JPS6182088A - Hose for fluorohydrocarbon group refrigerant - Google Patents

Hose for fluorohydrocarbon group refrigerant

Info

Publication number
JPS6182088A
JPS6182088A JP20453584A JP20453584A JPS6182088A JP S6182088 A JPS6182088 A JP S6182088A JP 20453584 A JP20453584 A JP 20453584A JP 20453584 A JP20453584 A JP 20453584A JP S6182088 A JPS6182088 A JP S6182088A
Authority
JP
Japan
Prior art keywords
layer
inner tube
hose
refrigerant
nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20453584A
Other languages
Japanese (ja)
Inventor
佐々木 鴻治
研一 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP20453584A priority Critical patent/JPS6182088A/en
Publication of JPS6182088A publication Critical patent/JPS6182088A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、フルオロ炭化水素系冷媒用ホースニ5EI
L、特に、自動車のカークーラやエアコン等における屈
曲部の多い配管に好適なものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to a fluorohydrocarbon refrigerant hose
L is particularly suitable for piping with many bends in car coolers, air conditioners, etc. of automobiles.

〈従来の技術〉 従来、上記タイプの冷媒用ホースは、第1図に示すよう
な例えば、NBR製内管l、ポリエステル繊維補強層2
及びEPDM製外管3からなるゴム製のものが多かった
。このゴム製ホースの場合、柔軟性は良好であるが、ゴ
ムはフルオロ炭化水素系冷媒(以下単に「冷媒」という
)の透過性が高いため冷媒透過量が大きい、この冷媒透
過量を低減する見地から、厚肉(特に内管)にしている
が、その重量増大に比して冷媒透過量の低減が図れない
(第1表参照)、そこで、ゴム製に代って同じく三層構
造の、ナイロン製内管1、ポリエステル繊維補強層2及
びポリオレフィン系エラストマー製外管3のものが出回
っている。この樹脂製ホースの場合、冷媒透過性の低い
ナイロンを内管に用いているので冷媒透過量は低減でき
るが、ナイロンの剛性及び水分吸収性に起因して、水分
透過量が多くなり柔軟性にも問題が生じる。即ち、前者
は、冷房能力の低減、コンプレッサーの!x1!+!促
進につながり、後者は、配管設計上の制限を受ける。
<Prior art> Conventionally, the above-mentioned type of refrigerant hose has, for example, an NBR inner tube 1 and a polyester fiber reinforced layer 2, as shown in FIG.
Many of the tubes were made of rubber and consisted of an outer tube 3 made of EPDM. In the case of this rubber hose, the flexibility is good, but rubber has high permeability to fluorohydrocarbon refrigerants (hereinafter simply referred to as "refrigerant"), so the amount of refrigerant permeation is large. Therefore, the walls (especially the inner tube) are made thicker, but the amount of refrigerant permeation cannot be reduced compared to the increased weight (see Table 1).Therefore, instead of the rubber one, a three-layer structure, Those with an inner tube 1 made of nylon, a polyester fiber reinforcing layer 2, and an outer tube 3 made of polyolefin elastomer are on the market. In the case of this resin hose, the amount of refrigerant permeation can be reduced because nylon, which has low refrigerant permeability, is used for the inner tube, but due to the rigidity and moisture absorption of nylon, the amount of water permeation increases and becomes flexible. Problems also arise. In other words, the former reduces the cooling capacity of the compressor! x1! +! The latter is subject to piping design limitations.

そこで、第2図に示すように、旧記樹脂ホースにおいて
、内管をナイロン製内側層4とポリエチレン製外側層5
とで構成したものが提案されている(実願昭51−72
916号に添付された明細書等のマイクロフィルムの写
参照)。
Therefore, as shown in FIG.
It has been proposed that the system consists of
(See the microfilm copy of the specification etc. attached to No. 916).

〈発明が解決しようとする問題点〉 しかし、上記樹脂ホースの場合、水分透過の問題は解決
できるが、柔軟性が十分でなく、ざらにナイロン(内管
内側層)とポリエチレン(内管外側層)との層間接着の
点で問題を生じる。
<Problems to be Solved by the Invention> However, in the case of the above-mentioned resin hose, although the problem of water permeation can be solved, it does not have sufficient flexibility, and the resin hose is roughly composed of nylon (inner tube inner layer) and polyethylene (inner tube outer layer). ) causes problems in terms of interlayer adhesion.

