JPS6181449A - Base film for optical recording medium - Google Patents
Base film for optical recording mediumInfo
- Publication number
- JPS6181449A JPS6181449A JP59201808A JP20180884A JPS6181449A JP S6181449 A JPS6181449 A JP S6181449A JP 59201808 A JP59201808 A JP 59201808A JP 20180884 A JP20180884 A JP 20180884A JP S6181449 A JPS6181449 A JP S6181449A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- film
- molecular weight
- optical recording
- recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
- G11B7/2533—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、光記録媒体用ベースフィルムに関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a base film for optical recording media.
従来、プラスチック系光記録媒体の基材としては、ポリ
メタクリル酸メチルなどのアクリル樹脂。Traditionally, acrylic resins such as polymethyl methacrylate have been used as base materials for plastic optical recording media.
あるいはポリカーボネート系樹脂などが広く使用されて
いた。Alternatively, polycarbonate resins were widely used.
しかし、このようなプラスチック系の従来の基材を薄膜
化して光記録媒体用ベースフィルムとして使用しようと
した場合、以下に示すような欠点がある。すなわち、ア
クリル樹脂、ポリカーボネート系樹脂は共に非品性であ
るため延伸による物性の悪化C主として熱収縮)こそあ
れ改良が全く期待できない。一方、未延伸フィルムで使
用する場合は表面粗さが大きいため、光記録層を載せた
場合、記録の再現性が大きく悪化してしまう。However, if such a conventional plastic base material is made into a thin film and an attempt is made to use it as a base film for an optical recording medium, there are the following drawbacks. That is, since both acrylic resins and polycarbonate resins have poor quality, no improvement can be expected at all due to deterioration of physical properties due to stretching (mainly heat shrinkage). On the other hand, when an unstretched film is used, the surface roughness is large, so when an optical recording layer is placed on the film, the reproducibility of recording is greatly deteriorated.
また、樹脂本来の性質として、低伸度、低強度であるた
め未延伸フィルムでの使用が事実上不可能である。この
ような理由から従来の樹脂は光記録媒体用ベースフィル
ムとしては利用できない欠点があった。Furthermore, the inherent properties of the resin include low elongation and low strength, making it virtually impossible to use it in unstretched films. For these reasons, conventional resins have a drawback that they cannot be used as base films for optical recording media.
本発明の目的は、上記欠点のないものすなわちそれ自体
薄膜状物として使用に耐えると同時に。The object of the present invention is to create a product which does not have the above-mentioned disadvantages, that is, it can be used as a thin film-like product in itself, and at the same time.
記録層を載せ、光記録あるいは光磁気記録を行なった場
合、S/Hの非常に良好な記録媒体を得ることが可能な
実質的に二軸方向に延伸されたフィルムを提供せんとす
るものである。It is an object of the present invention to provide a substantially biaxially stretched film that can provide a recording medium with a very good S/H when a recording layer is mounted and optical recording or magneto-optical recording is performed. be.
〔発明の11・b戊〕
本発明は、ポリ7ツ化ビニリデン樹脂(A)とポリメタ
クリル樹脂(B)とが混合比(A/!3 )19/1〜
3/1で混合された組1戊物を−を体とするフィルムで
あって、かつ該フィルムの長手方向の引張強度が20鞄
/に1以上、ヤング率が200 ’q /mm’以上、
120℃における格技縮率が50%以下、260〜11
000nにおける光線透過率が85%以上1面内方向の
屈折率のばらつきが8×10 以下である二軸延伸され
fこ光記録用ベースフィルムを特徴とするものである。[11.b of the invention] The present invention provides polyvinylidene heptadide resin (A) and polymethacrylic resin (B) at a mixing ratio (A/!3) of 19/1 to
A film whose main body is a 3/1 mixed group 1 material, and the tensile strength in the longitudinal direction of the film is 1 or more in 20 bags/20 bags, and the Young's modulus is 200'q/mm' or more,
Fighting shrinkage rate at 120℃ is 50% or less, 260-11
The present invention is characterized by a biaxially stretched optical recording base film having a light transmittance of 85% or more at 000 nm and a variation in refractive index in one in-plane direction of 8×10 2 or less.
本発明におけるポリフッ化ビニリデン樹脂(A)とは、
公知のポリフッ化ビニリデン樹脂であり。The polyvinylidene fluoride resin (A) in the present invention is
It is a well-known polyvinylidene fluoride resin.
その中でも融解ピーク温度が155〜180°0゜好ま
しくは、165〜175℃で、F−NMRで測定したH
ead to Head 結合が20%以下、好ましく
は15%以下、更に好ましくは10%以下のポリフッ化
ビニリデン樹脂が好適であり、該樹脂の数平均分子量(
Mn)は、5x10〜10のものを選択するのが好適で
ある。分子量が小さすきる場合は衝撃強さか小さくなる
傾向にあり、一方分子量が太きすぎる場合は、溶融押出
が困難となったり熱収縮が増加するため好ましくない。Among them, the melting peak temperature is 155-180°0°, preferably 165-175°C, and the H
A polyvinylidene fluoride resin having an ead to head bond of 20% or less, preferably 15% or less, more preferably 10% or less is suitable, and the number average molecular weight of the resin (
Mn) is preferably selected from 5x10 to 10. If the molecular weight is too low, the impact strength tends to be low, while if the molecular weight is too large, melt extrusion becomes difficult or heat shrinkage increases, which is not preferable.
