JPS6183517A - Low-pass filter - Google Patents

Low-pass filter

Info

Publication number
JPS6183517A
JPS6183517A JP20432884A JP20432884A JPS6183517A JP S6183517 A JPS6183517 A JP S6183517A JP 20432884 A JP20432884 A JP 20432884A JP 20432884 A JP20432884 A JP 20432884A JP S6183517 A JPS6183517 A JP S6183517A
Authority
JP
Japan
Prior art keywords
low
pass filter
birefringent
plate
birefringent plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20432884A
Other languages
Japanese (ja)
Other versions
JPH0556488B2 (en
Inventor
Kimihiko Nishioka
公彦 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP20432884A priority Critical patent/JPS6183517A/en
Publication of JPS6183517A publication Critical patent/JPS6183517A/en
Publication of JPH0556488B2 publication Critical patent/JPH0556488B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PURPOSE:To obtain a low-pass filter which decreases the loss of a low-frequency component by disposing the 2nd and 3rd double refracting plates in such a position where the crystal axes thereof within the plane intersecting orthogonally with the optical axes thereof are respectively about 45 deg. and 60 deg. with the crystal axis of the 1st double refracting plate. CONSTITUTION:Three sheets of the double refracting plates 8, 9, 10 are superposed in the optical axis direction and the 2nd plate 9 and 3rd plate 10 among these plates are so disposed that the crystal axes thereof within the plane orthogonal with the optical axes thereof are about 45 deg. and 60 deg. with the crystal axis of the plate 8.

Description

【発明の詳細な説明】 技術分野 本発明は、内視鏡の供覧装置(以下、LSと称する。)
等に用いられるローパスフィルターに関するものである
[Detailed Description of the Invention] Technical Field The present invention relates to an endoscope viewing device (hereinafter referred to as LS).
This relates to low-pass filters used in applications such as low-pass filters.

従来技術 一役に内視鏡の供覧装置は第16図に示した如く構成さ
れていて、内視鏡1のイメージガイド2の出射端面の像
がLS3のハーフプリズム4、結像レンズ5を介してイ
メージガイ146の入射端面に結像された時にモアレが
発生し、観察の障害となるため、例えば特開昭56−1
1028号公報に記載の内視鏡では位相フィルター7を
用いてイj −) カイト2の高周波成分をカットし、
モアレの除去を行っていた。しかし、位相フィルター7
は、高周波成分の除去が充分でなく、これを補うため位
相フィルター7のノミターンの穴径を小さくすると、低
周波成分までカントされてしまい、画質が低下するとい
う欠点があった。即ち、位相フィルター7は一役に第1
7図に示し7た如<MTF(レスポンス関数の絶対値)
曲線が緩やかなためモアレが充分に除去できない場合が
あり、これを補うためにカットオフ周波数fc  でM
TF’が小さくなるようにすると、低周波域でもM T
 Fが減少シテしまい、解像コントランストが悪くなル
トいう欠点があった。
Conventional technology An endoscope viewing device is constructed as shown in FIG. Moiré occurs when an image is formed on the incident end surface of the image guy 146, which obstructs observation.
In the endoscope described in Publication No. 1028, a phase filter 7 is used to cut high frequency components of the kite 2,
Moiré was being removed. However, phase filter 7
However, if the diameter of the chisel-turn hole of the phase filter 7 is made smaller to compensate for the insufficient removal of high-frequency components, low-frequency components are also canted, resulting in a reduction in image quality. That is, the phase filter 7 plays a role in the first
As shown in Figure 7, <MTF (absolute value of response function)
Because the curve is gentle, moiré may not be removed sufficiently, and to compensate for this, the cutoff frequency fc is set to M.
By making TF' small, M T
The disadvantages were that the F was reduced and the resolution contrast was poor.

目   的 本発明は、上記問題点に鑑み、低周波成分の損失の少な
いローノミスフイルターを提供せんとするものである。
Purpose: In view of the above-mentioned problems, the present invention aims to provide a low-noise filter with less loss of low frequency components.