く問題点を解決するための手段〉 この発明は、内管内側層を冷媒透過性の低いナイロンで
肉厚0.1〜0.51に形成し、この内管内側層の外側
に隣接する内管外側層又は内管中間層を、曲げ弾性率1
500 kg/crn’以下のポリオレフィン含有量4
0〜80wt%のポリオレフィン変性ナイロン11又は
12で肉厚0.5〜1.5田Iに形成することにより上
記問題点を解決するものである次に、−上記各構成につ
いて詳細に説明をする(第2〜3図参照)。
Means for Solving the Problems> This invention forms the inner layer of the inner tube with nylon having low refrigerant permeability to a thickness of 0.1 to 0.51, and the inner layer adjacent to the outside of the inner layer of the inner tube. The outer tube layer or the inner tube middle layer has a bending elastic modulus of 1
Polyolefin content 4 below 500 kg/crn'
The above problem is solved by forming a wall thickness of 0.5 to 1.5 mm with 0 to 80 wt% of polyolefin modified nylon 11 or 12.Next, each of the above structures will be explained in detail. (See Figures 2-3).

(1)上記内管内側層4を形成するナイロンとしては、
冷媒透過性の低いナイロン6、ナイロン11、ナイロン
12等を挙げることができる。また内管内側層4の肉厚
がO,L am未満では、冷媒透過量が多くなり、0.
5mvを超えると曲げこわさが増大し、柔軟性の点で問
題が生じる。
(1) The nylon forming the inner tube inner layer 4 is as follows:
Examples include nylon 6, nylon 11, and nylon 12, which have low refrigerant permeability. Furthermore, if the wall thickness of the inner tube inner layer 4 is less than O.
If it exceeds 5mV, the bending stiffness increases and problems arise in terms of flexibility.

(2)上記内管内側層の外側にPli接する内管外側層
5又は内管中間層5Aを形成するオレフィン変性ナイロ
ン11又−は12とは、次の如くのものである。
(2) The olefin-modified nylon 11 or 12 forming the inner tube outer layer 5 or the inner tube intermediate layer 5A which is in contact with the outside of the inner tube inner layer is as follows.

ナイロン11又はナイロン12と、PE、PP、PE−
PP共重合体等のポリオレフィンとをブレンドや共重合
することによって得られるものである。このブレンドに
際して、無水マレイン酸等で変性したポリオレフィンを
用いる(特公昭55−44108号公報参照)、また、
共重合は、両末端に水酸基、カルボキシル基、エポキシ
基、インシアネート基等の官能基を有する分子量100
   ’0〜10000のテレキーリックポリオレフィ
ンを用いて、ナイロン11又は12とブロック共重合や
グラフト共重合を行なわせる。このとき、ブレンド物、
共重合物ともに、ポリオレフィンの含有量が40wt%
未満であると、水分透過性及び曲げ弾性率が高くなり、
80wt%を超えると内管内側層との層間接着及び共押
出しが困難となりそれぞれ望ましくない。
Nylon 11 or nylon 12 and PE, PP, PE-
It is obtained by blending or copolymerizing with a polyolefin such as a PP copolymer. For this blending, a polyolefin modified with maleic anhydride or the like is used (see Japanese Patent Publication No. 55-44108), and
Copolymerization is carried out using polymers with a molecular weight of 100 that have functional groups such as hydroxyl groups, carboxyl groups, epoxy groups, and incyanate groups at both ends.
Block copolymerization or graft copolymerization with nylon 11 or 12 is performed using a telechelic polyolefin having a molecular weight of 0 to 10,000. At this time, the blend,
Both copolymers have a polyolefin content of 40 wt%
If it is less than that, the water permeability and flexural modulus will be high,
If it exceeds 80 wt%, interlayer adhesion and coextrusion with the inner tube inner layer become difficult, which is undesirable.

内管外側層又は内管中間層の厚みが、0.5m+w未満
では水分透過量が多くなり、また、1.5+amを超え
ると重量の増大をきたし、それぞれ問題点を生じる。ま
た曲げ弾性率が1500 kg/crrr’を超えると
1曲げこわさが大きくなり、ホースの柔軟性に問題点を
生じる。
If the thickness of the outer layer of the inner tube or the intermediate layer of the inner tube is less than 0.5 m+w, the amount of water permeation will increase, and if it exceeds 1.5+ am, the weight will increase, each of which causes problems. Moreover, if the bending elastic modulus exceeds 1500 kg/crrr', the bending stiffness increases, causing a problem in the flexibility of the hose.