また分子量分布(重量平均分子量/数平均分子量)は、
2〜40、好ましくは5〜8が好適である。In addition, the molecular weight distribution (weight average molecular weight/number average molecular weight) is
2-40, preferably 5-8 is suitable.
分子量分布が狭すぎると、延伸性が低下し、広すぎると
熱収縮率が大きくなる傾向にあり、好ましくないのであ
る。該ポリフッ化ビニリデン樹脂に他のフッ素系ポリマ
あるいはフッ化ビニリデン以外のモノマをその特性を損
わない範囲で、具体的には5重量係以下で添加あるいは
共重合してもよい。If the molecular weight distribution is too narrow, the stretchability will decrease, and if the molecular weight distribution is too wide, the heat shrinkage rate will tend to increase, which is not preferred. Other fluorine-based polymers or monomers other than vinylidene fluoride may be added or copolymerized to the polyvinylidene fluoride resin within a range that does not impair its properties, specifically in an amount of 5 weight or less.
本発明におけるポリメタクリル樹脂CB)とは。What is the polymethacrylic resin CB) in the present invention?
ポリメタクリル酸メチルを主体とする樹脂で、(1)ポ
リメタクリル酸メチルホモポリマ、あるいは(2)メタ
クリル酸/酸あるいはメタクリル酸と炭素数2〜8の脂
肪族アルコールとのエステル、またはアクリル酸あるい
はアクリル酸と炭素数1〜8の脂肪族アルコールとのエ
ステルから選ばれた1種以上のモノマーとメタクリル酸
メチルとの共重合体でメタクリル酸メチルが60モルチ
以上、好ましくは85モルチ以上のもの、あるいは、
(3) (1)に(2)の共重合体を5Qwt%、好
ましくは25wt%以下の範囲でブレンドしたものであ
る。A resin mainly composed of polymethyl methacrylate (1) polymethyl methacrylate homopolymer, or (2) methacrylic acid/acid or an ester of methacrylic acid and an aliphatic alcohol having 2 to 8 carbon atoms, or acrylic acid or A copolymer of methyl methacrylate and one or more monomers selected from esters of acrylic acid and aliphatic alcohols having 1 to 8 carbon atoms, containing 60 or more moles of methyl methacrylate, preferably 85 or more moles, or,
(3) The copolymer of (2) is blended with (1) in an amount of 5Qwt%, preferably 25wt% or less.
本発明に用いるポリメタクリル四脂として、数平均分子
量か1x10〜20×10 を選ぶのか好ましい。こ
れは数平均分子量か小さすぎる場合、耐ストレスクラン
キング性か悪化し、一方大きすきる場合、相溶性が乏し
くなるためである。また得られたフィルムの耐熱性を高
めるため、ポリメタクリル樹脂のガラス転移温度として
50℃以上。It is preferable to select a number average molecular weight of 1x10 to 20x10 as the polymethacrylic tetrafunctional resin used in the present invention. This is because if the number average molecular weight is too small, stress cranking resistance deteriorates, while if it is too large, compatibility becomes poor. In addition, in order to improve the heat resistance of the obtained film, the glass transition temperature of the polymethacrylic resin is 50°C or higher.
好ましくは75℃のものを選択するのがよい。Preferably, one with a temperature of 75°C is selected.
ポリメタクリル樹脂の例としては、メタクリル酸メチル
エステルのホモポリマあるいはそれとアクリル酸、メタ
クリル酸、あるいはアクリル酸。Examples of polymethacrylic resins include homopolymers of methyl methacrylate or acrylic acid, methacrylic acid, or acrylic acid.
メタクリル酸のエチルエステル、ブチルエステル。Ethyl ester and butyl ester of methacrylic acid.
インプロピ、少エステルなどとの共重合体を挙げること
かできる。中でもメタクリル酸メチルに、メタクリル酸
、アクリル酸あるいはアクリル酸メチルエステルを1〜
15モル%(好ましくは5〜12モル%)と、メタクリ
ル酸エチルエステルを2〜15モル%(好ましくは4〜
8モル係)共重合した三元共重合ポリマを使用した場合
、光記録の再現性にすぐれたものとなるため特に好まし
い。Examples include copolymers with inpropylene, small esters, and the like. Among them, methacrylic acid, acrylic acid, or acrylic acid methyl ester is added to methyl methacrylate.
15 mol% (preferably 5-12 mol%) and methacrylic acid ethyl ester 2-15 mol% (preferably 4-12 mol%).
It is particularly preferable to use a copolymerized terpolymer (8 moles) because it provides excellent optical recording reproducibility.
本発明に用いられるポリメタクリル酸樹脂は。The polymethacrylic acid resin used in the present invention is.
ホモポリマ、共重合体を問わずシンジオタクチック構造
を示すものが好ましい。特に
H)l
なるメン型の確率 Pmが0iO−0,38である場合
が特に好ましい。Regardless of whether it is a homopolymer or a copolymer, those exhibiting a syndiotactic structure are preferred. In particular, it is particularly preferable that the men's type probability Pm of H)l is 0iO-0.38.
樹脂CB)に含まれる水素のうち50%以上が重水素化
されている場合、波長500〜11000nにおける光
線透過率が向上するため好ましい。It is preferable that 50% or more of the hydrogen contained in the resin CB) is deuterated because the light transmittance at a wavelength of 500 to 11,000 nm is improved.