概要 本発明によるローノミスフイルターは、三枚の複屈折板
を光軸方向に重ねると共に、それらのうちの第二及び第
三の複屈折板の光軸と直交する面内の結晶軸が第一の複
屈折板の結晶軸に対して夫々ほぼ45°及び60°をな
すように配置して成ることにより、これによる光線の分
離ノミターンがイメージガイド端面のファイノ々−の配
置・にターンとほぼ相似するようにし念ものである。
Summary The low-nomise filter according to the present invention has three birefringent plates stacked in the optical axis direction, and the crystal axes of the second and third birefringent plates in the plane orthogonal to the optical axis are the second and third birefringent plates. By arranging them at approximately 45° and 60° with respect to the crystal axis of one birefringent plate, the light ray separation angle is approximately the same as the arrangement of the fine nozzles on the end face of the image guide. I am trying to make them similar.

実施例 以下、第1図乃至第8図に示し之−実施例に基づき本発
明の詳細な説明すれば、8,9.10は光軸方向に重ね
られた水晶板より成る第一、第二及び第三の複屈折板で
あって、第二の複屈折板9及び第三の複屈折板10の光
軸と直交する面内の結晶軸が夫々第一の複屈折板の結晶
軸に対してほぼ45°及び60°をなすように配置され
ている(第2図)。
EXAMPLES Below, the present invention will be described in detail based on the examples shown in FIGS. and a third birefringent plate, wherein the crystal axes of the second birefringent plate 9 and the third birefringent plate 10 in a plane orthogonal to the optical axis are relative to the crystal axis of the first birefringent plate, respectively. They are arranged so as to form approximately 45° and 60° (Fig. 2).

本発明によるローパスフィルターは上述の如く構成され
ているから、入射した光線は、光軸に垂直な平面内にお
いて、まず第一の複屈折板8により二つの等強度の光線
に分けられ(第3図)、続いて第二の複屈折板9・によ
り四つの等強度の光線に分けられ(第4図)、更に第三
の複屈折板1゜により八つの不等強度の光線に分けられ
る。尚、第3図乃至第5図において黒丸を貫く短線は光
線の偏光方向を示している。又、a、  、cは夫々第
一乃至第三の複屈折板8.9.10による光線の分離量
を表わしている。又、第5図における二重丸の光線の強
度は黒丸の光線の強度に比べてはるかに大きく、その比
はおよそ14:1であり、又dは二重丸の光線間の距離
ケ表わしている。即ち、光線の分離パター/を形成する
のは二重丸の部分であり、第二の複屈折板9を設は之の
は二つノ偏光成分(二重丸の部分)の光量のツクランス
ケとるためであって、光線が第4図に示した如くbたけ
ずれることは重要ではない。従って、第二の複屈折板9
の厚味はあまり厚くない範囲で適当に選べろが、なるべ
くなら薄目の方が良い。又、第三の複屈折板10の結晶
軸が60°全なしているのは、第6図に示しt如くイメ
ージガイド6の隣接するファイバーの中心を結ぶ線分が
互いにほぼ60”iなしているので、光線の分離ノぐタ
ーンをイメージガイド端面のファイバーの配置ノミター
/にほぼ相似させるためである。
Since the low-pass filter according to the present invention is constructed as described above, the incident light ray is first divided into two equal-intensity light rays by the first birefringent plate 8 in a plane perpendicular to the optical axis (the third The light is then divided into four equal-intensity rays by a second birefringent plate 9 (FIG. 4), and further divided into eight unequal-intensity rays by a third birefringent plate 1°. In addition, in FIGS. 3 to 5, the short lines passing through the black circles indicate the polarization direction of the light beam. Further, a, , and c represent the amount of separation of light rays by the first to third birefringent plates 8.9.10, respectively. Also, the intensity of the rays marked with double circles in Figure 5 is much larger than that of the rays marked with black circles, and the ratio is approximately 14:1, and d represents the distance between the rays of double circles. There is. That is, it is the double circle portion that forms the light beam separation pattern, and the second birefringence plate 9 is provided to balance the light intensity of the two polarized light components (double circle portion). Therefore, it is not important that the rays are shifted by b as shown in FIG. Therefore, the second birefringent plate 9
You can choose the thickness as you like as long as it's not too thick, but if possible, it's better to use a thin layer. Furthermore, the crystal axis of the third birefringent plate 10 is 60° because the line segments connecting the centers of adjacent fibers of the image guide 6 are approximately 60" apart from each other as shown in FIG. This is to make the beam separation nozzle approximately similar to the fiber arrangement nozzle on the end face of the image guide.