(3)内管lを第3図に示すように内側層4.中間層5
A、外側層6とする場合、外層側は水分透過性の低い軟
質のPE、PP等のポリオレフィンで構成する。この場
合、中間層がポリオレフィン変性のナイロン11又はナ
イロン12で形成されているので、層間接着不良の問題
点を生じない。
(3) As shown in FIG. middle layer 5
A. When forming the outer layer 6, the outer layer is made of a soft polyolefin such as PE or PP that has low moisture permeability. In this case, since the intermediate layer is formed of polyolefin-modified nylon 11 or nylon 12, the problem of poor interlayer adhesion does not occur.

(4)内管lの外側に位置する補強層2及び外管3は、
従来と同様とする。即ち、補強層はポリエステル(例え
4fPET)、ナイロン、レーヨン等の合成繊維で編組
したものとし、外管はホースの柔軟性を阻害しない柔軟
性をもつポリオレフィン系、ポリエステル系、PVC系
、ポリアミド系等の熱可塑性エラストマーで形成する。
(4) The reinforcing layer 2 and the outer tube 3 located outside the inner tube l are
Same as before. That is, the reinforcing layer is made of synthetic fibers such as polyester (e.g. 4fPET), nylon, rayon, etc., and the outer tube is made of polyolefin, polyester, PVC, polyamide, etc., which have flexibility that does not inhibit the flexibility of the hose. Made of thermoplastic elastomer.

(5)これらの冷媒用ホースは、押出し成形機及び編組
機を用いて慣用手段で、内管(通常共押し出し)、補強
層、外管と形成して製造する。尚、外管はホース保護及
び緩衝作用を奏するもので必然的ではない。
(5) These refrigerant hoses are manufactured by forming an inner tube (usually coextruded), a reinforcing layer, and an outer tube by conventional means using an extrusion molding machine and a braiding machine. It should be noted that the outer tube is not necessary since it serves to protect and buffer the hose.

〈実施例〉 以下、この発明を実施例に基づいて、さらに詳細に説明
する。
<Examples> Hereinafter, the present invention will be described in more detail based on Examples.

比較例2〜3、実施例1〜2の各樹脂製冷媒用ホースの
製造方法は、第1表仕様の内管(内径11.5+o11
1)を共押出し後、ポリエステル繊維(1500D/1
本)を用いて編組打ち込み数24本、編組角54°)を
内管上に行ない補強層を形成し、補強層トにポリオレフ
ィン系エラスト?−41゜2ma+の肉厚になるように
被覆して外管を形成した。なお、比較例1のゴム製冷媒
用ホースは。
The manufacturing method of each resin refrigerant hose of Comparative Examples 2 to 3 and Examples 1 to 2 was as follows:
After coextruding 1), polyester fiber (1500D/1
A reinforcing layer is formed by applying 24 braids and a braiding angle of 54°) onto the inner tube using a polyolefin-based elastomer. An outer tube was formed by covering the tube to a thickness of -41°2 ma+. In addition, the rubber refrigerant hose of Comparative Example 1 is as follows.

内管; NBR製、肉厚3.3■、補強層;ポリエステ
ル繊維編組、外管;EPDM製、肉厚0.7rtrtt
rである。
Inner tube: Made of NBR, wall thickness 3.3cm, Reinforcement layer: Polyester fiber braid, Outer tube: Made of EPDM, wall thickness 0.7rtrtt
It is r.

上記のようにして得た各冷媒用ホースについて下記項目
の試験を行なった(但し試料数n=5)(a)冷媒透過
量・・・JRA2001−1976 (日本空調工業会
規格)の測定方法に準じて行なった。
Tests were conducted on the following items for each refrigerant hose obtained as described above (however, the number of samples was n = 5) (a) Refrigerant permeation amount... According to the measurement method of JRA2001-1976 (Japan Air Conditioning Industry Association standard) I followed the instructions.

(b)水分透過量・・・ホース中に乾燥剤を封入し、ホ
ース両端をメクラ栓した状態で、70℃×95%RH雰
囲気の恒温槽中に72時間放置した後の乾燥剤の重量変
化を測定して得た。
(b) Moisture permeation amount: Change in the weight of the desiccant after the desiccant is sealed in the hose and left in a constant temperature bath at 70°C x 95% RH for 72 hours with both ends of the hose closed. Obtained by measuring.