本発明は樹脂(A)と樹脂(B)との組成物を主体とす
るものであるか、具体的には、ポリスチレン、含フツ素
メタクリレート樹脂、ポリ4メチルペンテン1.ポリ塩
化ビニル、他のフッ素系樹脂等の樹脂あるいは安定剤等
の添加物を満腹(A)と樹脂(B)との組成物100部
に対して本発明の特性を損わない範囲で25部未満添加
してもよい。The present invention mainly consists of a composition of resin (A) and resin (B), specifically, polystyrene, fluorine-containing methacrylate resin, poly(4-methylpentene). Additives such as polyvinyl chloride, other fluororesins, or other additives such as stabilizers may be added to 25 parts per 100 parts of the composition of satiety (A) and resin (B) within a range that does not impair the characteristics of the present invention. It may be added in less than 2 hours.
本発明において、樹脂(A)と樹脂CB)を混合比(樹
脂(A)の重量/樹脂(B)の重量)19/1〜6/1
にする必要かある。混合比か19/1を超える場合(樹
脂Bが少ない場合)は、引張強度、ヤング率、光線透過
率が不十分であり、光記録用ベースフィルムとして使用
すると、記録再現性か不十分なため好ましくない。一方
、混合比か3/1未満の場合(樹脂(B)が多すぎる場
合)は、#f熱性。In the present invention, the mixing ratio of resin (A) and resin CB) (weight of resin (A)/weight of resin (B)) is 19/1 to 6/1.
Is it necessary to do so? When the mixing ratio exceeds 19/1 (when resin B is small), the tensile strength, Young's modulus, and light transmittance are insufficient, and when used as a base film for optical recording, the recording reproducibility is insufficient. Undesirable. On the other hand, when the mixing ratio is less than 3/1 (when there is too much resin (B)), it is #f thermal.
引張強度が不十分となり、この場合も記録の再現性か不
十分となるため好寸しくない。特に(丙脂(A)と樹脂
(B)の比率が9/1〜3.371の範囲である場合、
最も高強度、高ヤング率、低熱収潅率とす ゛ることが
容易となり、光記録用ベースフィルムとして記録再現性
が著i、 < Efれるため好ましい。The tensile strength becomes insufficient, and in this case too, the reproducibility of recording becomes insufficient, which is not suitable. Especially (when the ratio of red fat (A) and resin (B) is in the range of 9/1 to 3.371,
It is preferable because it is easy to obtain the highest strength, highest Young's modulus, and lowest heat loss coefficient, and the recording reproducibility is remarkable as a base film for optical recording.
本発明;こ1づ:するフィルムは、引張強度20 kg
/mm’以上(上限は特に限定されないか実質的には4
0鷺/適′程度である)、ヤング5200 z/=m”
以上(上限は特に限定されないか実質的には400 )
q/’Jul’程度である)、120℃におけろ熱収縮
率が50チ以下、260〜11000nにおける光線透
過率が85%以上(上限は特に限定されないか実質的に
は酬峠係程度である)1面内方向の屈折率のばらつきが
8×10 以下でなければならない。なお特に限定され
ないが N、rlaxと厚み方向の屈折率(Nz)の差
が 10 を越えたものは、高強度となり更に好まし
い。The present invention; Part 1: The film has a tensile strength of 20 kg.
/mm' or more (the upper limit is not particularly limited or is substantially 4
0 Heron/appropriate), Young 5200 z/=m”
or more (the upper limit is not particularly limited or is practically 400)
q/'Jul'), the heat shrinkage rate at 120°C is 50 cm or less, and the light transmittance at 260 to 11,000 nm is 85% or more (the upper limit is not particularly limited or is practically about the same ) The variation in refractive index in one in-plane direction must be 8×10 2 or less. Although not particularly limited, those in which the difference between N, rlax and the refractive index (Nz) in the thickness direction exceeds 10 are more preferable as they have high strength.
引張強度、ヤング率、熱収縮率が本発明の範囲外にある
場合使用を重ねるにつれて記録再現性か悪化してくるた
め好ましくない。また光線透過末複屈折か本発明の範囲
外にある場合は、当初から良好な記録再現性を得ること
ができないため好ましくない。If the tensile strength, Young's modulus, and thermal shrinkage rate are outside the range of the present invention, recording reproducibility deteriorates with repeated use, which is not preferable. Furthermore, if the terminal birefringence in light transmission is outside the range of the present invention, it is not preferable because good recording reproducibility cannot be obtained from the beginning.
本発明におけるフィルムは、二軸延伸されていることが
必要である。未延伸あるいは一動延伸したフィルムの、
鴫合、引張強度、ヤング率9面内方向の屈折率のばらつ
き、これらすべてか本発明の範囲にはいることがないた
め不適当である。本発明におシするフィルムはその製潰
方法の如何を問わあ−
ず二軸に延伸されて呵tばよいが、同時二軸延伸の場合
1面内方向の屈折率のばらつきか小さくなるため特に好
ましい。本発明(こおけるフィルムとしては厚さは特に
限定されないが8μ〜5001Lm 、 %に8〜50
tt mのものか好ましい。The film in the present invention needs to be biaxially stretched. For unstretched or single-motion stretched films,
Dispersion in bonding, tensile strength, Young's modulus, and in-plane refractive index are all inappropriate because they do not fall within the scope of the present invention. The film of the present invention may be biaxially stretched regardless of the crushing method, but simultaneous biaxial stretching reduces the variation in refractive index in one in-plane direction. Particularly preferred. The thickness of the film used in the present invention is not particularly limited, but is 8μ to 5001Lm,
tt m is preferable.