従って、第6図に示した如くイメージガイド6の隣接す
る各ファイノ々−の中心間の距RfflPとし友場合、 又は となるように公知の公式を利用して第一乃至第三の複屈
折板の各厚さを選定し、これを第7図に示した如く結像
レンズ5とイメージガイ16との間に配置すれば、入射
光の中からイメージガイP6とモアレを起こす周波数成
分がカットされるので、モアレのない画像が得られる。
Therefore, as shown in FIG. 6, if the distance RfflP between the centers of adjacent fins of the image guide 6 is defined as By selecting the respective thicknesses of P6 and arranging them between the imaging lens 5 and the image guy 16 as shown in FIG. As a result, images without moiré can be obtained.

但し、第一の複屈折板8の結晶軸の方向は、第8図に示
し几如くイメージガイド6の入射端面のファイバー中心
を結ぶ直線と平行であるものとする。かぐして、モアレ
の除去が行われるが、本発明によるロー、oスフイルタ
ーは複屈折板から構成されているので、低周波成分の損
失が極めて)z f’l (、内視鏡等における画質の
低下がほとんどない。
However, the direction of the crystal axis of the first birefringent plate 8 is assumed to be parallel to the straight line connecting the fiber centers of the incident end surface of the image guide 6, as shown in FIG. The low frequency filter according to the present invention is composed of a birefringent plate, so the loss of low frequency components is extremely high. There is almost no deterioration in image quality.

尚、本発明によるローノミスフイルターを結像レンズ5
の前方或は結像レンズ5の中に置く場合には、光学系の
倍率を考慮し、結像レンズ5の像面における分離量が上
記式(1)又は(2)全溝たすようにすれば良い。又、
第一乃至第三の複屈折板8.9゜10の結晶軸の方向は
第9図に示した如くであっても良い、この場合の光線の
分離は第10図に示した如くになる。又、第一乃至第三
の複屈折板8゜9.10の材料は、複屈折atもつ物質
であれば、水晶の代りに他の物質も使用することが可能
である。
Note that the low-no-miss filter according to the present invention is used in the imaging lens 5.
or in the imaging lens 5, take into account the magnification of the optical system and make sure that the amount of separation on the image plane of the imaging lens 5 satisfies the above equation (1) or (2) for the entire groove. Just do it. or,
The directions of the crystal axes of the first to third birefringent plates 8.9.degree. 10 may be as shown in FIG. 9, and the separation of the light beams in this case is as shown in FIG. 10. Further, as the material of the first to third birefringent plates 8°9.10, other materials can be used instead of quartz as long as they have birefringence at.

次に、上記式(2)ヲ一般化して考えてみる。Next, consider generalizing the above equation (2).

まず、第11図に示しt如ぐ、第三の複屈折板100光
軸と直交する面内の結晶軸の第一の複屈折板8の結晶軸
に対する角度をθとすると、この場合のd及び第5図に
示したψ(二つの二重丸を結ぶ直線と横方向のなす角度
)は下記の式(3)で表わされる。
First, as shown in FIG. 11, if the angle of the crystal axis of the third birefringent plate 100 in the plane orthogonal to the optical axis with respect to the crystal axis of the first birefringent plate 8 is θ, then d in this case. and ψ (the angle formed between the straight line connecting the two double circles and the horizontal direction) shown in FIG. 5 is expressed by the following equation (3).

るようにす、c、θを選べば、これを満足するローノぐ
スフイルターは上記式(2)ヲ満足するローノミスフイ
ルターよりも性能の良いものとなる。
If c and θ are selected so that the equation (2) is satisfied, a low-noise filter that satisfies this will have better performance than a low-noise filter that satisfies the above equation (2).

実用的には、式(3)で定義されるd、ψに対して、全
溝たすようにa+tzct”選べば充分である。
Practically speaking, it is sufficient to select a+tzct'' to cover all the grooves for d and ψ defined by equation (3).