(c)曲げこわさ・・・室温20℃での片持ばり法によ
り行なった。
(c) Bending stiffness: Measured by cantilever method at room temperature of 20°C.

(d)曲げ限界R・・・室温20℃でホースをU字形に
曲げ、曲り部のRを徐々に小さくし、キングが発生する
直前の曲げRを求めた。
(d) Bending limit R: The hose was bent into a U-shape at a room temperature of 20° C., the R of the bent portion was gradually reduced, and the bending R immediately before kinging was determined.

(e)重量・・・台ばかりで1木ずつ測定した。(e) Weight: Each tree was measured using a stand.

〈発明の効果〉 この発明の冷媒用ホースは、上記の如く、内管内側層を
特定厚みのナイロンで形成し、内管内側層に隣接する層
を特定厚みのかつ特定量のポリオレフィンを含有する変
性ナイロン11又は12で形成することにより、フレオ
ンガス透過量及び水分透過量が小さく、しかも、柔軟性
(曲げこわさが低く、かつ曲げ限界Rが小さい)や層間
接着の問題も解決するものである。このことは、第1表
の試験結果からも明らかである。従って、この冷媒用ホ
ースは、自動車のカークーラやエアコン等における配管
のように屈曲部の多い場合に好適なものである。なお、
融点の低いPEを用いない第1実施例の場合、冷媒用ホ
ースの耐熱性も向上する。
<Effects of the Invention> As described above, in the refrigerant hose of the present invention, the inner tube inner layer is formed of nylon with a specific thickness, and the layer adjacent to the inner tube inner layer has a specific thickness and contains a specific amount of polyolefin. By forming it with modified nylon 11 or 12, the amount of Freon gas permeation and the amount of moisture permeation are small, and the problems of flexibility (low bending stiffness and small bending limit R) and interlayer adhesion are also solved. This is also clear from the test results in Table 1. Therefore, this refrigerant hose is suitable for use in cases where there are many bends, such as piping in automobile car coolers, air conditioners, and the like. In addition,
In the case of the first embodiment, which does not use PE having a low melting point, the heat resistance of the refrigerant hose is also improved.

第1表 X・・・不足、   Δ・・・やや手長、  0・・・
やや艮、■・・・良好。
Table 1 X...Insufficient, Δ...Slightly long, 0...
Slightly dull, ■...Good.

【図面の簡単な説明】[Brief explanation of drawings]

図例は冷媒用ホースの各構成を示し、第1図は内管一層
の場合の切欠き斜視図、第2図は内管二層の場合の切欠
き斜視図、第3図は内管二層の場合の切欠き斜視図であ
る。 l・・・内管、2・・・補強層、3・・・外管、4・・
・内管内側層、5・・・内管外側層(内管の外側に隣接
する層)、5A・・・内管中間層(内管の外側にPls
接する層)、6・・・内管外側層。 特  許  出  願  人
The illustrated examples show each configuration of a refrigerant hose. Figure 1 is a cutaway perspective view of a single-layer inner tube, Figure 2 is a cutaway perspective view of a two-layer inner tube, and Figure 3 is a cutaway perspective view of a two-layer inner tube. It is a notch perspective view in case of a layer. l...Inner tube, 2...Reinforcement layer, 3...Outer tube, 4...
・Inner tube inner layer, 5... Inner tube outer layer (layer adjacent to the outside of the inner tube), 5A... Inner tube middle layer (Pls on the outside of the inner tube)
(contacting layer), 6... Inner tube outer layer. Patent applicant

Claims (1)