なお、ベースフィルムのベースとは、光記碌層の片側と
、他の片側にそれぞれ設けられた層の引張強度を測定(
測定法は本発明の引張強度の測定法に同じ)して対比し
たとき、その引張強度の大きい側の層を指すものとする
。The base of the base film refers to the tensile strength of the layers provided on one side of the optical recording layer and the other side (
The measurement method is the same as the method for measuring tensile strength of the present invention), and when compared, it refers to the layer with the higher tensile strength.
次に本発明フィルムの製造方法について説明するがこれ
に限定されるものCはない。Next, a method for manufacturing the film of the present invention will be described, but the method is not limited thereto.
ポリメタクリル樹脂(B)を9匹定の温度(、亀常のポ
リメタクリル酸メチルの場合80°0)て真空乾燥した
後、樹脂(A)と所定の比率で混合する。このようにし
て得た樹脂組成物を、圧縮比18〜5.5のスクリュー
を有する押出機を用いて。After drying the polymethacrylic resin (B) under vacuum at a constant temperature (80°0 in the case of Kamejo's polymethyl methacrylate), it is mixed with the resin (A) at a predetermined ratio. The resin composition thus obtained was processed using an extruder equipped with a screw having a compression ratio of 18 to 5.5.
180〜280℃で溶融押出して、ベレット化1−る。Melt extrusion is performed at 180 to 280°C to form pellets.
このベレットを所定の条件で乾燥した後、圧縮比1.8
〜5.5のスクリューを有する押出成を用いて、180
〜280 ’Cで溶1蝕押出し9表面温度1(〕〜95
゛cのキャスティングドラム上でキャス7凰
トシ、厚み30#I−〜3画のシートμする。After drying this pellet under specified conditions, the compression ratio was 1.8.
180 using an extrusion with a screw of ~5.5
Melt 1 eclipse extrusion 9 surface temperature 1 at ~280'C (〕~95
Cast a sheet of 7 layers and a thickness of 30 #I to 3 strokes on a casting drum of ゛c.
このようにして得られたシートを班伸温g120〜16
5℃で逐次二軸延伸あるいは同時二軸延伸を行なう。あ
るいは二軸延伸したフィルムを必要に応じて、再度長手
方向に延伸してもよい。要は最終的に二軸方向に延伸さ
れたフィルムであれはよい。ベレタイズ工程は、適宜省
いてもよい。また。キャスティングドラム温度はドラム
とフィルムとの街着性か損われない限り低温である方か
好゛ましく通常は表面温度を40 ’c以1とするのか
よい。シートの延伸は、好ましくは145〜165’c
、wに150〜165℃で行なうのか好ましい。The sheet obtained in this way was heated to a temperature of 120 to 16 g.
Sequential biaxial stretching or simultaneous biaxial stretching is performed at 5°C. Alternatively, the biaxially stretched film may be stretched again in the longitudinal direction, if necessary. In short, it is acceptable as long as the film is finally stretched in two directions. The beletizing step may be omitted as appropriate. Also. The temperature of the casting drum should be as low as possible, as long as the adhesion between the drum and the film is not impaired, and the surface temperature is usually 40'C or higher. Stretching of the sheet is preferably from 145 to 165'c
, W is preferably carried out at 150 to 165°C.
延伸倍率は、巾方向、長手方向各々2,5倍以上延伸す
るのがよいか、特に長手方向に3.5倍以上かつ面積倍
率10倍以上追伸した場合、好ましい物性のフィルムを
得ることかできる。また得られたフィルムに熱処理を施
すことにより、熱収縮率を低下させることかできるため
好ましい。特に巾方向、あるいは長手方向に対して、0
.5〜8%リラックスを行ないなから115〜165℃
好ましくは150〜160℃で熱処理を施すことにより
。It is preferable to stretch the film at a stretching ratio of 2.5 times or more in the width direction and in the longitudinal direction. In particular, if the film is stretched at a stretching ratio of 3.5 times or more in the longitudinal direction and at an area magnification of 10 times or more, a film with preferable physical properties can be obtained. . It is also preferable to subject the obtained film to heat treatment, since it is possible to reduce the heat shrinkage rate. Especially in the width direction or longitudinal direction, 0
.. 115-165℃ without relaxing 5-8%
Preferably by performing heat treatment at 150 to 160°C.
機械特性の低下を最小にして、熱収量率の低下を最大と
することができるため好ましい。This is preferable because it can minimize the decrease in mechanical properties and maximize the decrease in heat yield rate.
このようにして併られたフィルム上に5bOx 。5bOx on the film thus combined.
GeOx 、 TeOx 、 Marx 、 InO
x などの公知の光記録薄膜をのせ光パルス照射前後
の透過率の差およびその経時変化を調べたところ、変化
もなく、すぐ〔発明の効果〕
本発明は、ポリフッ化ビニリデン樹脂に、4を定のポリ
メタクリル樹脂を特定量混合した組成物を二軸延伸した
ので、記録再現性にすぐれ、往時での記録層の劣化か少
ない元記録媒体用ベースフィルムが得られた。GeOx, TeOx, Marx, InO
When the difference in transmittance before and after irradiation with light pulses and its change over time were investigated by placing a known optical recording thin film such as By biaxially stretching a composition containing a specific amount of polymethacrylic resin, a base film for a former recording medium with excellent recording reproducibility and little deterioration of the recording layer was obtained.