この式(4)の範囲は大体次のようにして決められる。The range of this formula (4) is approximately determined as follows.

複屈折フィルターのM T F曲線は大略第12図に示
した如き形をしており、M T F’ = cos 2
πfpでほぼ表わすことができる。この場合、カットオ
フがこの程度まで小さくなると大体においてモアレが見
えなくなる。又、1ψ1の条件は、イメージガイP6に
おけるファイバーの径のばらつきを考慮した誤差範囲的
なものである。即ち、ファイバーの径にばらつきがある
と隣接する各ファイバーの中心を結ぶ線分のなす角が6
0°とはならないからである。
The M T F curve of a birefringent filter has a shape roughly as shown in Figure 12, and M T F' = cos 2
It can be approximately expressed as πfp. In this case, when the cutoff is reduced to this extent, moiré is almost invisible. Further, the condition of 1ψ1 is an error range that takes into account variations in the fiber diameter in the image guy P6. In other words, if there are variations in fiber diameter, the angle formed by the line segment connecting the centers of adjacent fibers will be 6.
This is because it does not become 0°.

第13図は本発明によるローノミスフイルターの第二の
使用例を示しており、これは位相フィルター11と組み
合わせて用いt例で、高周波成分の除去が充分であり、
モアレの除去効果が大きい。
FIG. 13 shows a second example of the use of the low-noise filter according to the present invention, in which it is used in combination with the phase filter 11, and the removal of high frequency components is sufficient.
Great moiré removal effect.

位相フィルター11は、第14図に示した如く、光の波
長の172の位相差金もつほぼ同じ大きさの微小位相膜
全フィルター面積のほぼ1/2全占めるように透明基板
上に蒸着して成るものである。尚、微小位相膜を第一乃
至第三の複屈折板8,9.10のいずれかの上に蒸着す
ることにより位相フィルターを構成しても良い。
As shown in FIG. 14, the phase filter 11 is formed by depositing a fine phase film on a transparent substrate so as to occupy approximately 1/2 of the total filter area and having a phase difference of 172 times the wavelength of light. It is what it is. Incidentally, the phase filter may be constructed by depositing a minute phase film on any one of the first to third birefringent plates 8, 9, and 10.

第15図は本発明によるローノミスフイルターの第三の
使用例?示じており、イメージガイ−2の後方に固体撮
像素子12を配置して成る電子内視鏡1′においてイメ
ージガイド2と結像レンズ5との間に本発明ローパスフ
ィルター?配置して成るものでおる。この場合、上記式
(1)又は(2)のPの、値としてはイメージガイ−2
の隣接する各ファイバこの中心間の距離を採るものとす
る。尚、13は特公昭57−15369号公報などに記
載の水晶のローノぐスフイルターであって、これを追加
すると、モアレの除去効果が大きくなる。又、14はカ
メラコントロールユニット、15idモニターTV−’
C’ある。
Figure 15 is a third usage example of the low-no-miss filter according to the present invention. The low-pass filter of the present invention is installed between the image guide 2 and the imaging lens 5 in an electronic endoscope 1' in which a solid-state image sensor 12 is arranged behind the image guide 2. It is made by arranging it. In this case, the value of P in the above formula (1) or (2) is image guide -2
Let us take the distance between the centers of each adjacent fiber. Reference numeral 13 is a quartz crystal rotor filter described in Japanese Patent Publication No. 57-15369, etc., and the addition of this filter increases the moiré removal effect. Also, 14 is a camera control unit, 15id monitor TV-'
There is C'.