【特許請求の範囲】 1、少なくとも内管及び該内管の外側に隣接する補強層
からなり、前記内管内側層がフルオロ炭化水素系冷媒の
透過性の低いナイロンで形成されている樹脂製の冷媒用
ホースにおいて、 前記内管内側層が、肉厚0.1〜0.5mmに形成され
、前記内管内側層の外側に隣接する内管外側層又は内管
中間層が、曲げ弾性率1500kg/cm^2以下でポ
リオレフィン含有量40〜80wt%のオレフィン変性
ナイロン11又は12で肉厚0.5〜1.5mmに形成
されていることを特徴とするフルオロ炭化水素系冷媒用
ホース。
[Scope of Claims] 1. A resin-made pipe comprising at least an inner pipe and a reinforcing layer adjacent to the outside of the inner pipe, the inner pipe inner layer being made of nylon having low permeability to fluorohydrocarbon refrigerants. In the refrigerant hose, the inner tube inner layer is formed to have a wall thickness of 0.1 to 0.5 mm, and the inner tube outer layer or inner tube intermediate layer adjacent to the outside of the inner tube inner layer has a bending elastic modulus of 1500 kg. 1. A hose for a fluorohydrocarbon refrigerant, characterized in that it is made of olefin-modified nylon 11 or 12 with a polyolefin content of 40 to 80 wt% and a wall thickness of 0.5 to 1.5 mm.
JP20453584A 1984-09-28 1984-09-28 Hose for fluorohydrocarbon group refrigerant Pending JPS6182088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20453584A JPS6182088A (en) 1984-09-28 1984-09-28 Hose for fluorohydrocarbon group refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20453584A JPS6182088A (en) 1984-09-28 1984-09-28 Hose for fluorohydrocarbon group refrigerant

Publications (1)

Publication Number Publication Date
JPS6182088A true JPS6182088A (en) 1986-04-25

Family

ID=16492144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20453584A Pending JPS6182088A (en) 1984-09-28 1984-09-28 Hose for fluorohydrocarbon group refrigerant

Country Status (1)

Country Link
JP (1) JPS6182088A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125885A (en) * 1986-11-13 1988-05-30 横浜ゴム株式会社 Hose for transporting refrigerant
JPH01301244A (en) * 1988-05-30 1989-12-05 Tokai Rubber Ind Ltd Hose for transporting refrigerant
JP2010281413A (en) * 2009-06-05 2010-12-16 Nakamura Bussan Kk Moisture absorbing-releasing functional pipe, pipe inner wall surface condensation preventing method using the same and ground heat exchange using the same
JP2011025412A (en) * 2009-07-21 2011-02-10 Bridgestone Corp Refrigerant transporting hose

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125885A (en) * 1986-11-13 1988-05-30 横浜ゴム株式会社 Hose for transporting refrigerant
JPH0570759B2 (en) * 1986-11-13 1993-10-05 Yokohama Rubber Co Ltd
JPH01301244A (en) * 1988-05-30 1989-12-05 Tokai Rubber Ind Ltd Hose for transporting refrigerant
JP2010281413A (en) * 2009-06-05 2010-12-16 Nakamura Bussan Kk Moisture absorbing-releasing functional pipe, pipe inner wall surface condensation preventing method using the same and ground heat exchange using the same
JP2011025412A (en) * 2009-07-21 2011-02-10 Bridgestone Corp Refrigerant transporting hose

Similar Documents

Publication Publication Date Title
US4998564A (en) Refrigerant-transporting hose
EP1020673B1 (en) Hose for transporting carbon dioxide refrigerant
US4510974A (en) Fluid conveying hose
US4907625A (en) Refregerant transporting hose
KR960006172B1 (en) Hose
EP0664864B1 (en) Corrugated multilayer tubing having fluoroplastic layers
US6213156B1 (en) Hose for refrigerant for an electrically driven compressor
US5560398A (en) Sequentially coextruded coolant conduit
JPH0140391Y2 (en)
JPS63152787A (en) Low permeable hose
JPH07241925A (en) Conduit for cooling fluid
JPH0464505B2 (en)
JPS63125885A (en) Hose for transporting refrigerant
JPH01141046A (en) Refrigerant transport hose
JP3905225B2 (en) Carbon dioxide refrigerant transport hose
JPS6182088A (en) Hose for fluorohydrocarbon group refrigerant
JP2703932B2 (en) Monochlorodifluoromethane gas low permeability hose
JPH0222050A (en) Refrigerant transport hose
JP2001235068A (en) Low-permeability hose and method of manufacturing the same
JP2783533B2 (en) Hose for refrigerant gas
JP2001221379A (en) Hose for transporting carbon dioxide refrigerant
JP3074700B2 (en) Hose for transporting refrigerant
JPH01152061A (en) Hose for transporting refrigerant
EP0959285B1 (en) Composite hose for the conveying of refrigerant
JP2766028B2 (en) Hose for refrigerant gas