本発明における特性の測定方法および評価基準は1次の
通りである。The characteristics measurement method and evaluation criteria in the present invention are as follows.
(1) 引張強度:JIS C2518−1972
のポリエステルフィルムの試験方法により、引張速度5
00an/ m i nの破断時の引張強度を測定する
。(1) Tensile strength: JIS C2518-1972
According to the polyester film test method of
Measure the tensile strength at break of 00an/min.
(2) ヤング率: J I S−Z −,1702
に準じてインストロンタイプの引張試験機を用いて引張
速度20mm/minで測定する。(2) Young's modulus: JIS-Z-, 1702
Measurements are made using an Instron type tensile tester at a tensile speed of 20 mm/min.
(3)熱収縮率:巾1 am 、長さ20cmの短冊状
サンプルをフィルム長手方向および巾方向に各5本切り
出す。サンプルに標点間距離15ca+のマークをつけ
、サンプルの一端をチャックで固定し、他端に2g重の
荷重をかけた状態で120℃熱風オープン中で15分間
熱処理する。熱処理後の標点間距離を長手方向、巾方向
それぞれについて測定し、その平均をLとする。(3) Heat shrinkage rate: Five strip samples each having a width of 1 am and a length of 20 cm are cut out in the longitudinal direction and the width direction of the film. A mark with a gauge distance of 15 ca+ is placed on the sample, one end of the sample is fixed with a chuck, and a 2 g load is applied to the other end, and heat treatment is performed in a hot air open at 120° C. for 15 minutes. The distance between gauges after heat treatment is measured in both the longitudinal direction and the width direction, and the average thereof is defined as L.
熱収縮率= ((15−L)/15]xl[lo て
算出する。Thermal shrinkage rate = ((15-L)/15]xl[lo) Calculate.
(4) 屈折率:アソペの屈折計を用い、マウント液と
してヨウ化メチレン、光源としてナトリウムランプを使
用する。フィルムの長手方向1幅方向。(4) Refractive index: Using an Asope refractometer, methylene iodide is used as the mounting liquid and a sodium lamp is used as the light source. One width direction in the longitudinal direction of the film.
長手方向から45°幅方向に傾いた方向(以下バイアス
方向というンの屈折率を測定し、3つの屈折率のうちか
ら最大屈折率c Nma)< )と最小屈折率(Nmi
n) を選ひ+ Nmax ’minを面内方向の
屈折率のばらつきとした。また、厚み方向の屈折率を測
定しこれを N2とした。The refractive index in a direction inclined at 45° from the longitudinal direction to the width direction (hereinafter referred to as the bias direction) is measured, and the maximum refractive index c Nma) < ) and the minimum refractive index (Nmi
n) was selected and +Nmax'min was taken as the variation in the refractive index in the in-plane direction. In addition, the refractive index in the thickness direction was measured and defined as N2.
(5)光線透過率:日立製作所■自記記録型分光光度計
を用いて波長を400nm〜10 DOnmと変え。(5) Light transmittance: Hitachi ■Using a self-recording spectrophotometer, the wavelength was varied from 400 nm to 10 DOnm.
平行光勝透過率をσilj定し、光線透過率とした。The parallel light transmittance was determined as σilj, which was defined as the light transmittance.
((31記録再現性:アモルファスのTe低酸化物(T
ea、 )と Teを蒸発諒として約1 x 10
mn+Hgの真空中でベースフィルムに約120nmの
厚みに蒸着する。この記録層にベースフィルムばIJI
l川から波長830nmの25mWのレーザーを照射し
記録層を黒化させる。このようにして得た黒化した層と
未処理の層との波長830nm、5mW レーザーの
反射率を評価し9反射率が12%以上変化しているもの
を記録再現性「◎」1反射率が10チ以上12係未#変
化しているものを、記録再現性「○」。((31 Recording reproducibility: amorphous Te low oxide (T
ea, ) and Te as an evaporator, approximately 1 x 10
The base film is deposited to a thickness of about 120 nm in a vacuum of mn+Hg. If this recording layer has a base film, IJI
A 25 mW laser with a wavelength of 830 nm is irradiated from the 1 river to blacken the recording layer. Evaluate the reflectance of the thus obtained blackened layer and the untreated layer using a 5 mW laser at a wavelength of 830 nm. 9 If the reflectance changes by 12% or more, record reproducibility "◎" 1 reflectance Recording reproducibility is rated "○" if there are 10 or more changes in 12 or more.
反射率が10%未満のものを記録再現性「×」とする。When the reflectance is less than 10%, the recording reproducibility is evaluated as "x".
また記録層が黒化したサンプルに引張強度1kg/mm
’での伸縮を50回繰り返した後9反射率を測定し、同
様の基準で判定した結果を、経時での記録再現性として
示した。In addition, the tensile strength of the sample with a blackened recording layer was 1 kg/mm.
After repeating the expansion and contraction at '' 50 times, 9 reflectances were measured, and the results determined using the same criteria were shown as recording reproducibility over time.