発明の効果 上述の如く、本発明によるローノミスフイルターは、低
周波成分の損失がほとんどないという実用上重要な利点
を有している。
Effects of the Invention As described above, the low-noise filter according to the present invention has the practically important advantage of almost no loss of low frequency components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるロー/ミスフィルターの一実施例
の側面図、第2図は上記実施例を構成する複屈折板8,
9.10の結晶軸の角度を示す図、第3図乃至第5図は
夫々複屈折板8,9.10による光線の分離作用を示す
図、第6図はイメージガイP6の端面のフ了イノζ−の
配置ノミターンを示す要部拡大図、第7図は上記実施例
の一使用例ケ示す図、第8図は第一の複屈折板8の結晶
軸の方向とイノ−、ツガイド6の入射端面のファイノζ
−の配置との関係を示す図、第9図は第一乃至第三の複
屈折板8,9.10のとり得る他の結晶軸の角度を示す
図、第10図は第9図の場合の光線の分離状態を示す図
、第11図は第三の複屈折板10の結晶軸の角度tθと
定義する図、第12図は複屈折フィルターのMTF曲線
を示すグラフ゛1、第13図は上記実施例の第二の使用
例全示す図、第14図は位相フィルター11の微小位相
膜の配置を示す要部拡大図、第15図は上記実施例の第
三の使用例を示す図、第16図は従来のローノミスフイ
ルターの使用例を示す図、第17図は位相フィルターの
MTF曲線を示すグラフである。 3・・LS、5・・・結像レンズ、6・・・イメージガ
イ)−”、8,9.10・1・複屈折板、11・・・位
相フィルター、12・・・固体撮像素子。 矛1図   矛2図 ・       ・ 才14図 オ15図 オ16図 fc     f
FIG. 1 is a side view of an embodiment of the low/miss filter according to the present invention, and FIG. 2 shows the birefringent plate 8, which constitutes the above embodiment.
Figures 9.10 and 9.10 are diagrams showing the angles of the crystal axes, Figures 3 to 5 are diagrams showing the light beam separation effect by the birefringent plates 8 and 9.10, respectively, and Figure 6 is a diagram showing the angle of the end face of the image guy P6. FIG. 7 is a diagram showing an example of the use of the above embodiment. FIG. 8 is a diagram showing the direction of the crystal axis of the first birefringent plate 8 and the direction of the crystal axis of the first birefringent plate 8. phinoζ of the incident end face of
- Figure 9 is a diagram showing other possible angles of the crystal axes of the first to third birefringent plates 8, 9.10, Figure 10 is the case of Figure 9. FIG. 11 is a diagram showing the angle tθ of the crystal axis of the third birefringent plate 10, FIG. 12 is a graph showing the MTF curve of the birefringent filter, FIG. FIG. 14 is an enlarged view of the main part showing the arrangement of the micro phase film of the phase filter 11, FIG. 15 is a diagram showing the third usage example of the above embodiment, FIG. 16 is a diagram showing an example of the use of a conventional low-noise filter, and FIG. 17 is a graph showing an MTF curve of a phase filter. 3...LS, 5...imaging lens, 6...image guy)-'', 8,9.10.1.birefringent plate, 11...phase filter, 12...solid-state imaging device. 1st figure 2nd figure... 14th figure, 15th figure, 16th figure, fc f

Claims (4)

【特許請求の範囲】[Claims] (1)三枚の複屈折板を光軸方向に重ねると共に、それ
らのうちの第二及び第三の複屈折板の光軸と直交する面
内の結晶軸が第一の複屈折板の結晶軸に対して夫々ほぼ
45°及び60°をなすように配置して成るローパスフ
ィルター。
(1) Three birefringent plates are stacked in the optical axis direction, and the crystal axis of the first birefringent plate is in the plane orthogonal to the optical axis of the second and third birefringent plates. Low-pass filters arranged at approximately 45° and 60° to the axis, respectively.
(2)下記条件を満足することを特徴とする特許請求の
範囲(1)に記載のローパスフィルター。 (1/3)P<d<(2/3)P (1/3)P<a<(2/3)P 50°<|ψ|<70°又は110°<|ψ|<130
°但し、Pはイメージガイドの隣接する各フ ァイバーの中心間の距離、aは第一の複屈折板による光
線の分離量、dは本発明ローパスフィルターにより分離
された光線の高強度部分間の距離、ψは該高強度部分を
結ぶ直線と横方向のなす角度である。
(2) The low-pass filter according to claim (1), which satisfies the following conditions. (1/3)P<d<(2/3)P (1/3)P<a<(2/3)P 50°<|ψ|<70° or 110°<|ψ|<130
°However, P is the distance between the centers of adjacent fibers of the image guide, a is the amount of separation of the light beam by the first birefringent plate, and d is the distance between the high intensity parts of the light beam separated by the low-pass filter of the present invention. , ψ is the angle formed between the straight line connecting the high-strength parts and the horizontal direction.
(3)位相フィルターと組み合わせたことを特徴とする
特許請求の範囲(1)に記載のローパスフィルター。
(3) The low-pass filter according to claim (1), characterized in that it is combined with a phase filter.
(4)イメージガイドと固体撮像素子との間に配置した
ことを特徴とする特許請求の範囲(1)に記載のローパ
スフィルター。
(4) The low-pass filter according to claim (1), wherein the low-pass filter is disposed between an image guide and a solid-state image sensor.
JP20432884A 1984-09-29 1984-09-29 Low-pass filter Granted JPS6183517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20432884A JPS6183517A (en) 1984-09-29 1984-09-29 Low-pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20432884A JPS6183517A (en) 1984-09-29 1984-09-29 Low-pass filter

