostatic discharging device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6183559A true JPS6183559A (en) | 1986-04-28 |
Family
ID=16482906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20398784A Pending JPS6183559A (en) | 1984-10-01 | 1984-10-01 | Electrostatic discharging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6183559A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4803593A (en) * | 1986-10-14 | 1989-02-07 | Ricoh Company, Ltd. | Flat solid discharging device |
EP0567069A2 (en) * | 1992-04-20 | 1993-10-27 | Matsushita Electric Industrial Co., Ltd. | Electrophotographic charging device |
US7658543B2 (en) | 2002-04-17 | 2010-02-09 | Toppan Printing Co., Ltd. | Packaging material and packaging bag |
-
1984
- 1984-10-01 JP JP20398784A patent/JPS6183559A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4803593A (en) * | 1986-10-14 | 1989-02-07 | Ricoh Company, Ltd. | Flat solid discharging device |
EP0567069A2 (en) * | 1992-04-20 | 1993-10-27 | Matsushita Electric Industrial Co., Ltd. | Electrophotographic charging device |
US5381214A (en) * | 1992-04-20 | 1995-01-10 | Matsushita Electric Industrial Co., Ltd. | Electrophotographic charging device |
US7658543B2 (en) | 2002-04-17 | 2010-02-09 | Toppan Printing Co., Ltd. | Packaging material and packaging bag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58139156A (en) | Electrifying method | |
US5144371A (en) | Dual AC/dual frequency scavengeless development | |
JPH07160089A (en) | Image-forming device | |
US5038177A (en) | Selective pre-transfer corona transfer with light treatment for tri-level xerography | |
JPS6183559A (en) | Electrostatic discharging device | |
US5532092A (en) | Edge raggedness and background removal by post development member | |
US5480751A (en) | Tri-level background suppression scheme using an AC scorotron with front erase | |
EP1359473B1 (en) | Electrodynamic Transfer System | |
JPH07244437A (en) | Image forming device | |
US5321472A (en) | Charging member with a bridging electrode structure and charging device using same in an image forming apparatus | |
JPS61103172A (en) | Two-color image forming device | |
US6075959A (en) | Discharge of photoreceptors | |
EP0439145A2 (en) | Charging member with a bridging electrode structure and charging device using same in a detachable process unit in an image forming apparatus | |
JPH01229277A (en) | Transferring and separating device for image forming device | |
JPH1097119A (en) | Ion generating device and image forming device provided with same ion generating device | |
JPS63316074A (en) | Transfer material separating device | |
JPS6147967A (en) | Photosensitive body and image forming device | |
JPH03214182A (en) | Image forming device | |
JPS59214052A (en) | Image forming device | |
JPH05224574A (en) | Image forming device | |
JPH02300775A (en) | Image forming device | |
JPH0320761A (en) | Electrostatic precharger | |
JPH04120561A (en) | Electrophotographic device | |
JPS58130358A (en) | Device for image formation | |
JPS61275776A (en) | Image forming method |