以下、実施例に基ついて本発明の実施態様を説明する。 Hereinafter, embodiments of the present invention will be described based on Examples.
実施例1〜5.比較例1〜2
ポリフッ化ビニリデン樹脂(PVDF)(A)としてペ
ンウォルト社製“Kynar”740〔融解ピーク温度
169゛c、メルトフローレート(JIS K676
0に準じ230℃で測定した) 0.3g710分。Examples 1-5. Comparative Examples 1 to 2 As polyvinylidene fluoride resin (PVDF) (A), “Kynar” 740 manufactured by Pennwald [melting peak temperature 169°C, melt flow rate (JIS K676
0.3g710min.
FNMRで測定しHeadもo Head結合8結合8
右よび別途懸l蜀重合法で血会したポリフッ化ビニリゾ
7II脂〔融解ピーク温度158℃,ノルトフローレー
)0.5g/10分、 FNMRで測定したHead
to Head 結合82%〕を用意する。また樹
脂(B)としてシンジオタクチックのポリメチルメタク
リレート(以降PMMAと略す)〔三菱レーヨン社製1
アクリペツト#vHOO1(ガラス転移温度101℃、
メルトフローレート(以降アクリル樹脂はすべてAST
M D−1238−65に準じて230 ’cで測定
する)1.9呂/10分)およびアイソタクチックPM
MA(ガラス転移温度58 ′c 、メルトフローレー
ト1.2g/10分〕を用意する。Measured by FNMR, Head is also o Head bond 8 bond 8
Head measured by FNMR at 0.5 g/10 min of polyfluorinated vinyliso-7II resin (melting peak temperature 158°C, Nordflowre) obtained by suspension polymerization method.
to Head connection 82%]. In addition, as the resin (B), syndiotactic polymethyl methacrylate (hereinafter abbreviated as PMMA) [manufactured by Mitsubishi Rayon Co., Ltd. 1
Acrypet #vHOO1 (glass transition temperature 101℃,
Melt flow rate (all acrylic resins are AST)
(measured at 230'c according to MD-1238-65) 1.9 l/10 min) and isotactic PM
Prepare MA (glass transition temperature 58'c, melt flow rate 1.2 g/10 minutes).
樹脂(A)と(ガラス1云移温度−10) ’cの真空
乾燥機中で12時間乾燥した樹脂(B)を所定の比率(
表1に示した)でトライブレンドで混合する。このよう
にして得た樹脂組成物をL/D=28゜圧縮比3.8の
スクリューを備えた40mmφ押出機を用いて浴融混練
しペレットとする。得られたベレソトヲベレタイズの際
と同一の条件で乾燥した後、ペレタイズ時に使用したと
同一のスクリューと押出機および250−巾の口金を用
いて浴融成形した後1表面温度65℃のキャスティング
ドラム上で急冷して厚さ200μmの未延伸フィルムと
する。このようにして得られたフィルムを、 T、 M
。Resin (A) and resin (B) dried for 12 hours in a vacuum dryer at (transition temperature of glass 1 - 10)'c were mixed in a predetermined ratio (
(shown in Table 1) in a triblend. The resin composition thus obtained is bath-melted and kneaded into pellets using a 40 mmφ extruder equipped with a screw having L/D=28° and a compression ratio of 3.8. The obtained pellets were dried under the same conditions as those used for pelletizing, and then bath-melted using the same screw and extruder used for pelletizing and a 250-width die, followed by casting at a surface temperature of 65°C. It is rapidly cooled on a drum to form an unstretched film with a thickness of 200 μm. The film obtained in this way is T, M
.
Long社製フィルムストレッチャーを用いて、延伸速
度1000%/分で延伸した(延伸温度は表に示した)
。このようにして得たフィルムを150 ’c x1分
(比較例1は120“0)の緊張熱処理(リラックス率
0%)したのち、物性を測定し表に示した。本実施例の
場合は1本発明の要件すなわち。It was stretched at a stretching speed of 1000%/min using a Long film stretcher (stretching temperature is shown in the table).
. After the film thus obtained was subjected to tension heat treatment (relaxation rate 0%) at 150'c x 1 minute (comparative example 1 was 120'0), the physical properties were measured and shown in the table. Requirements of the present invention, namely:
引張強度、ヤング率゛、熱収縮率が所定の値を有してい
るため、経時によらず安定した記録再現性を示す。その
中でもHead to Head の割合か高いポリ
フッ化ビニリデンを使用した場合が、またアイソタクチ
ックではなくてシンジオタクチックな構造を持つPMM
Aの場合、記録鼻現注がすぐれている。一方、樹脂(B
)が多すぎる比較例1は引張強度、ヤング率が低くなる
と共に熱収縮率が非常に太き(なり、経時での記録再現
性が悪化してしまう。また樹脂CB)か少なすぎる場合
は均一に延伸できないため、物性かばらつき又透明性も
不十分となるため、記録再現性か著しく悪化する。Since the tensile strength, Young's modulus, and thermal shrinkage ratio have predetermined values, stable recording reproducibility is exhibited regardless of aging. Among them, the use of polyvinylidene fluoride with a high head-to-head ratio results in PMM having a syndiotactic structure rather than isotactic.
In the case of A, the recording nose is excellent. On the other hand, resin (B
) in Comparative Example 1, the tensile strength and Young's modulus are low, and the heat shrinkage rate is very thick (and the recording reproducibility over time deteriorates. Also, if the resin CB) is too small, it is uniform. Since the film cannot be stretched, the physical properties vary and the transparency becomes insufficient, resulting in a significant deterioration in recording reproducibility.