Publications (2)

Publication Number Publication Date
JPS6183517A true JPS6183517A (en) 1986-04-28
JPH0556488B2 JPH0556488B2 (en) 1993-08-19

Family

ID=16488669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20432884A Granted JPS6183517A (en) 1984-09-29 1984-09-29 Low-pass filter

Country Status (1)

Country Link
JP (1) JPS6183517A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291026A (en) * 1987-05-25 1988-11-28 Olympus Optical Co Ltd Image formation optical system
JPH02277016A (en) * 1989-04-19 1990-11-13 Olympus Optical Co Ltd Image pickup device
US5477381A (en) * 1989-02-02 1995-12-19 Canon Kabushiki Kaisha Image sensing apparatus having an optical low-pass filter
US5715085A (en) * 1989-07-10 1998-02-03 Fuji Photo Film Co., Ltd. Optical filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975222A (en) * 1982-10-22 1984-04-27 Victor Co Of Japan Ltd Optical filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975222A (en) * 1982-10-22 1984-04-27 Victor Co Of Japan Ltd Optical filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291026A (en) * 1987-05-25 1988-11-28 Olympus Optical Co Ltd Image formation optical system
US5477381A (en) * 1989-02-02 1995-12-19 Canon Kabushiki Kaisha Image sensing apparatus having an optical low-pass filter
JPH02277016A (en) * 1989-04-19 1990-11-13 Olympus Optical Co Ltd Image pickup device
US5715085A (en) * 1989-07-10 1998-02-03 Fuji Photo Film Co., Ltd. Optical filter

Also Published As

Publication number Publication date
JPH0556488B2 (en) 1993-08-19

Similar Documents

Publication Publication Date Title
US5237446A (en) Optical low-pass filter
JP2800364B2 (en) Optical low-pass filter
US5091795A (en) Optical low-pass filter without using polarizers
JPH058579Y2 (en)
GB2077456A (en) Optical low-pass filter for use in a television camera
US5684293A (en) Anti-aliasing low-pass blur filter for reducing artifacts in imaging apparatus
JPH04356038A (en) Color decomposition and composition optical system
US4634219A (en) Optical low-pass filter
JPH0990279A (en) Polarization independent type optical isolator and optical circulator
JPS6183517A (en) Low-pass filter
US6724531B2 (en) Optical low-pass filter
JP2007304573A (en) Near ultraviolet ray and infrared ray blocking filter, birefringent plate with near ultraviolet ray and infrared ray blocking filter, optical low pass filter and imaging apparatus
US20060262208A1 (en) Optical low pass filter and image pickup apparatus having the same
JP2722753B2 (en) Optical filter
JP2005062524A (en) Optical filter and optical apparatus
JP2008170870A (en) Optical low pass filter and optical apparatus
US6081377A (en) Polarized light synthesizing device and display device using the same
JPH0548176Y2 (en)
JP4396106B2 (en) Optical low-pass filter and camera
JPS6343450Y2 (en)
JP2000180789A (en) Optical isolator
JP4926471B2 (en) Optical element and imaging apparatus having the same
JPH07119901B2 (en) Optical low pass filter
JP3792992B2 (en) Optical low-pass filter and optical apparatus using the same
JPH07325258A (en) Endoscope observation system