実施例6〜8
ポリフッ化ビニリデンm1lW(A)として実施例1と
同じ” Kynar’ 740を用意する。樹脂(B)
として、ブチルメタアクリレート(HMA)を10重量
%共重合したポリメチルメタアクリレ−) ’ 4t4
脂〔ガラス伝移温度96℃,メルトフローレート1.4
g710分〕、エチルメタアクリレート(EMA)を1
0重ta Z共重合したポリメチルメタアクリレート位
(1旨〔ガラス+1云移温度99℃,メルトフローレー
ト1.2g/10分〕およびメタクリル[(MA)10
ii%とエチルメタアクリレート(EMA)5恵量係を
共重合したポリメチルメタアクリレート樹脂〔ガラス伝
移温度98℃,メルトフローレート1.3g/10分〕
を用、はする。樹脂(A)と樹脂(B)を実施例1と同
様のツノ法て製liA、延伸して物性を計画し表1に示
した。Examples 6 to 8 Kynar' 740, which is the same as in Example 1, is prepared as polyvinylidene fluoride m1lW (A).Resin (B)
Polymethyl methacrylate (polymethyl methacrylate) copolymerized with 10% by weight of butyl methacrylate (HMA) as '4t4
[Glass transition temperature 96℃, melt flow rate 1.4
g710 minutes], 1 ethyl methacrylate (EMA)
0-fold ta Z copolymerized polymethyl methacrylate position (1 effect [glass + 1 transition temperature 99°C, melt flow rate 1.2 g/10 min]) and methacrylic [(MA) 10
Polymethyl methacrylate resin copolymerized with 5% ethyl methacrylate (EMA) [glass transition temperature 98°C, melt flow rate 1.3 g/10 min]
to use, to use. Resin (A) and resin (B) were produced using the same horn method as in Example 1 and stretched, and the physical properties are shown in Table 1.
表にみられるように、ブチルメタアクリレートを共重合
した場合(実施例6)は1通常のPMMA並の記録再現
性が得られる。エチルメタアクリレートを共重合した場
合(実施例7,8)は、直後および経時での記録再現性
の改良が著しいことかわかる。このような改良効果は未
延伸フィルムでは全(みられず、二軸延伸することによ
りはじめて明らかになったものである。As shown in the table, when butyl methacrylate was copolymerized (Example 6), recording reproducibility comparable to that of ordinary PMMA was obtained. It can be seen that when ethyl methacrylate was copolymerized (Examples 7 and 8), the recording reproducibility immediately and over time was significantly improved. Such an improvement effect was not completely observed in the unstretched film, and became apparent only after biaxial stretching.
実施例9〜12
ポリフッ化ビニリデン衛脂(A)として実施例1と同じ
“Kynar”740を用意する。樹脂CB)として実
施例3と同じシンジオタクチックPMMAを用意する。Examples 9 to 12 The same “Kynar” 740 as in Example 1 was prepared as polyvinylidene fluoride sanitary resin (A). The same syndiotactic PMMA as in Example 3 was prepared as resin CB).
樹脂(A)と樹脂CB)を実施例1と同様の方法で混合
し製膜する。このようにして得られた未延伸フィルムを
ToM、Long社製フィルムストレッチャーを用いて
、延伸速度1000%/分で、実施例9では長手方向、
巾方向をこ各5,6倍四時二軸延伸を、また実施例10
では長手方向に6倍・巾方向に6倍逐次二軸延伸し、そ
の後各々のサンプルを同様の方法で熱処理した。また実
施例と同じ条件で延伸したフィルムを、長手、巾方向そ
れぞれに、実施例11では2%、実施例12では6%と
リラックス率を変更して150 ’cで1分間リラック
ス熱処理を行ない物性を評価した。Resin (A) and resin CB) are mixed and formed into a film in the same manner as in Example 1. The unstretched film thus obtained was stretched using a ToM film stretcher manufactured by Long Co., Ltd. at a stretching speed of 1000%/min, in the longitudinal direction in Example 9.
Biaxial stretching was carried out 5 and 6 times each in the width direction, and Example 10
Then, the samples were sequentially biaxially stretched 6 times in the longitudinal direction and 6 times in the width direction, and then each sample was heat treated in the same manner. In addition, the film stretched under the same conditions as in Example was subjected to relaxation heat treatment for 1 minute at 150'C with the relaxation rate changed to 2% in Example 11 and 6% in Example 12 in the longitudinal and width directions, respectively. was evaluated.
表にみるように、逐次二+111延伸した実施例10で
は1面内方向屈折率のばらつさが、わずかであるが増加
する。一方面積倍率を11倍と太き(した実施例9は、
毘強度、高ヤング率となり経時での記録再現性にすぐれ
ている。また熱処理時にリラックスを施した実施例11
〜12は1機械特性をあまり変化させることなく、熱収
縮率を小さくできるため記録再現性の面から好ましい。As shown in the table, in Example 10, which was sequentially stretched by 2+111, the variation in the refractive index in one in-plane direction increases, although slightly. On the other hand, Example 9 has a thick area magnification of 11 times.
It has high permanence strength and Young's modulus, and has excellent recording reproducibility over time. Example 11 in which relaxation was applied during heat treatment
1 to 12 are preferable from the viewpoint of recording reproducibility because the thermal shrinkage rate can be reduced without changing the mechanical properties much.
Claims (1)
ル樹脂(B)とが混合比(A/B)19/1〜3/1で
混合された組成物を上体とするフィルムであつて、かつ
該フィルムの長手方向の引張強度が20kg/mm^2
以上、ヤング率が200kg/mm^2以上、120℃
における熱収縮率が50%以下、260〜1000nm
における光線透過率が85%以上、面内方向の屈折率の
ばらつきが8×10以下である二軸延伸された光記録用
ベースフィルム。(1) A film having a composition in which polyvinylidene fluoride resin (A) and polymethacrylic resin (B) are mixed at a mixing ratio (A/B) of 19/1 to 3/1, and The tensile strength of the film in the longitudinal direction is 20 kg/mm^2
Above, Young's modulus is 200kg/mm^2 or above, 120℃
Thermal shrinkage rate is 50% or less, 260 to 1000 nm
A biaxially stretched optical recording base film having a light transmittance of 85% or more and a variation in refractive index in the in-plane direction of 8×10 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59201808A JPS6181449A (en) | 1984-09-28 | 1984-09-28 | Base film for optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59201808A JPS6181449A (en) | 1984-09-28 | 1984-09-28 | Base film for optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6181449A true JPS6181449A (en) | 1986-04-25 |
Family
ID=16447257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59201808A Pending JPS6181449A (en) | 1984-09-28 | 1984-09-28 | Base film for optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6181449A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2594585A1 (en) * | 1986-02-13 | 1987-08-21 | Central Glass Co Ltd | OPTICAL INFORMATION RECORDING CARD USING A POLYMER MIXTURE AS A RECORDING MATERIAL |
EP0347063A2 (en) * | 1988-06-02 | 1989-12-20 | Fujitsu Limited | Liquid crystal display device and plastic optical phase sheet |
US5527594A (en) * | 1991-12-04 | 1996-06-18 | Diafoil Hoechst Company, Limited | Optical tape |
JP2005042066A (en) * | 2003-07-25 | 2005-02-17 | Daikin Ind Ltd | Vinylidene fluoride-based copolymer resin film |
CN102666715A (en) * | 2009-11-30 | 2012-09-12 | 电气化学工业株式会社 | Polyvinylidene fluoride resin composition, film, back sheet, and solar cell module |
-
1984
- 1984-09-28 JP JP59201808A patent/JPS6181449A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2594585A1 (en) * | 1986-02-13 | 1987-08-21 | Central Glass Co Ltd | OPTICAL INFORMATION RECORDING CARD USING A POLYMER MIXTURE AS A RECORDING MATERIAL |
EP0347063A2 (en) * | 1988-06-02 | 1989-12-20 | Fujitsu Limited | Liquid crystal display device and plastic optical phase sheet |
US5527594A (en) * | 1991-12-04 | 1996-06-18 | Diafoil Hoechst Company, Limited | Optical tape |
JP2005042066A (en) * | 2003-07-25 | 2005-02-17 | Daikin Ind Ltd | Vinylidene fluoride-based copolymer resin film |
JP4492057B2 (en) * | 2003-07-25 | 2010-06-30 | ダイキン工業株式会社 | Vinylidene fluoride copolymer resin film |
CN102666715A (en) * | 2009-11-30 | 2012-09-12 | 电气化学工业株式会社 | Polyvinylidene fluoride resin composition, film, back sheet, and solar cell module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920007285B1 (en) | Optical phase plate and production process thereof | |
US4617350A (en) | Fluorine-containing resin composition for optical use | |
BR9405786A (en) | Polymeric composition and polymer-based composition for the manufacture of articles | |
CA1211599A (en) | Dielectric polymer materials | |
US4615943A (en) | Vinylidene fluoride copolymer film | |
CN111574812B (en) | Optical compensation film based on copolyester material, preparation method and application thereof | |
US4861835A (en) | Polymer blend composition suitable as optical material | |
JP2602242B2 (en) | Sheath material for plastic optical fiber and plastic optical fiber using the same | |
JPH0315932B2 (en) | ||
JP7153657B2 (en) | A transparent film based on a resin component with a high glass transition temperature | |
KR101335618B1 (en) | Method for producing acryl-based copolymer for optical film and method for producing optical film using the same | |
JPS6181449A (en) | Base film for optical recording medium | |
JPH0315005A (en) | Optical phase difference plate and production thereof | |
JPS6178857A (en) | Cover film for optical recording medium | |
JPH10274716A (en) | Plastic optical fiber high in numerical aperture | |
JPS5962657A (en) | Improved composition for molding vinylidene fluoride- trifluoroethylene copolymer | |
JPS6064827A (en) | Polyvinylidene fluoride type biaxially stretched film and its manufacture | |
JPS61102248A (en) | Film for optical record medium | |
JPH04284402A (en) | Novel phase difference compensation sheet | |
US4604441A (en) | Polypropylene sheet | |
JPH0313967B2 (en) | ||
JPS597311A (en) | Optical transmittion fiber | |
JPS5941348A (en) | Improved vinylidene fluoride-tetrafluoroethylene copolymer molding composition | |
JP7342651B2 (en) | film | |
JPS616307A (en) | Polyvinylidene fluoride monofilament |